
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2023. All

rights reserved. Draft of February 3, 2024.

CHAPTER

F Logical Representations of
Sentence Meaning

ISHMAEL: Surely all this is not without meaning.
Herman Melville, Moby Dick

In this chapter we introduce the idea that the meaning of linguistic expressions can
be captured in formal structures called meaning representations. Consider tasksmeaning

representations
that require some form of semantic processing, like learning to use a new piece of
software by reading the manual, deciding what to order at a restaurant by reading
a menu, or following a recipe. Accomplishing these tasks requires representations
that link the linguistic elements to the necessary non-linguistic knowledge of the
world. Reading a menu and deciding what to order, giving advice about where to
go to dinner, following a recipe, and generating new recipes all require knowledge
about food and its preparation, what people like to eat, and what restaurants are like.
Learning to use a piece of software by reading a manual, or giving advice on using
software, requires knowledge about the software and similar apps, computers, and
users in general.

In this chapter, we assume that linguistic expressions have meaning representa-
tions that are made up of the same kind of stuff that is used to represent this kind of
everyday common-sense knowledge of the world. The process whereby such repre-
sentations are created and assigned to linguistic inputs is called semantic parsing orsemantic

parsing
semantic analysis, and the entire enterprise of designing meaning representations
and associated semantic parsers is referred to as computational semantics.computational

semantics

∃e,y Having(e)∧Haver(e,Speaker)∧HadT hing(e,y)∧Car(y)

h / have-01

c / cari / i

arg0 arg1 (h / have-01
 arg0: (i / i)
 arg1: (c / car))

Having:
 Haver: Speaker
 HadThing: Car

Figure F.1 A list of symbols, two directed graphs, and a record structure: a sampler of
meaning representations for I have a car.

Consider Fig. F.1, which shows example meaning representations for the sen-
tence I have a car using four commonly used meaning representation languages.
The top row illustrates a sentence in First-Order Logic, covered in detail in Sec-
tion F.3; the directed graph and its corresponding textual form is an example of an
Abstract Meaning Representation (AMR) form (Banarescu et al., 2013), and on
the right is a frame-based or slot-filler representation, discussed in Section F.5 and
again in Chapter 21.

2 APPENDIX F • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

While there are non-trivial differences among these approaches, they all share
the notion that a meaning representation consists of structures composed from a
set of symbols, or representational vocabulary. When appropriately arranged, these
symbol structures are taken to correspond to objects, properties of objects, and rela-
tions among objects in some state of affairs being represented or reasoned about. In
this case, all four representations make use of symbols corresponding to the speaker,
a car, and a relation denoting the possession of one by the other.

Importantly, these representations can be viewed from at least two distinct per-
spectives in all of these approaches: as representations of the meaning of the par-
ticular linguistic input I have a car, and as representations of the state of affairs in
some world. It is this dual perspective that allows these representations to be used
to link linguistic inputs to the world and to our knowledge of it.

In the next sections we give some background: our desiderata for a meaning
representation language and some guarantees that these representations will actually
do what we need them to do—provide a correspondence to the state of affairs being
represented. In Section F.3 we introduce First-Order Logic, historically the primary
technique for investigating natural language semantics, and see in Section F.4 how
it can be used to capture the semantics of events and states in English. Chapter 20
then introduces techniques for semantic parsing: generating these formal meaning
representations given linguistic inputs.

F.1 Computational Desiderata for Representations

Let’s consider why meaning representations are needed and what they should do for
us. To focus this discussion, let’s consider a system that gives restaurant advice to
tourists based on a knowledge base.

Verifiability

Consider the following simple question:

(F.1) Does Maharani serve vegetarian food?

To answer this question, we have to know what it’s asking, and know whether what
it’s asking is true of Maharini or not. Verifiability is a system’s ability to compareverifiability

the state of affairs described by a representation to the state of affairs in some world
as modeled in a knowledge base. For example, we’ll need some sort of representa-
tion like Serves(Maharani,VegetarianFood), which a system can match against its
knowledge base of facts about particular restaurants, and if it finds a representation
matching this proposition, it can answer yes. Otherwise, it must either say No if its
knowledge of local restaurants is complete, or say that it doesn’t know if it knows
its knowledge is incomplete.

Unambiguous Representations

Semantics, like all the other domains we have studied, is subject to ambiguity. Words
and sentences have different meaning representations in different contexts. Consider
the following example:

(F.2) I wanna eat someplace that’s close to ICSI.

This sentence can either mean that the speaker wants to eat at some nearby location,
or under a Godzilla-as-speaker interpretation, the speaker may want to devour some

F.1 • COMPUTATIONAL DESIDERATA FOR REPRESENTATIONS 3

nearby location. The sentence is ambiguous; a single linguistic expression can have
one of two meanings. But our meaning representations itself cannot be ambiguous.
The representation of an input’s meaning should be free from any ambiguity, so that
the system can reason over a representation that means either one thing or the other
in order to decide how to answer.

A concept closely related to ambiguity is vagueness: in which a meaning repre-vagueness

sentation leaves some parts of the meaning underspecified. Vagueness does not give
rise to multiple representations. Consider the following request:

(F.3) I want to eat Italian food.

While Italian food may provide enough information to provide recommendations, it
is nevertheless vague as to what the user really wants to eat. A vague representation
of the meaning of this phrase may be appropriate for some purposes, while a more
specific representation may be needed for other purposes.

Canonical Form

The doctrine of canonical form says that distinct inputs that mean the same thingcanonical form

should have the same meaning representation. This approach greatly simplifies rea-
soning, since systems need only deal with a single meaning representation for a
potentially wide range of expressions.

Consider the following alternative ways of expressing (F.1):

(F.4) Does Maharani have vegetarian dishes?
(F.5) Do they have vegetarian food at Maharani?
(F.6) Are vegetarian dishes served at Maharani?
(F.7) Does Maharani serve vegetarian fare?

Despite the fact these alternatives use different words and syntax, we want them
to map to a single canonical meaning representations. If they were all different,
assuming the system’s knowledge base contains only a single representation of this
fact, most of the representations wouldn’t match. We could, of course, store all
possible alternative representations of the same fact in the knowledge base, but doing
so would lead to enormous difficulty in keeping the knowledge base consistent.

Canonical form does complicate the task of semantic parsing. Our system must
conclude that vegetarian fare, vegetarian dishes, and vegetarian food refer to the
same thing, that having and serving are equivalent here, and that all these parse
structures still lead to the same meaning representation. Or consider this pair of
examples:

(F.8) Maharani serves vegetarian dishes.
(F.9) Vegetarian dishes are served by Maharani.

Despite the different placement of the arguments to serve, a system must still assign
Maharani and vegetarian dishes to the same roles in the two examples by draw-
ing on grammatical knowledge, such as the relationship between active and passive
sentence constructions.

Inference and Variables

What about more complex requests such as:

(F.10) Can vegetarians eat at Maharani?

This request results in the same answer as the others not because they mean the same
thing, but because there is a common-sense connection between what vegetarians eat

4 APPENDIX F • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

and what vegetarian restaurants serve. This is a fact about the world. We’ll need to
connect the meaning representation of this request with this fact about the world in a
knowledge base. A system must be able to use inference—to draw valid conclusionsinference

based on the meaning representation of inputs and its background knowledge. It
must be possible for the system to draw conclusions about the truth of propositions
that are not explicitly represented in the knowledge base but that are nevertheless
logically derivable from the propositions that are present.

Now consider the following somewhat more complex request:

(F.11) I’d like to find a restaurant where I can get vegetarian food.

This request does not make reference to any particular restaurant; the user wants in-
formation about an unknown restaurant that serves vegetarian food. Since no restau-
rants are named, simple matching is not going to work. Answering this request
requires the use of variables, using some representation like the following:variables

Serves(x,VegetarianFood) (F.12)

Matching succeeds only if the variable x can be replaced by some object in the
knowledge base in such a way that the entire proposition will then match. The con-
cept that is substituted for the variable can then be used to fulfill the user’s request.
It is critical for any meaning representation language to be able to handle these kinds
of indefinite references.

Expressiveness

Finally, a meaning representation scheme must be expressive enough to handle a
wide range of subject matter, ideally any sensible natural language utterance. Al-
though this is probably too much to expect from any single representational system,
First-Order Logic, as described in Section F.3, is expressive enough to handle quite
a lot of what needs to be represented.

F.2 Model-Theoretic Semantics

What is it about meaning representation languages that allows them to fulfill these
desiderata, bridging the gap from formal representations to representations that tell
us something about some state of affairs in the world?

The answer is a model. A model is a formal construct that stands for the partic-model

ular state of affairs in the world. Expressions in a meaning representation language
can be mapped to elements of the model, like objects, properties of objects, and
relations among objects. If the model accurately captures the facts we’re interested
in, then a consistent mapping between the meaning representation and the model
provides the bridge between meaning representation and world. Models provide a
surprisingly simple and powerful way to ground the expressions in meaning repre-
sentation languages.

First, some terminology. The vocabulary of a meaning representation consists of
two parts: the non-logical vocabulary and the logical vocabulary. The non-logical
vocabulary consists of the open-ended set of names for the objects, properties, andnon-logical

vocabulary
relations that make up the world we’re trying to represent. These appear in various
schemes as predicates, nodes, labels on links, or labels in slots in frames. The log-
ical vocabulary consists of the closed set of symbols, operators, quantifiers, links,logical

vocabulary

F.2 • MODEL-THEORETIC SEMANTICS 5

etc., that provide the formal means for composing expressions in a given meaning
representation language.

Each element of the non-logical vocabulary must have a denotation in the model,denotation

meaning that every element corresponds to a fixed, well-defined part of the model.
Let’s start with objects. The domain of a model is the set of objects that are beingdomain

represented. Each distinct concept, category, or individual denotes a unique element
in the domain.

We represent properties of objects in a model by denoting the domain elements
that have the property; that is, properties denote sets. The denotation of the property
red is the set of things we think are red. Similarly, a relation among object denotes
a set of ordered lists, or tuples, of domain elements that take part in the relation: the
denotation of the relation Married is set of pairs of domain objects that are married.
This approach to properties and relations is called extensional, because we defineextensional

concepts by their extension, their denotations. To summarize:

• Objects denote elements of the domain
• Properties denote sets of elements of the domain
• Relations denote sets of tuples of elements of the domain

We now need a mapping that gets us from our meaning representation to the
corresponding denotations: a function that maps from the non-logical vocabulary of
our meaning representation to the proper denotations in the model. We’ll call such
a mapping an interpretation.interpretation

Let’s return to our restaurant advice application, and let its domain consist of
sets of restaurants, patrons, facts about the likes and dislikes of the patrons, and
facts about the restaurants such as their cuisine, typical cost, and noise level. To
begin populating our domain, D , let’s assume that we’re dealing with four patrons
designated by the non-logical symbols Matthew, Franco, Katie, and Caroline. de-
noting four unique domain elements. We’ll use the constants a,b,c and, d to stand
for these domain elements. We’re deliberately using meaningless, non-mnemonic
names for our domain elements to emphasize the fact that whatever it is that we
know about these entities has to come from the formal properties of the model and
not from the names of the symbols. Continuing, let’s assume that our application
includes three restaurants, designated as Frasca, Med, and Rio in our meaning rep-
resentation, that denote the domain elements e, f , and g. Finally, let’s assume that
we’re dealing with the three cuisines Italian, Mexican, and Eclectic, denoted by h, i,
and j in our model.

Properties like Noisy denote the subset of restaurants from our domain that are
known to be noisy. Two-place relational notions, such as which restaurants individ-
ual patrons Like, denote ordered pairs, or tuples, of the objects from the domain.
And, since we decided to represent cuisines as objects in our model, we can cap-
ture which restaurants Serve which cuisines as a set of tuples. One possible state of
affairs using this scheme is given in Fig. F.2.

Given this simple scheme, we can ground our meaning representations by con-
sulting the appropriate denotations in the corresponding model. For example, we can
evaluate a representation claiming that Matthew likes the Rio, or that The Med serves
Italian by mapping the objects in the meaning representations to their corresponding
domain elements and mapping any links, predicates, or slots in the meaning repre-
sentation to the appropriate relations in the model. More concretely, we can verify
a representation asserting that Matthew likes Frasca by first using our interpretation
function to map the symbol Matthew to its denotation a, Frasca to e, and the Likes
relation to the appropriate set of tuples. We then check that set of tuples for the

6 APPENDIX F • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

Domain D = {a,b,c,d,e, f ,g,h, i, j}
Matthew, Franco, Katie and Caroline a,b,c,d
Frasca, Med, Rio e, f ,g
Italian, Mexican, Eclectic h, i, j

Properties
Noisy Noisy = {e, f ,g}

Frasca, Med, and Rio are noisy

Relations
Likes Likes = {〈a, f 〉,〈c, f 〉,〈c,g〉,〈b,e〉,〈d, f 〉,〈d,g〉}

Matthew likes the Med
Katie likes the Med and Rio
Franco likes Frasca
Caroline likes the Med and Rio

Serves Serves = {〈 f , j〉,〈g, i〉,〈e,h〉}
Med serves eclectic
Rio serves Mexican
Frasca serves Italian

Figure F.2 A model of the restaurant world.

presence of the tuple 〈a,e〉. If, as it is in this case, the tuple is present in the model,
then we can conclude that Matthew likes Frasca is true; if it isn’t then we can’t.

This is all pretty straightforward—we’re using sets and operations on sets to
ground the expressions in our meaning representations. Of course, the more inter-
esting part comes when we consider more complex examples such as the following:

(F.13) Katie likes the Rio and Matthew likes the Med.
(F.14) Katie and Caroline like the same restaurants.
(F.15) Franco likes noisy, expensive restaurants.
(F.16) Not everybody likes Frasca.

Our simple scheme for grounding the meaning of representations is not adequate
for examples such as these. Plausible meaning representations for these examples
will not map directly to individual entities, properties, or relations. Instead, they
involve complications such as conjunctions, equality, quantified variables, and nega-
tions. To assess whether these statements are consistent with our model, we’ll have
to tear them apart, assess the parts, and then determine the meaning of the whole
from the meaning of the parts.

Consider the first example above. A meaning representation for this example
will include two distinct propositions expressing the individual patron’s preferences,
conjoined with some kind of implicit or explicit conjunction operator. Our model
doesn’t have a relation that encodes pairwise preferences for all of the patrons and
restaurants in our model, nor does it need to. We know from our model that Matthew
likes the Med and separately that Katie likes the Rio (that is, the tuples 〈a, f 〉 and
〈c,g〉 are members of the set denoted by the Likes relation). All we really need to
know is how to deal with the semantics of the conjunction operator. If we assume
the simplest possible semantics for the English word and, the whole statement is
true if it is the case that each of the components is true in our model. In this case,
both components are true since the appropriate tuples are present and therefore the
sentence as a whole is true.

What we’ve done with this example is provide a truth-conditional semantics
truth-

conditional
semantics

F.3 • FIRST-ORDER LOGIC 7

Formula → AtomicFormula
| Formula Connective Formula
| Quantifier Variable, . . . Formula
| ¬ Formula
| (Formula)

AtomicFormula → Predicate(Term, . . .)
Term → Function(Term, . . .)

| Constant
| Variable

Connective → ∧ | ∨ | =⇒
Quantifier → ∀ | ∃
Constant → A | VegetarianFood | Maharani · · ·
Variable → x | y | · · ·

Predicate → Serves | Near | · · ·
Function → LocationOf | CuisineOf | · · ·

Figure F.3 A context-free grammar specification of the syntax of First-Order Logic repre-
sentations. Adapted from Russell and Norvig 2002.

for the assumed conjunction operator in some meaning representation. That is,
we’ve provided a method for determining the truth of a complex expression from
the meanings of the parts (by consulting a model) and the meaning of an operator by
consulting a truth table. Meaning representation languages are truth-conditional to
the extent that they give a formal specification as to how we can determine the mean-
ing of complex sentences from the meaning of their parts. In particular, we need to
know the semantics of the entire logical vocabulary of the meaning representation
scheme being used.

Note that although the details of how this happens depend on details of the par-
ticular meaning representation being used, it should be clear that assessing the truth
conditions of examples like these involves nothing beyond the simple set operations
we’ve been discussing. We return to these issues in the next section in the context of
the semantics of First-Order Logic.

F.3 First-Order Logic

First-Order Logic (FOL) is a flexible, well-understood, and computationally tractable
meaning representation language that satisfies many of the desiderata given in Sec-
tion F.1. It provides a sound computational basis for the verifiability, inference, and
expressiveness requirements, as well as a sound model-theoretic semantics.

An additional attractive feature of FOL is that it makes few specific commitments
as to how things ought to be represented, and those it does are shared by many of
the schemes mentioned earlier: the represented world consists of objects, properties
of objects, and relations among objects.

The remainder of this section introduces the basic syntax and semantics of FOL
and then describes the application of FOL to the representation of events.

F.3.1 Basic Elements of First-Order Logic
Let’s explore FOL by first examining its various atomic elements and then showing
how they can be composed to create larger meaning representations. Figure F.3,

8 APPENDIX F • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

which provides a complete context-free grammar for the particular syntax of FOL
that we will use, is our roadmap for this section.

Let’s begin by examining the notion of a term, the FOL device for representingterm

objects. As can be seen from Fig. F.3, FOL provides three ways to represent these
basic building blocks: constants, functions, and variables. Each of these devices can
be thought of as designating an object in the world under consideration.

Constants in FOL refer to specific objects in the world being described. Suchconstant

constants are conventionally depicted as either single capitalized letters such as A
and B or single capitalized words that are often reminiscent of proper nouns such as
Maharani and Harry. Like programming language constants, FOL constants refer
to exactly one object. Objects can, however, have multiple constants that refer to
them.

Functions in FOL correspond to concepts that are often expressed in English asfunction

genitives such as Frasca’s location. A FOL translation of such an expression might
look like the following.

LocationOf (Frasca) (F.17)

FOL functions are syntactically the same as single argument predicates. It is im-
portant to remember, however, that while they have the appearance of predicates,
they are in fact terms in that they refer to unique objects. Functions provide a con-
venient way to refer to specific objects without having to associate a named constant
with them. This is particularly convenient in cases in which many named objects,
like restaurants, have a unique concept such as a location associated with them.

Variables are our final FOL mechanism for referring to objects. Variables, de-variable

picted as single lower-case letters, let us make assertions and draw inferences about
objects without having to make reference to any particular named object. This ability
to make statements about anonymous objects comes in two flavors: making state-
ments about a particular unknown object and making statements about all the objects
in some arbitrary world of objects. We return to the topic of variables after we have
presented quantifiers, the elements of FOL that make variables useful.

Now that we have the means to refer to objects, we can move on to the FOL
mechanisms that are used to state relations that hold among objects. Predicates are
symbols that refer to, or name, the relations that hold among some fixed number
of objects in a given domain. Returning to the example introduced informally in
Section F.1, a reasonable FOL representation for Maharani serves vegetarian food
might look like the following formula:

Serves(Maharani,VegetarianFood) (F.18)

This FOL sentence asserts that Serves, a two-place predicate, holds between the
objects denoted by the constants Maharani and VegetarianFood.

A somewhat different use of predicates is illustrated by the following fairly typ-
ical representation for a sentence like Maharani is a restaurant:

Restaurant(Maharani) (F.19)

This is an example of a one-place predicate that is used, not to relate multiple objects,
but rather to assert a property of a single object. In this case, it encodes the category
membership of Maharani.

With the ability to refer to objects, to assert facts about objects, and to relate
objects to one another, we can create rudimentary composite representations. These
representations correspond to the atomic formula level in Fig. F.3. This ability to

F.3 • FIRST-ORDER LOGIC 9

compose complex representations is, however, not limited to the use of single pred-
icates. Larger composite representations can also be put together through the use of
logical connectives. As can be seen from Fig. F.3, logical connectives let us createlogical

connectives
larger representations by conjoining logical formulas using one of three operators.
Consider, for example, the following BERP sentence and one possible representation
for it:

(F.20) I only have five dollars and I don’t have a lot of time.

Have(Speaker,FiveDollars)∧¬Have(Speaker,LotOfTime) (F.21)

The semantic representation for this example is built up in a straightforward way
from the semantics of the individual clauses through the use of the∧ and¬ operators.
Note that the recursive nature of the grammar in Fig. F.3 allows an infinite number
of logical formulas to be created through the use of these connectives. Thus, as with
syntax, we can use a finite device to create an infinite number of representations.

F.3.2 Variables and Quantifiers
We now have all the machinery necessary to return to our earlier discussion of vari-
ables. As noted above, variables are used in two ways in FOL: to refer to particular
anonymous objects and to refer generically to all objects in a collection. These two
uses are made possible through the use of operators known as quantifiers. The twoquantifiers

operators that are basic to FOL are the existential quantifier, which is denoted ∃ and
is pronounced as “there exists”, and the universal quantifier, which is denoted ∀ and
is pronounced as “for all”.

The need for an existentially quantified variable is often signaled by the presence
of an indefinite noun phrase in English. Consider the following example:

(F.22) a restaurant that serves Mexican food near ICSI.

Here, reference is being made to an anonymous object of a specified category with
particular properties. The following would be a reasonable representation of the
meaning of such a phrase:

∃xRestaurant(x) ∧ Serves(x,MexicanFood) (F.23)

∧ Near(LocationOf (x),LocationOf (ICSI))

The existential quantifier at the head of this sentence instructs us on how to
interpret the variable x in the context of this sentence. Informally, it says that for
this sentence to be true there must be at least one object such that if we were to
substitute it for the variable x, the resulting sentence would be true. For example,
if AyCaramba is a Mexican restaurant near ICSI, then substituting AyCaramba for x
results in the following logical formula:

Restaurant(AyCaramba)∧Serves(AyCaramba,MexicanFood) (F.24)

∧Near((LocationOf (AyCaramba),LocationOf (ICSI))

Based on the semantics of the ∧ operator, this sentence will be true if all of its
three component atomic formulas are true. These in turn will be true if they are
either present in the system’s knowledge base or can be inferred from other facts in
the knowledge base.

The use of the universal quantifier also has an interpretation based on substi-
tution of known objects for variables. The substitution semantics for the universal

10 APPENDIX F • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

quantifier takes the expression for all quite literally; the ∀ operator states that for the
logical formula in question to be true, the substitution of any object in the knowledge
base for the universally quantified variable should result in a true formula. This is in
marked contrast to the ∃ operator, which only insists on a single valid substitution
for the sentence to be true.

Consider the following example:

(F.25) All vegetarian restaurants serve vegetarian food.

A reasonable representation for this sentence would be something like the following:

∀xVegetarianRestaurant(x) =⇒ Serves(x,VegetarianFood) (F.26)

For this sentence to be true, every substitution of a known object for x must result in a
sentence that is true. We can divide the set of all possible substitutions into the set of
objects consisting of vegetarian restaurants and the set consisting of everything else.
Let us first consider the case in which the substituted object actually is a vegetarian
restaurant; one such substitution would result in the following sentence:

VegetarianRestaurant(Maharani) =⇒ Serves(Maharani,VegetarianFood)
(F.27)

If we assume that we know that the consequent clause

Serves(Maharani,VegetarianFood) (F.28)

is true, then this sentence as a whole must be true. Both the antecedent and the
consequent have the value True and, therefore, according to the first two rows of
Fig. F.4 on page 12 the sentence itself can have the value True. This result will be
the same for all possible substitutions of Terms representing vegetarian restaurants
for x.

Remember, however, that for this sentence to be true, it must be true for all
possible substitutions. What happens when we consider a substitution from the set
of objects that are not vegetarian restaurants? Consider the substitution of a non-
vegetarian restaurant such as AyCaramba for the variable x:

VegetarianRestaurant(AyCaramba) =⇒ Serves(AyCaramba,VegetarianFood)

Since the antecedent of the implication is False, we can determine from Fig. F.4
that the sentence is always True, again satisfying the ∀ constraint.

Note that it may still be the case that AyCaramba serves vegetarian food with-
out actually being a vegetarian restaurant. Note also that, despite our choice of
examples, there are no implied categorical restrictions on the objects that can be
substituted for x by this kind of reasoning. In other words, there is no restriction of
x to restaurants or concepts related to them. Consider the following substitution:

VegetarianRestaurant(Carburetor) =⇒ Serves(Carburetor,VegetarianFood)

Here the antecedent is still false so the rule remains true under this kind of irrelevant
substitution.

To review, variables in logical formulas must be either existentially (∃) or uni-
versally (∀) quantified. To satisfy an existentially quantified variable, at least one
substitution must result in a true sentence. To satisfy a universally quantified vari-
able, all substitutions must result in true sentences.

F.3 • FIRST-ORDER LOGIC 11

F.3.3 Lambda Notation
The final element we need to complete our discussion of FOL is called the lambda
notation (Church, 1940). This notation provides a way to abstract from fully speci-lambda

notation
fied FOL formulas in a way that will be particularly useful for semantic analysis. The
lambda notation extends the syntax of FOL to include expressions of the following
form:

λx.P(x) (F.29)

Such expressions consist of the Greek symbol λ , followed by one or more variables,
followed by a FOL formula that makes use of those variables.

The usefulness of these λ -expressions is based on the ability to apply them to
logical terms to yield new FOL expressions where the formal parameter variables are
bound to the specified terms. This process is known as λ -reduction, and consistsλ -reduction
of a simple textual replacement of the λ variables and the removal of the λ . The
following expressions illustrate the application of a λ -expression to the constant A,
followed by the result of performing a λ -reduction on this expression:

λx.P(x)(A) (F.30)

P(A)

An important and useful variation of this technique is the use of one λ -expression
as the body of another as in the following expression:

λx.λy.Near(x,y) (F.31)

This fairly abstract expression can be glossed as the state of something being near
something else. The following expressions illustrate a single λ -application and sub-
sequent reduction with this kind of embedded λ -expression:

λx.λy.Near(x,y)(Bacaro) (F.32)

λy.Near(Bacaro,y)

The important point here is that the resulting expression is still a λ -expression; the
first reduction bound the variable x and removed the outer λ , thus revealing the
inner expression. As might be expected, this resulting λ -expression can, in turn,
be applied to another term to arrive at a fully specified logical formula, as in the
following:

λy.Near(Bacaro,y)(Centro) (F.33)

Near(Bacaro,Centro)

This general technique, called currying1 (Schönfinkel, 1924) is a way of convertingcurrying

a predicate with multiple arguments into a sequence of single-argument predicates.
As we show in Chapter 20, the λ -notation provides a way to incrementally gather

arguments to a predicate when they do not all appear together as daughters of the
predicate in a parse tree.

F.3.4 The Semantics of First-Order Logic
The various objects, properties, and relations represented in a FOL knowledge base
acquire their meanings by virtue of their correspondence to objects, properties, and

1 Currying is the standard term, although Heim and Kratzer (1998) present an interesting argument for
the term Schönfinkelization over currying, since Curry later built on Schönfinkel’s work.

12 APPENDIX F • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

relations out in the external world being modeled. We can accomplish this by em-
ploying the model-theoretic approach introduced in Section F.2. Recall that this
approach employs simple set-theoretic notions to provide a truth-conditional map-
ping from the expressions in a meaning representation to the state of affairs being
modeled. We can apply this approach to FOL by going through all the elements in
Fig. F.3 on page 7 and specifying how each should be accounted for.

We can start by asserting that the objects in our world, FOL terms, denote ele-
ments in a domain, and asserting that atomic formulas are captured either as sets of
domain elements for properties, or as sets of tuples of elements for relations. As an
example, consider the following:

(F.34) Centro is near Bacaro.

Capturing the meaning of this example in FOL involves identifying the Terms
and Predicates that correspond to the various grammatical elements in the sentence
and creating logical formulas that capture the relations implied by the words and
syntax of the sentence. For this example, such an effort might yield something like
the following:

Near(Centro,Bacaro) (F.35)

The meaning of this logical formula is based on whether the domain elements de-
noted by the terms Centro and Bacaro are contained among the tuples denoted by
the relation denoted by the predicate Near in the current model.

The interpretation of formulas involving logical connectives is based on the
meanings of the components in the formulas combined with the meanings of the
connectives they contain. Figure F.4 gives interpretations for each of the logical
operators shown in Fig. F.3.

P Q ¬ P P ∧ Q P ∨ Q P =⇒ Q
False False True False False True
False True True False True True
True False False False True False
True True False True True True

Figure F.4 Truth table giving the semantics of the various logical connectives.

The semantics of the ∧ (and) and ¬ (not) operators are fairly straightforward,
and are correlated with at least some of the senses of the corresponding English
terms. However, it is worth pointing out that the ∨ (or) operator is not disjunctive
in the same way that the corresponding English word is, and that the =⇒ (im-
plies) operator is only loosely based on any common-sense notions of implication
or causation.

The final bit we need to address involves variables and quantifiers. Recall that
there are no variables in our set-based models, only elements of the domain and
relations that hold among them. We can provide a model-based account for formulas
with variables by employing the notion of a substitution introduced earlier on page
9. Formulas involving ∃ are true if a substitution of terms for variables results in
a formula that is true in the model. Formulas involving ∀ must be true under all
possible substitutions.

F.3.5 Inference
A meaning representation language must support inference to add valid new propo-
sitions to a knowledge base or to determine the truth of propositions not explicitly

F.3 • FIRST-ORDER LOGIC 13

contained within a knowledge base (Section F.1). This section briefly discusses
modus ponens, the most widely implemented inference method provided by FOL.

Modus ponens is a form of inference that corresponds to what is informallyModus ponens

known as if-then reasoning. We can abstractly define modus ponens as follows,
where α and β should be taken as FOL formulas:

α

α =⇒ β

β
(F.36)

A schema like this indicates that the formula below the line can be inferred from the
formulas above the line by some form of inference. Modus ponens states that if the
left-hand side of an implication rule is true, then the right-hand side of the rule can
be inferred. In the following discussions, we will refer to the left-hand side of an
implication as the antecedent and the right-hand side as the consequent.

For a typical use of modus ponens, consider the following example, which uses
a rule from the last section:

VegetarianRestaurant(Leaf)
∀xVegetarianRestaurant(x) =⇒ Serves(x,VegetarianFood)

Serves(Leaf ,VegetarianFood)
(F.37)

Here, the formula VegetarianRestaurant(Leaf) matches the antecedent of the rule,
thus allowing us to use modus ponens to conclude Serves(Leaf ,VegetarianFood).

Modus ponens can be put to practical use in one of two ways: forward chaining
and backward chaining. In forward chaining systems, modus ponens is used inforward

chaining
precisely the manner just described. As individual facts are added to the knowledge
base, modus ponens is used to fire all applicable implication rules. In this kind of
arrangement, as soon as a new fact is added to the knowledge base, all applicable
implication rules are found and applied, each resulting in the addition of new facts to
the knowledge base. These new propositions in turn can be used to fire implication
rules applicable to them. The process continues until no further facts can be deduced.

The forward chaining approach has the advantage that facts will be present in
the knowledge base when needed, because, in a sense all inference is performed in
advance. This can substantially reduce the time needed to answer subsequent queries
since they should all amount to simple lookups. The disadvantage of this approach
is that facts that will never be needed may be inferred and stored.

In backward chaining, modus ponens is run in reverse to prove specific propo-backward
chaining

sitions called queries. The first step is to see if the query formula is true by determin-
ing if it is present in the knowledge base. If it is not, then the next step is to search
for applicable implication rules present in the knowledge base. An applicable rule
is one whereby the consequent of the rule matches the query formula. If there are
any such rules, then the query can be proved if the antecedent of any one them can
be shown to be true. This can be performed recursively by backward chaining on
the antecedent as a new query. The Prolog programming language is a backward
chaining system that implements this strategy.

To see how this works, let’s assume that we have been asked to verify the truth of
the proposition Serves(Leaf ,VegetarianFood), assuming the facts given above the
line in (F.37). Since this proposition is not present in the knowledge base, a search
for an applicable rule is initiated resulting in the rule given above. After substituting
the constant Leaf for the variable x, our next task is to prove the antecedent of the
rule, VegetarianRestaurant(Leaf), which, of course, is one of the facts we are given.

14 APPENDIX F • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

Note that it is critical to distinguish between reasoning by backward chaining
from queries to known facts and reasoning backwards from known consequents to
unknown antecedents. To be specific, by reasoning backwards we mean that if the
consequent of a rule is known to be true, we assume that the antecedent will be as
well. For example, let’s assume that we know that Serves(Leaf ,VegetarianFood) is
true. Since this fact matches the consequent of our rule, we might reason backwards
to the conclusion that VegetarianRestaurant(Leaf).

While backward chaining is a sound method of reasoning, reasoning backwards
is an invalid, though frequently useful, form of plausible reasoning. Plausible rea-
soning from consequents to antecedents is known as abduction, and as we show inabduction

Chapter 27, is often useful in accounting for many of the inferences people make
while analyzing extended discourses.

While forward and backward reasoning are sound, neither is complete. Thiscomplete

means that there are valid inferences that cannot be found by systems using these
methods alone. Fortunately, there is an alternative inference technique called reso-
lution that is sound and complete. Unfortunately, inference systems based on res-resolution

olution are far more computationally expensive than forward or backward chaining
systems. In practice, therefore, most systems use some form of chaining and place
a burden on knowledge base developers to encode the knowledge in a fashion that
permits the necessary inferences to be drawn.

F.4 Event and State Representations

Much of the semantics that we wish to capture consists of representations of states
and events. States are conditions, or properties, that remain unchanged over an
extended period of time, and events denote changes in some state of affairs. The
representation of both states and events may involve a host of participants, props,
times and locations.

The representations for events and states that we have used thus far have con-
sisted of single predicates with as many arguments as are needed to incorporate all
the roles associated with a given example. For example, the representation for Leaf
serves vegetarian fare consists of a single predicate with arguments for the entity
doing the serving and the thing served.

Serves(Leaf ,VegetarianFare) (F.38)

This approach assumes that the predicate used to represent an event verb has the
same number of arguments as are present in the verb’s syntactic subcategorization
frame. Unfortunately, this is clearly not always the case. Consider the following
examples of the verb eat:

(F.39) I ate.
(F.40) I ate a turkey sandwich.
(F.41) I ate a turkey sandwich at my desk.
(F.42) I ate at my desk.
(F.43) I ate lunch.
(F.44) I ate a turkey sandwich for lunch.
(F.45) I ate a turkey sandwich for lunch at my desk.

F.5 • DESCRIPTION LOGICS 15

Clearly, choosing the correct number of arguments for the predicate represent-
ing the meaning of eat is a tricky problem. These examples introduce five distinct
arguments, or roles, in an array of different syntactic forms, locations, and combina-
tions. Unfortunately, predicates in FOL have fixed arity – they take a fixed numberarity

of arguments.
To address this problem, we introduce the notion of an event variable to allowevent variable

us to make assertions about particular events. To do this, we can refactor our event
predicates to have an existentially quantified variable as their first, and only, argu-
ment. Using this event variable, we can introduce additional predicates to represent
the other information we have about the event. These predicates take an event vari-
able as their first argument and related FOL terms as their second argument. The
following formula illustrates this scheme with the meaning representation of F.40
from our earlier discussion.

∃e Eating(e) ∧ Eater(e,Speaker)∧Eaten(e,TurkeySandwich)

Here, the quantified variable e stands for the eating event and is used to bind the
event predicate with the core information provided via the named roles Eater and
Eaten. To handle the more complex examples, we simply add additional relations
to capture the provided information, as in the following for F.45.

∃e Eating(e) ∧ Eater(e,Speaker)∧Eaten(e,TurkeySandwich) (F.46)

∧ Meal(e,Lunch)∧Location(e,Desk)

Event representations of this sort are referred to as neo-Davidsonian event rep-neo-
Davidsonian

resentations (Davidson 1967, Parsons 1990) after the philosopher Donald Davidson
who introduced the notion of an event variable (Davidson, 1967). To summarize, in
the neo-Davidsonian approach to event representations:

• Events are captured with predicates that take a single event variable as an
argument.

• There is no need to specify a fixed number of arguments for a given FOL
predicate; rather, as many roles and fillers can be glued on as are provided in
the input.

• No more roles are postulated than are mentioned in the input.
• The logical connections among closely related inputs that share the same pred-

icate are satisfied without the need for additional inference.

This approach still leaves us with the problem of determining the set of predi-
cates needed to represent roles associated with specific events like Eater and Eaten,
as well as more general concepts like Location and Time. We’ll return to this prob-
lem in more detail in Chapter 22 and Chapter 24.

F.5 Description Logics

As noted at the beginning of this chapter, a fair number of representational schemes
have been invented to capture the meaning of linguistic utterances. It is now widely
accepted that meanings represented in these various approaches can, in principle, be
translated into equivalent statements in FOL with relative ease. The difficulty is that
in many of these approaches the semantics of a statement are defined procedurally.
That is, the meaning arises from whatever the system that interprets it does with it.

16 APPENDIX F • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

Description logics are an effort to better specify the semantics of these earlier
structured network representations and to provide a conceptual framework that is
especially well suited to certain kinds of domain modeling. Formally, the term De-
scription Logics refers to a family of logical approaches that correspond to varying
subsets of FOL. The restrictions placed on the expressiveness of Description Logics
serve to guarantee the tractability of various critical kinds of inference. Our focus
here, however, will be on the modeling aspects of DLs rather than on computational
complexity issues.

When using Description Logics to model an application domain, the emphasis
is on the representation of knowledge about categories, individuals that belong to
those categories, and the relationships that can hold among these individuals. The
set of categories, or concepts, that make up a particular application domain is called
its terminology. The portion of a knowledge base that contains the terminology isterminology

traditionally called the TBox; this is in contrast to the ABox that contains facts aboutTBox

ABox individuals. The terminology is typically arranged into a hierarchical organization
called an ontology that captures the subset/superset relations among the categories.ontology

Returning to our earlier culinary domain, we represented domain concepts us-
ing unary predicates such as Restaurant(x); the DL equivalent omits the variable,
so the restaurant category is simply written as Restaurant.2 To capture the fact
that a particular domain element, such as Frasca, is a restaurant, we assert Restau-
rant(Frasca) in much the same way we would in FOL. The semantics of these
categories are specified in precisely the same way that was introduced earlier in
Section F.2: a category like Restaurant simply denotes the set of domain elements
that are restaurants.

Once we’ve specified the categories of interest in a particular domain, the next
step is to arrange them into a hierarchical structure. There are two ways to cap-
ture the hierarchical relationships present in a terminology: we can directly assert
relations between categories that are related hierarchically, or we can provide com-
plete definitions for our concepts and then rely on inference to provide hierarchical
relationships. The choice between these methods hinges on the use to which the re-
sulting categories will be put and the feasibility of formulating precise definitions for
many naturally occurring categories. We’ll discuss the first option here and return to
the notion of definitions later in this section.

To directly specify a hierarchical structure, we can assert subsumption relationssubsumption

between the appropriate concepts in a terminology. The subsumption relation is
conventionally written as C v D and is read as C is subsumed by D; that is, all
members of the category C are also members of the category D. Not surprisingly, the
formal semantics of this relation are provided by a simple set relation; any domain
element that is in the set denoted by C is also in the set denoted by D.

Adding the following statements to the TBox asserts that all restaurants are com-
mercial establishments and, moreover, that there are various subtypes of restaurants.

Restaurant v CommercialEstablishment (F.47)

ItalianRestaurant v Restaurant (F.48)

ChineseRestaurant v Restaurant (F.49)

MexicanRestaurant v Restaurant (F.50)

Ontologies such as this are conventionally illustrated with diagrams such as the one

2 DL statements are conventionally typeset with a sans serif font. We’ll follow that convention here,
reverting to our standard mathematical notation when giving FOL equivalents of DL statements.

F.5 • DESCRIPTION LOGICS 17

shown in Fig. F.5, where subsumption relations are denoted by links between the
nodes representing the categories.

Restaurant

Chinese
Restaurant

Mexican
Restaurant

Italian
Restaurant

Commercial
Establishment

Figure F.5 A graphical network representation of a set of subsumption relations in the
restaurant domain.

Note, that it was precisely the vague nature of semantic network diagrams like
this that motivated the development of Description Logics. For example, from this
diagram we can’t tell whether the given set of categories is exhaustive or disjoint.
That is, we can’t tell if these are all the kinds of restaurants that we’ll be dealing with
in our domain or whether there might be others. We also can’t tell if an individual
restaurant must fall into only one of these categories, or if it is possible, for example,
for a restaurant to be both Italian and Chinese. The DL statements given above are
more transparent in their meaning; they simply assert a set of subsumption relations
between categories and make no claims about coverage or mutual exclusion.

If an application requires coverage and disjointness information, then such in-
formation must be made explicitly. The simplest ways to capture this kind of in-
formation is through the use of negation and disjunction operators. For example,
the following assertion would tell us that Chinese restaurants can’t also be Italian
restaurants.

ChineseRestaurantv not ItalianRestaurant (F.51)

Specifying that a set of subconcepts covers a category can be achieved with disjunc-
tion, as in the following:

Restaurantv (F.52)

(or ItalianRestaurant ChineseRestaurant MexicanRestaurant)

Having a hierarchy such as the one given in Fig. F.5 tells us next to nothing
about the concepts in it. We certainly don’t know anything about what makes a
restaurant a restaurant, much less Italian, Chinese, or expensive. What is needed are
additional assertions about what it means to be a member of any of these categories.
In Description Logics such statements come in the form of relations between the
concepts being described and other concepts in the domain. In keeping with its
origins in structured network representations, relations in Description Logics are
typically binary and are often referred to as roles, or role-relations.

To see how such relations work, let’s consider some of the facts about restaurants
discussed earlier in the chapter. We’ll use the hasCuisine relation to capture infor-
mation as to what kinds of food restaurants serve and the hasPriceRange relation
to capture how pricey particular restaurants tend to be. We can use these relations
to say something more concrete about our various classes of restaurants. Let’s start

18 APPENDIX F • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

with our ItalianRestaurant concept. As a first approximation, we might say some-
thing uncontroversial like Italian restaurants serve Italian cuisine. To capture these
notions, let’s first add some new concepts to our terminology to represent various
kinds of cuisine.

MexicanCuisine v Cuisine

ItalianCuisine v Cuisine

ChineseCuisine v Cuisine

VegetarianCuisine v Cuisine

ExpensiveRestaurant v Restaurant

ModerateRestaurant v Restaurant

CheapRestaurant v Restaurant

Next, let’s revise our earlier version of ItalianRestaurant to capture cuisine infor-
mation.

ItalianRestaurant v Restaurantu∃hasCuisine.ItalianCuisine (F.53)

The correct way to read this expression is that individuals in the category Italian-
Restaurant are subsumed both by the category Restaurant and by an unnamed
class defined by the existential clause—the set of entities that serve Italian cuisine.
An equivalent statement in FOL would be

∀xItalianRestaurant(x) → Restaurant(x) (F.54)

∧(∃yServes(x,y)∧ ItalianCuisine(y))

This FOL translation should make it clear what the DL assertions given above do
and do not entail. In particular, they don’t say that domain entities classified as Ital-
ian restaurants can’t engage in other relations like being expensive or even serving
Chinese cuisine. And critically, they don’t say much about domain entities that we
know do serve Italian cuisine. In fact, inspection of the FOL translation makes it
clear that we cannot infer that any new entities belong to this category based on their
characteristics. The best we can do is infer new facts about restaurants that we’re
explicitly told are members of this category.

Of course, inferring the category membership of individuals given certain char-
acteristics is a common and critical reasoning task that we need to support. This
brings us back to the alternative approach to creating hierarchical structures in a
terminology: actually providing a definition of the categories we’re creating in the
form of necessary and sufficient conditions for category membership. In this case,
we might explicitly provide a definition for ItalianRestaurant as being those restau-
rants that serve Italian cuisine, and ModerateRestaurant as being those whose
price range is moderate.

ItalianRestaurant ≡ Restaurantu∃hasCuisine.ItalianCuisine (F.55)

ModerateRestaurant ≡ RestaurantuhasPriceRange.ModeratePrices (F.56)

While our earlier statements provided necessary conditions for membership in these
categories, these statements provide both necessary and sufficient conditions.

Finally, let’s now consider the superficially similar case of vegetarian restaurants.
Clearly, vegetarian restaurants are those that serve vegetarian cuisine. But they don’t
merely serve vegetarian fare, that’s all they serve. We can accommodate this kind of
constraint by adding an additional restriction in the form of a universal quantifier to

F.5 • DESCRIPTION LOGICS 19

our earlier description of VegetarianRestaurants, as follows:

VegetarianRestaurant ≡ Restaurant (F.57)

u∃hasCuisine.VegetarianCuisine
u∀hasCuisine.VegetarianCuisine

Inference

Paralleling the focus of Description Logics on categories, relations, and individuals
is a processing focus on a restricted subset of logical inference. Rather than employ-
ing the full range of reasoning permitted by FOL, DL reasoning systems emphasize
the closely coupled problems of subsumption and instance checking.

Subsumption, as a form of inference, is the task of determining, based on thesubsumption

facts asserted in a terminology, whether a superset/subset relationship exists between
two concepts. Correspondingly, instance checking asks if an individual can be ainstance

checking
member of a particular category given the facts we know about both the individual
and the terminology. The inference mechanisms underlying subsumption and in-
stance checking go beyond simply checking for explicitly stated subsumption rela-
tions in a terminology. They must explicitly reason using the relational information
asserted about the terminology to infer appropriate subsumption and membership
relations.

Returning to our restaurant domain, let’s add a new kind of restaurant using the
following statement:

IlFornaiovModerateRestaurantu∃hasCuisine.ItalianCuisine (F.58)

Given this assertion, we might ask whether the IlFornaio chain of restaurants might
be classified as an Italian restaurant or a vegetarian restaurant. More precisely, we
can pose the following questions to our reasoning system:

IlFornaio v ItalianRestaurant (F.59)

IlFornaio v VegetarianRestaurant (F.60)

The answer to the first question is positive since IlFornaio meets the criteria we
specified for the category ItalianRestaurant: it’s a Restaurant since we explicitly
classified it as a ModerateRestaurant, which is a subtype of Restaurant, and it
meets the has.Cuisine class restriction since we’ve asserted that directly.

The answer to the second question is negative. Recall, that our criteria for veg-
etarian restaurants contains two requirements: it has to serve vegetarian fare, and
that’s all it can serve. Our current definition for IlFornaio fails on both counts since
we have not asserted any relations that state that IlFornaio serves vegetarian fare,
and the relation we have asserted, hasCuisine.ItalianCuisine, contradicts the sec-
ond criteria.

A related reasoning task, based on the basic subsumption inference, is to derive
the implied hierarchy for a terminology given facts about the categories in the ter-implied

hierarchy
minology. This task roughly corresponds to a repeated application of the subsump-
tion operator to pairs of concepts in the terminology. Given our current collection
of statements, the expanded hierarchy shown in Fig. F.6 can be inferred. You should
convince yourself that this diagram contains all and only the subsumption links that
should be present given our current knowledge.

Instance checking is the task of determining whether a particular individual can
be classified as a member of a particular category. This process takes what is known

20 APPENDIX F • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

Restaurant

Chinese
Restaurant

Mexican
Restaurant

Italian
Restaurant

Expensive
Restaurant

Cheap
Restaurant

Moderate
Restaurant

Il Fornaio

Vegetarian
Restaurant

Figure F.6 A graphical network representation of the complete set of subsumption relations
in the restaurant domain given the current set of assertions in the TBox.

about a given individual, in the form of relations and explicit categorical statements,
and then compares that information with what is known about the current terminol-
ogy. It then returns a list of the most specific categories to which the individual can
belong.

As an example of a categorization problem, consider an establishment that we’re
told is a restaurant and serves Italian cuisine.

Restaurant(Gondolier)

hasCuisine(Gondolier, ItalianCuisine)

Here, we’re being told that the entity denoted by the term Gondolier is a restau-
rant and serves Italian food. Given this new information and the contents of our
current TBox, we might reasonably like to ask if this is an Italian restaurant, if it is
a vegetarian restaurant, or if it has moderate prices.

Assuming the definitional statements given earlier, we can indeed categorize
the Gondolier as an Italian restaurant. That is, the information we’ve been given
about it meets the necessary and sufficient conditions required for membership in
this category. And as with the IlFornaio category, this individual fails to match the
stated criteria for the VegetarianRestaurant. Finally, the Gondolier might also
turn out to be a moderately priced restaurant, but we can’t tell at this point since
we don’t know anything about its prices. What this means is that given our current
knowledge the answer to the query ModerateRestaurant(Gondolier) would be false
since it lacks the required hasPriceRange relation.

The implementation of subsumption, instance checking, as well as other kinds of
inferences needed for practical applications, varies according to the expressivity of
the Description Logic being used. However, for a Description Logic of even modest
power, the primary implementation techniques are based on satisfiability methods
that in turn rely on the underlying model-based semantics introduced earlier in this
chapter.

OWL and the Semantic Web

The highest-profile role for Description Logics, to date, has been as a part of the
development of the Semantic Web. The Semantic Web is an ongoing effort to pro-
vide a way to formally specify the semantics of the contents of the Web (Fensel
et al., 2003). A key component of this effort involves the creation and deployment
of ontologies for various application areas of interest. The meaning representation

F.6 • SUMMARY 21

language used to represent this knowledge is the Web Ontology Language (OWL)Web Ontology
Language

(McGuiness and van Harmelen, 2004). OWL embodies a Description Logic that
corresponds roughly to the one we’ve been describing here.

F.6 Summary

This chapter has introduced the representational approach to meaning. The follow-
ing are some of the highlights of this chapter:

• A major approach to meaning in computational linguistics involves the cre-
ation of formal meaning representations that capture the meaning-related
content of linguistic inputs. These representations are intended to bridge the
gap from language to common-sense knowledge of the world.

• The frameworks that specify the syntax and semantics of these representa-
tions are called meaning representation languages. A wide variety of such
languages are used in natural language processing and artificial intelligence.

• Such representations need to be able to support the practical computational
requirements of semantic processing. Among these are the need to determine
the truth of propositions, to support unambiguous representations, to rep-
resent variables, to support inference, and to be sufficiently expressive.

• Human languages have a wide variety of features that are used to convey
meaning. Among the most important of these is the ability to convey a predicate-
argument structure.

• First-Order Logic is a well-understood, computationally tractable meaning
representation language that offers much of what is needed in a meaning rep-
resentation language.

• Important elements of semantic representation including states and events
can be captured in FOL.

• Semantic networks and frames can be captured within the FOL framework.
• Modern Description Logics consist of useful and computationally tractable

subsets of full First-Order Logic. The most prominent use of a description
logic is the Web Ontology Language (OWL), used in the specification of the
Semantic Web.

Bibliographical and Historical Notes
The earliest computational use of declarative meaning representations in natural lan-
guage processing was in the context of question-answering systems (Green et al.
1961, Raphael 1968, Lindsey 1963). These systems employed ad hoc representa-
tions for the facts needed to answer questions. Questions were then translated into
a form that could be matched against facts in the knowledge base. Simmons (1965)
provides an overview of these early efforts.

Woods (1967) investigated the use of FOL-like representations in question an-
swering as a replacement for the ad hoc representations in use at the time. Woods
(1973) further developed and extended these ideas in the landmark Lunar system.

22 APPENDIX F • LOGICAL REPRESENTATIONS OF SENTENCE MEANING

Interestingly, the representations used in Lunar had both truth-conditional and pro-
cedural semantics. Winograd (1972) employed a similar representation based on the
Micro-Planner language in his SHRDLU system.

During this same period, researchers interested in the cognitive modeling of lan-
guage and memory had been working with various forms of associative network
representations. Masterman (1957) was the first to make computational use of a
semantic network-like knowledge representation, although semantic networks are
generally credited to Quillian (1968). A considerable amount of work in the se-
mantic network framework was carried out during this era (Norman and Rumelhart
1975, Schank 1972, Wilks 1975b, Wilks 1975a, Kintsch 1974). It was during this
period that a number of researchers began to incorporate Fillmore’s notion of case
roles (Fillmore, 1968) into their representations. Simmons (1973) was the earliest
adopter of case roles as part of representations for natural language processing.

Detailed analyses by Woods (1975) and Brachman (1979) aimed at figuring out
what semantic networks actually mean led to the development of a number of more
sophisticated network-like languages including KRL (Bobrow and Winograd, 1977)
and KL-ONE (Brachman and Schmolze, 1985). As these frameworks became more
sophisticated and well defined, it became clear that they were restricted variants of
FOL coupled with specialized indexing inference procedures. A useful collection of
papers covering much of this work can be found in Brachman and Levesque (1985).
Russell and Norvig (2002) describe a modern perspective on these representational
efforts.

Linguistic efforts to assign semantic structures to natural language sentences in
the generative era began with the work of Katz and Fodor (1963). The limitations of
their simple feature-based representations and the natural fit of logic to many of the
linguistic problems of the day quickly led to the adoption of a variety of predicate-
argument structures as preferred semantic representations (Lakoff 1972, McCawley
1968). The subsequent introduction by Montague (1973) of the truth-conditional
model-theoretic framework into linguistic theory led to a much tighter integration
between theories of formal syntax and a wide range of formal semantic frameworks.
Good introductions to Montague semantics and its role in linguistic theory can be
found in Dowty et al. (1981) and Partee (1976).

The representation of events as reified objects is due to Davidson (1967). The
approach presented here, which explicitly reifies event participants, is due to Parsons
(1990).

A recent comprehensive treatment of logic and language can be found in van
Benthem and ter Meulen (1997). A classic semantics text is Lyons (1977). McCaw-
ley (1993) is an indispensable textbook covering a wide range of topics concerning
logic and language. Chierchia and McConnell-Ginet (1991) also broadly covers
semantic issues from a linguistic perspective. Heim and Kratzer (1998) is a more
recent text written from the perspective of current generative theory.

Exercises
F.1 Peruse your daily newspaper for three examples of ambiguous sentences or

headlines. Describe the various sources of the ambiguities.

F.2 Consider a domain in which the word coffee can refer to the following con-
cepts in a knowledge-based system: a caffeinated or decaffeinated beverage,
ground coffee used to make either kind of beverage, and the beans themselves.

EXERCISES 23

Give arguments as to which of the following uses of coffee are ambiguous and
which are vague.

1. I’ve had my coffee for today.
2. Buy some coffee on your way home.
3. Please grind some more coffee.

F.3 The following rule, which we gave as a translation for Example F.25, is not a
reasonable definition of what it means to be a vegetarian restaurant.

∀xVegetarianRestaurant(x) =⇒ Serves(x,VegetarianFood)

Give a FOL rule that better defines vegetarian restaurants in terms of what they
serve.

F.4 Give FOL translations for the following sentences:

1. Vegetarians do not eat meat.
2. Not all vegetarians eat eggs.

F.5 Give a set of facts and inferences necessary to prove the following assertions:

1. McDonald’s is not a vegetarian restaurant.
2. Some vegetarians can eat at McDonald’s.

Don’t just place these facts in your knowledge base. Show that they can be
inferred from some more general facts about vegetarians and McDonald’s.

F.6 On page 12, we gave the representation Near(Centro,Bacaro) as a transla-
tion for the sentence Centro is near Bacaro. In a truth-conditional semantics,
this formula is either true or false given some model. Critique this truth-
conditional approach with respect to the meaning of words like near.

24 Appendix F • Logical Representations of Sentence Meaning

Banarescu, L., C. Bonial, S. Cai, M. Georgescu, K. Grif-
fitt, U. Hermjakob, K. Knight, P. Koehn, M. Palmer, and
N. Schneider. 2013. Abstract meaning representation for
sembanking. 7th Linguistic Annotation Workshop and In-
teroperability with Discourse.

van Benthem, J. and A. ter Meulen, editors. 1997. Handbook
of Logic and Language. MIT Press.

Bobrow, D. G. and T. Winograd. 1977. An overview of KRL,
a knowledge representation language. Cognitive Science,
1(1):3–46.

Brachman, R. J. 1979. On the epistemogical status of seman-
tic networks. In N. V. Findler, editor, Associative Net-
works: Representation and Use of Knowledge by Com-
puters, pages 3–50. Academic Press.

Brachman, R. J. and H. J. Levesque, editors. 1985. Readings
in Knowledge Representation. Morgan Kaufmann.

Brachman, R. J. and J. G. Schmolze. 1985. An overview of
the KL-ONE knowledge representation system. Cogni-
tive Science, 9(2):171–216.

Chierchia, G. and S. McConnell-Ginet. 1991. Meaning and
Grammar. MIT Press.

Church, A. 1940. A formulation of a simple theory of types.
Journal of Symbolic Logic, 5:56–68.

Davidson, D. 1967. The logical form of action sentences.
In N. Rescher, editor, The Logic of Decision and Action.
University of Pittsburgh Press.

Dowty, D. R., R. E. Wall, and S. Peters. 1981. Introduction
to Montague Semantics. D. Reidel.

Fensel, D., J. A. Hendler, H. Lieberman, and W. Wahlster,
editors. 2003. Spinning the Semantic Web: Bring the
World Wide Web to its Full Potential. MIT Press, Cam-
bridge, MA.

Fillmore, C. J. 1968. The case for case. In E. W. Bach
and R. T. Harms, editors, Universals in Linguistic The-
ory, pages 1–88. Holt, Rinehart & Winston.

Green, B. F., A. K. Wolf, C. Chomsky, and K. Laughery.
1961. Baseball: An automatic question answerer. Pro-
ceedings of the Western Joint Computer Conference 19.

Heim, I. and A. Kratzer. 1998. Semantics in a Generative
Grammar. Blackwell Publishers, Malden, MA.

Katz, J. J. and J. A. Fodor. 1963. The structure of a semantic
theory. Language, 39:170–210.

Kintsch, W. 1974. The Representation of Meaning in Mem-
ory. Wiley, New York.

Lakoff, G. 1972. Linguistics and natural logic. In D. David-
son and G. Harman, editors, Semantics for Natural Lan-
guage, pages 545–665. D. Reidel.

Lindsey, R. 1963. Inferential memory as the basis of ma-
chines which understand natural language. In E. Feigen-
baum and J. Feldman, editors, Computers and Thought,
pages 217–233. McGraw Hill.

Lyons, J. 1977. Semantics. Cambridge University Press.

Masterman, M. 1957. The thesaurus in syntax and semantics.
Mechanical Translation, 4(1):1–2.

McCawley, J. D. 1968. The role of semantics in a gram-
mar. In E. W. Bach and R. T. Harms, editors, Universals
in Linguistic Theory, pages 124–169. Holt, Rinehart &
Winston.

McCawley, J. D. 1993. Everything that Linguists Have Al-
ways Wanted to Know about Logic, 2nd edition. Univer-
sity of Chicago Press, Chicago, IL.

McGuiness, D. L. and F. van Harmelen. 2004. OWL web
ontology overview. Technical Report 20040210, World
Wide Web Consortium.

Montague, R. 1973. The proper treatment of quantification in
ordinary English. In R. Thomason, editor, Formal Philos-
ophy: Selected Papers of Richard Montague, pages 247–
270. Yale University Press, New Haven, CT.

Norman, D. A. and D. E. Rumelhart. 1975. Explorations in
Cognition. Freeman.

Parsons, T. 1990. Events in the Semantics of English. MIT
Press.

Partee, B. H., editor. 1976. Montague Grammar. Academic
Press.

Quillian, M. R. 1968. Semantic memory. In M. Minsky,
editor, Semantic Information Processing, pages 227–270.
MIT Press.

Raphael, B. 1968. SIR: A computer program for semantic
information retrieval. In M. Minsky, editor, Semantic In-
formation Processing, pages 33–145. MIT Press.

Russell, S. and P. Norvig. 2002. Artificial Intelligence: A
Modern Approach, 2nd edition. Prentice Hall.

Schank, R. C. 1972. Conceptual dependency: A theory
of natural language processing. Cognitive Psychology,
3:552–631.

Schönfinkel, M. 1924. Über die Bausteine der mathema-
tischen Logik. Mathematische Annalen, 92:305–316.
English translation appears in From Frege to Gödel: A
Source Book in Mathematical Logic, Harvard University
Press, 1967.

Simmons, R. F. 1965. Answering English questions by com-
puter: A survey. CACM, 8(1):53–70.

Simmons, R. F. 1973. Semantic networks: Their compu-
tation and use for understanding English sentences. In
R. C. Schank and K. M. Colby, editors, Computer Models
of Thought and Language, pages 61–113. W.H. Freeman
and Co.

Wilks, Y. 1975a. Preference semantics. In E. L. Keenan, ed-
itor, The Formal Semantics of Natural Language, pages
329–350. Cambridge Univ. Press.

Wilks, Y. 1975b. A preferential, pattern-seeking, seman-
tics for natural language inference. Artificial Intelligence,
6(1):53–74.

Winograd, T. 1972. Understanding Natural Language. Aca-
demic Press.

Woods, W. A. 1967. Semantics for a Question-Answering
System. Ph.D. thesis, Harvard University.

Woods, W. A. 1973. Progress in natural language under-
standing. Proceedings of AFIPS National Conference.

Woods, W. A. 1975. What’s in a link: Foundations for se-
mantic networks. In D. G. Bobrow and A. M. Collins,
editors, Representation and Understanding: Studies in
Cognitive Science, pages 35–82. Academic Press.

https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://doi.org/10.1207/s15516709cog0902_1
https://doi.org/10.1207/s15516709cog0902_1
https://doi.org/10.1145/1460690.1460714
https://aclanthology.org/www.mt-archive.info/50/MechTrans-4-1-2-1957.pdf#page=35

	Appendix
	Logical Representations of Sentence Meaning
	Computational Desiderata for Representations
	Model-Theoretic Semantics
	First-Order Logic
	Basic Elements of First-Order Logic
	Variables and Quantifiers
	Lambda Notation
	The Semantics of First-Order Logic
	Inference

	Event and State Representations
	Description Logics
	Summary
	Bibliographical and Historical Notes
	Exercises

