Word Meaning

Vector
Semantics &
Embeddings

What do words mean?

N-gram or text classification methods we've seen so far
> Words are just strings (or indices w. in a vocabulary list)
> That's not very satisfactory!

Introductory logic classes:
> The meaning of "dog" is DOG; cat is CAT

Vx DOG(x) — MAMMAL(x)

Old linguistics joke by Barbara Partee in 1967:
> Q: What's the meaning of life?
o A: LIFE

That seems hardly better!

Desiderata

What should a theory of word meaning do for us?
Let's look at some desiderata

From lexical semantics, the linguistic study of word
meaning

Lemmas and senses

lemma

/
mouse (N)

1. any of numerous small rodents...
— 2. a hand-operated device that controls
a Cursor...

sense

Modified from the online thesaurus WordNet

A sense or “concept” is the meaning component of a word
Lemmas can be polysemous (have multiple senses)

Relations between senses: Synonymy

Synonyms have the same meaning in some or all
contexts.

o> filbert / hazelnut

> couch / sofa

> big / large

> automobile / car

> vomit / throw up

> water / H,0

Relations between senses: Synonymy

Note that there are probably no examples of perfect
synonymy.
> Even if many aspects of meaning are identical

> Still may differ based on politeness, slang, register, genre,
etc.

Relation: Synonymy?

water/H,0

"H,0" in a surfing guide?
big/large

my big sister = my large sister

The Linguistic Principle of Contrast

Difference in form - difference in meaning

Abbeé Gabriel Girard 1718

Re: "exact" synonyms

"J¢ ne crois pas qu'il y aitde-
mor fym'w'nimc dans aucune
Langue.

[l do not believe that there

IS @ synonymous word in any
language]

Thanks to Mark Aronoff!

LA JUSTESSE

DE LA

' LANGUE FRANGOISE.

‘OU
LES DIFFERENTES SIGNIFICATIONS
DES MOTS QUIPASSENT
p OU.R :' |

SYNONIMES: .

N

Bar M.I'Abbé GIRARD C.D. M, D. D\ b,
: , . ‘b ‘ i’:/./‘\'
8 I (A

A PARIS,

Chez LAURENT D'HouRry, Imprimeys.

L braire, at bas delarue de la Harpe , vis- 4
a vis larue 8. Severin, au Saine Eﬁn-i:; .

-

M DCC.XVIIL
Avee Appribation G Privilega dis Roy.

Relation: Similarity

Words with similar meanings. Not synonyms, but sharing
some element of meaning

car, bicycle

cow, horse

Ask humans how similar 2 words are

wordi |woi2_|smilary

vanish disappear 9.8
behave obey 7.3
belief Impression 5.95
muscle bone 3.65
modest flexible 0.98

hole agreement 0.3

SimLex-999 dataset (Hill et al., 2015)

Relation: Word relatedness

Also called "word association"

Words can be related in any way, perhaps via a semantic
frame or field

o coffee, tea: similar
o coffee, cup: related, not similar

Semantic field

Words that
o cover a particular semantic domain

o pbear structured relations with each other.

hospitals

surgeon, scalpel, nurse, anaesthetic, hospital
restaurants

waiter, menu, plate, food, menu, chef
houses

door, roof, kitchen, family, bed

Relation: Antonymy

Senses that are opposites with respect to only one
feature of meaning

Otherwise, they are very similar!

dark/light short/long fast/slow rise/fall
hot/cold up/down in/out

More formally: antonyms can
> define a binary opposition or be at opposite ends of a scale
 long/short, fast/slow

o Be reversives:
- rise/fall, up/down

Connotation (sentiment)

* Words have affective meanings
* Positive connotations (happy)
* Negative connotations (sad)

* Connotations can be subtle:
* Positive connotation: copy, replica, reproduction
* Negative connotation: fake, knockoff, forgery

* Evaluation (sentiment!)
* Positive evaluation (great, love)
* Negative evaluation (terrible, hate)

Connotation
Osgood et al. (1957)
Words seem to vary along 3 affective dimensions:
> valence: the pleasantness of the stimulus
o arousal: the intensity of emotion provoked by the stimulus
> dominance: the degree of control exerted by the stimulus

Valence love 1.000 toxic 0.008
happy 1.000 nightmare 0.005
Arousal elated 0.960 mellow 0.069
frenzy 0.965 napping 0.046
Dominance powerful 0.991 weak 0.045
leadership 0.983 empty 0.081

Values from NRC VAD Lexicon (Mohammad 2018)

So far

Concepts or word senses

> Have a complex many-to-many association with words (homonymy,
multiple senses)

Have relations with each other
° Synonymy

> Antonymy

o Similarity

o Relatedness

o Connotation

Word Meaning

Vector
Semantics &
Embeddings

Vector Semantics

Vector
Semantics &
Embeddings

Computational models of word meaning

Can we build a theory of how to represent word
meaning, that accounts for at least some of the
desiderata?

We'll introduce vector semantics
The standard model in language processing!

Handles many of our goals!

Ludwig Wittgenstein

Pl #43:
"The meaning of a word is its use in the language”

Let's define words by their usages

One way to define "usage":

words are defined by their environments (the words around them)

Zellig Harris (1954):

If A and B have almost identical environments we say that they
are synonyms.

What does recent English borrowing ongchoi mean?

Suppose you see these sentences:
* Ong choi is delicious sautéed with garlic.
* Ong choi is superb over rice

* Ong choi leaves with salty sauces

And you've also seen these:
* ...spinach sautéed with garlic over rice
* Chard stems and leaves are delicious
* Collard greens and other salty leafy greens

Conclusion:

> Ongchoi is a leafy green like spinach, chard, or collard greens
o We could conclude this based on words like "leaves" and "delicious" and "sauteed"

Ongchoi: Inomoea aquatica "Water Spinach”

S asna Al S S
B O e SN
Ry 2 e N \

/S \\:,b"
r oK

kangkong

rau muong

S RN

e

v
)
1

Yamaguchi, Wikimedia Commons, public domain

|[dea 1: Defining meaning by linguistic distribution

Let's define the meaning of a word by its
distribution in language use, meaning its
neighboring words or grammatical environments.

|[dea 2: Meaning as a point in space (Osgood et al. 1957)

3 affective dimensions for a word
> valence: pleasantness
o arousal: intensity of emotion
> dominance: the degree of control exerted

Valence love 1.000 toxic 0.008
happy 1.000 nightmare 0.005
Arousal elated 0.960 mellow 0.069 NRC VAD Lexicon
frenzy 0.965 napping 0.046 (Mohammad 2018)
Dominance powerful 0.991 weak 0.045
leadership 0.983 empty 0.081

Hence the connotation of a word is a vector in 3-space

|[dea 1: Defining meaning by linguistic distribution

l[dea 2: Meaning as a point in multidimensional space

Defining meaning as a point in space based on distribution

Each word = a vector (not just "good" or "w,.")
Similar words are "nearby in semantic space”

We build this space automatically by seeing which words are
nearby in text

not good
bad
to by o dislike —
incredibly bad
that now are worse
a | you
than with
very good incredibly good
amazing fantastic
terrific nice wonderful

good

We define meaning of a word as a vector

Called an "embedding" because it's embedded into a
space (see textbook)

The standard way to represent meaning in NLP

Every modern NLP algorithm uses embeddings as
the representation of word meaning

Fine-grained model of meaning for similarity

Intuition: why vectors?

Consider sentiment analysis:

> With words, a feature is a word identity
o Feature 5: 'The previous word was "terrible"’
> requires exact same word to be in training and test

> With embeddings:
> Feature is a word vector
> 'The previous word was vector [35,22,17...]
> Now in the test set we might see a similar vector [34,21,14]
> We can generalize to similar but unseen words!!!

We'll discuss 2 kinds of embeddings

tf-idf
o |Information Retrieval workhorse!
> A common baseline model

o Sparse vectors

> Words are represented by (a simple function of) the counts of nearby
words

Word2vec

> Dense vectors

o Representation is created by training a classifier to predict whether a
word is likely to appear nearby

o Later we'll discuss extensions called contextual embeddings

From now on:

Computing with meaning representations
instead of string representations

SA T LIEER, 15AME%E Nets are for fish;
Once you get the fish, you can forget the net.
EEFTLER, SEMEE Words are for meaning;
Once you get the meaning, you can forget the words
H- - (Zhuangzi), Chapter 26

Vector Semantics

Vector
Semantics &
Embeddings

Words and Vectors

Vector
Semantics &
Embeddings

Term-document matrix

Each document is represented by a vector of words

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 14 80 62 89
fool 36 58 1 4
wit 0 15 2 3

Visualizing document vectors

Henry V [/4,13]
N 15 —
B
g 10 71/ Julius Caesar /1,7]
S T As You Like It /36,1] Twelfth Night /58,0]
_>
| I | | | | | | | | |

5 10 15 20 25 30 35 40 45 50 355 60
fool

Vectors are the basis of information retrieval

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 3

good 14 80 62 89
fool 36 58 1 4
wit 0 15 2 3

Vectors are similar for the two comedies

But comedies are different than the other two
Comedies have more fools and wit and fewer battles.

|[dea for word meaning: Words can be vectors too!!!

As You Like It Twelfth Night Julius Caesar Henry V

battle

good
fool
wit

battle is "the kind of word that occurs in Julius Caesar and Henry V"

fool is "the kind of word that occurs in comedies, especially Twelfth Night"

More common: word-word matrix
(or "term-context matrix")

Two words are similar in meaning if their context vectors are similar

1s traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie
computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

aardvark ... computer data result pie sugar
cherry 0 2 3 9 4472 25
strawberry 0 0 1 60 19

0
digital 0 1670 1683 85 5 4
information 0 3325 3982 378 5 13

4000
E information
S 3000- [3982,3325]
Q. digital
S 2000/1683,1670]
QO
© 1000

1000 2000 3000 4000
data

Words and Vectors

Vector
Semantics &
Embeddings

Cosine for computing word similarity

Vector
Semantics &
Embeddings

Computing word similarity: Dot product and cosine

The dot product between two vectors is a scalar:

N

dot product(v,w) =v-w = Zviwi = Viw] +vows + ... + VyWnN
i=1

The dot product tends to be high when the two
vectors have large values in the same dimensions

Dot product can thus be a useful similarity metric
between vectors

Problem with raw dot-product

Dot product favors long vectors

Dot product is higher if a vector is longer (has higher
values in many dimension)

Vector length: ¥

V| = \ Z"zz

=1

Frequent words (of, the, you) have long vectors (since
they occur many times with other words).

So dot product overly favors frequent words

Alternative: cosine for computing word similarity

N

E ViWi

cosine(V,w) = _,v_‘f‘ = =l

V[|w

<!

N N

\E

=1

Based on the definition of the dot product between two vectors aand b

a-b = |a||b|cos6
a-b
a|[b]

= cos0

Cosine as a similarity metric

0: vectors are orthogonal

-1: vectors point in opposite directions \ /
+1: vectors point in same directions \/ T

But since raw frequency values are non-negative, the
cosine for term-term matrix vectors ranges from 0-1

Cosine examples

Y —mmm
E 1vl Wi

cos(V,w) = V:KV S cherry 442 8
el o] \/ \/
2 El o digital 5 1683 1670

information 5 3982 3325

cos(cherry,information) =

442 %5+ 8+ 3982 42 x 3325 _ o017
V4422 + 82 +221/52 + 39822 + 33252
cos(digital,information) =
Sx5+ 168339824 1670 % 3325 996

V52 + 16832 + 16702+/52 + 39822 + 33252

Visualizing cosines
(well, angles)

00— cherry

digital information

| | | | | |
500 1000 1500 2000 2500 3000

Dimension 1: ‘pie’

Dimension 2: ‘computer’

Cosine for computing word

Vector similarity
Semantics &

Embeddings

TF-IDF

Vector
Semantics &
Embeddings

But raw frequency is a bad representation

* The co-occurrence matrices we have seen represent each
cell by word frequencies.

* Frequency is clearly useful; if sugar appears a lot near
apricot, that's useful information.

* But overly frequent words like the, it, or they are not very
informative about the context

* [t's a paradox! How can we balance these two conflicting
constraints?

Two common solutions for word weighting

tf-idf: tf-idf value for word t in document d:
Wt)d — tfl‘,d X ldft

Words like "the" or "it" have very low idf

PMI: (Pointwise mutual information)
p(wlrWZ)
p(w1)p(w2)

© PM'(Wl,Wz) — lOg

See if words like "good" appear more often with "great" than
we would expect by chance

Term frequency (tf) in the tf-idf algorithm

We could imagine using raw count:

tt, ;= count(z,d)
But instead of using raw count, we usually squash a bit:

o 1 +log;gcount(t,d) if count(t,d) > 0
"0 otherwise

Document frequency (df)

df, is the number of documents t occurs in.

(note this is not collection frequency: total count across
all documents)

"Romeo" is very distinctive for one Shakespeare play:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

Inverse document frequency (idf)

Word df idf

Romeo 1 1.57

N salad 2 1.27
idtf; = log, (—) Falstaff 4 0.967
dft forest 12 0.489
battle 21 0.246
N is the total number of documents wit 4 0.057
in the collection tool 36 0.012
good 37 0

sweet 37 0

What is a document?

Could be a play or a Wikipedia article

But for the purposes of tf-idf, documents can be
anything; we often call each paragraph a document!

Final tf-idf weighted value for a word

Wl,d — tft,d X ldft

Raw counts:
As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3
tf-idf:
As You Like It Twelfth Night Julius Caesar Henry V
battle 0.246 0 0.454 0.520
good 0 0 0 0
fool 0.030 0.033 0.0012 0.0019
wit 0.085 0.081 0.048 0.054

TF-IDF

Vector
Semantics &
Embeddings

Word2vec

Vector
Semantics &
Embeddings

Sparse versus dense vectors

tf-idf (or PMI) vectors are
> long (length |V|= 20,000 to 50,000)
o sparse (most elements are zero)

Alternative: learn vectors which are
> short (length 50-1000)

> dense (most elements are non-zero)

Sparse versus dense vectors

Why dense vectors?

> Short vectors may be easier to use as features in machine
learning (fewer weights to tune)

> Dense vectors may generalize better than explicit counts

> Dense vectors may do better at capturing synonymy:
> car and automobile are synonyms; but are distinct dimensions

o a word with car as a neighbor and a word with automobile as a
neighbor should be similar, but aren't

> In practice, they work better

Common methods for getting short dense vectors

III .

“Neural Language Model”-inspired models
> Word2vec (skipgram, CBOW), GloVe

Singular Value Decomposition (SVD)

o A special case of this is called LSA — Latent Semantic
Analysis

Alternative to these "static embeddings":
 Contextual Embeddings (ELMo, BERT)

 Compute distinct embeddings for a word in its context
 Separate embeddings for each token of a word

Simple static embeddings you can download!

Word2vec (Mikolov et al)
https://code.google.com/archive/p/word2vec/

GloVe (Pennington, Socher, Manning)

http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/

Word2vec

Popular embedding method
Very fast to train

Code available on the web
ldea: predict rather than count

Word?2vec provides various options. We'll do:
skip-gram with negative sampling (SGNS)

Word2vec

Instead of counting how often each word w occurs near "apricot”

> Train a classifier on a binary prediction task:
> |s w likely to show up near "apricot™?

We don’t actually care about this task
o But we'll take the learned classifier weights as the word embeddings

Big idea: self-supervision:
> A word c that occurs near apricot in the corpus cats as the gold "correct
answer" for supervised learning

> No need for human labels
> Bengio et al. (2003); Collobert et al. (2011)

Approach: predict if candidate word c is a "neighbor”

1. Treat the target word t and a neighboring context word ¢
as positive examples.

2. Randomly sample other words in the lexicon to get
negative examples

3. Use logistic regression to train a classifier to distinguish
those two cases

4. Use the learned weights as the embeddings

Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:

..lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] ¢3 ¢4

Skip-Gram Classifier

(assuming a +/- 2 word window)

..lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] c¢3 ¢4

Goal: train a classifier that is given a candidate (word, context) pair
(apricot, jam)
(apricot, aardvark)

And assigns e”z.ach pair a probability:
P(+|w, c)
P(-|w,c)=1-P(+|w, c)

Similarity is computed from dot product

Remember: two vectors are similar if they have a high
dot product
> Cosine is just a normalized dot product

So:
o Similarity(w,c) o w - C

We’'ll need to normalize to get a probability
> (cosine isn't a probability either)

Turning dot products into probabilities

SiIm(w,c) = W * ¢
To turn this into a probability
We'll use the sigmoid from logistic regression:

Pltiw,c) = ole-w)= 1+exp1(—c.w)
P(—|W,C) — I—P(—HW,C)
= O(—c-w)= :

1+exp(c-w)

How Skip-Gram Classifier computes P(+|w, ¢)

1

P(_|_|ch) — G(C-W): l_l_exp(_c.w)

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

P(+|w,c1.) = H o(c;-w)
i=1

log P(++|w,c1.1)

L
Zlog o(c;-w)
i=1

Skip-gram classifier: summary

A probabilistic classifier, given
* atest target word w
° its context window of L words ¢,

Estimates probability that w occurs in this window based
on similarity of w (embeddings) to ¢,., (embeddings).

To compute this, we just need embeddings for all the
words.

These embeddings we'll need: a set for w, a set for ¢

1.d
aardvark [eee) 1 \

apricot [eee

- W target words

9 _ zebra [ee9) |V| j

aardvark [eee |V|+1\

apricot [eee

- C context & noise
words

zebra [@ee] 2V)

Word2vec

Vector
Semantics &
Embeddings

Word2vec: Learning the

Vector embeddings
Semantics &

Embeddings

Skip-Gram Training data

..lemon, a [tablespoon of @apricot jam, a] pinch...
cl c2 [target] ¢3 ¢4

positive examples +
t C

apricot tablespoon
apricot of

apricot jam
apricot a

Skip-Gram Training data

..lemon, a [tablespoon of @apricot jam, a] pinch...
cl c2 [target] ¢3 ¢4

positive examples + .
¢ . For each positive

example we'll grab k

pricot tablespoon .
oricot of negative examples,

d
d
apricot jam sampling by frequency
apricot a

Skip-Gram Training data

..lemon, a [tablespoon of @pricot jam, a] pinch...

cl c2 [target] ¢3 ¢4
positive examples + negative examples -
L ¢ t C t C
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where apricot dear
apricot a apricot coaxial apricot if

Word2vec: how to learn vectors

Given the set of positive and negative training instances,
and an initial set of embedding vectors

The goal of learning is to adjust those word vectors such
that we:

> Maximize the similarity of the target word, context word pairs
(W, Cpos) drawn from the positive data

> Minimize the similarity of the (w, c
negative data.

reg) PAIrs drawn from the

Loss function for one w with ¢ C

pos’ ~negl '

'Cnegk

Maximize the similarity of the target with the actual context words,
and minimize the similarity of the target with the k negative sampled
non-neighbor words.

k
Lce = _log P(_I_‘Wacpos)HP(_‘Wacnegi)
i=1
k
= — |log P(+|w,cpos) + » 108 P(—|W,Cneg,)
_ i=1

k

= = [1ogP(+]wcpos) + > _10g (1= P(+ W, Cneg,))
i i=1

' -
_— — lOg G(CPOS . W) Z log G(_Cneg,- | W)
i i=1 _

Learning the classitier

How to learn?
> Stochastic gradient descent!

We’'ll adjust the word weights to
> make the positive pairs more likely
> and the negative pairs less likely,

o over the entire training set.

Intuition of one step of

oradient descent

(aardvark [eee)
move apricot and jam closer,
| apricot [eee WI— =~ increasing C . * W
W { ““: \
|
J 1 - . 5y
Cd ...apricot jam...
K zebra [ee@® ‘ //‘,
0 | L
(aardvark jeee // B ', move apricot and matrix apart
Liam [essiC,o ¥ L decreasing Cpegy * W
C { k—2 |matrix m Cneg1|<' - ‘:
|To|stoy ©00) C 000 |< . -‘move apricotland Tolstoy apart
decreasing C.., * W
\ zebra [eee

Reminder: gradient descent

* At each step

* Direction: We move in the reverse direction from the
gradient of the loss function

* Magnitude: we move the value of this gradient
%L(f(x; w),y) weighted by a learning rate n

* Higher learning rate means move w faster

W =W L (f ())

The derivatives of the loss function

Lce = —

dLcE

dCpos
dLck

dLcE

ow

log o (cpos - W) + Z log 0 (—Cpeg, - W)

k

=1

0 (cpos=w) — 1w

Update equation in SGD

Start with randomly initialized C and W matrices, then incrementally do updates

41
Cpos

r+1

Cneg

Wt+1

[

— Cpos_n_

[

— Cneg_n_

[

w =T

Two sets of embeddings

SGNS learns two sets of embeddings
Target embeddings matrix W
Context embedding matrix C

It's common to just add them together,
representing word i as the vector w;+ ¢

Summary: How to learn word2vec (skip-gram)
embeddings

Start with V random d-dimensional vectors as initial
embeddings

Train a classifier based on embedding similarity

°Take a corpus and take pairs of words that co-occur as positive
examples

°Take pairs of words that don't co-occur as negative examples

°Train the classifier to distinguish these by slowly adjusting all
the embeddings to improve the classifier performance

°Throw away the classifier code and keep the embeddings.

Word2vec: Learning the

Vector embeddings
Semantics &

Embeddings

Properties of Embeddings

Vector
Semantics &
Embeddings

The kinds of neighbors depend on window size

Small windows (C= +/- 2) : nearest words are syntactically
similar words in same taxonomy

°cHogwarts nearest neighbors are other fictional schools
°Sunnydale, Evernight, Blandings

Large windows (C= +/- 5) : nearest words are related
words in same semantic field

°cHogwarts nearest neighbors are Harry Potter world:
cDumbledore, half-blood, Malfoy

Analogical relations

The classic parallelogram model of analogical reasoning
(Rumelhart and Abrahamson 1973)

To solve: "apple is to tree as grape is to

)

Add tree — apple to grape to get vine
tree

/

grape

Analogical relations via parallelogram

The parallelogram method can solve analogies with

both sparse and dense embeddings (Turney and
Littman 2005, Mikolov et al. 2013b)

king — man + woman is close to queen

Paris — France + Italy7 is close to Rome
For a problem a:a*::b:b*, the parallelogram method is:

b* = argmax distance(x,a* —a+ b)
X

S’grlgcture in GloVE Embedding space

=] r heiress

0.4 =

+niece ; - countess
0.3F *aunt ; /" duchess-

T%istell| [.
0.2} I ’ ;! rempress

0.1F . ! :

|
|
|
[
! brother l

-0 04 =03 =02 =01 0 01 02 03 04 05

Caveats with the parallelogram method

It only seems to work for frequent words, small
distances and certain relations (relating countries to
capitals, or parts of speech), but not others. (Linzen
2016, Gladkova et al. 2016, Ethayarajh et al. 2019a)

Understanding analogy is an open area of research
(Peterson et al. 2020)

Embeddings as a window onto historical semantics

Train embeddings on different decades of historical text to see meanings shift

~30 million books, 1850-1990, Google Books data

a gay (1900s) b C solemn
dait spread awful (1850s)
flaunting vaeet} 2t majestic
tasteful ol SOW awe
pleasant broadcast (18505)Se§gws dread | ensive
frolicsonye (\ circulated Aﬁer JIOomy
witty Y gay (1950s
bright broadcast (1900s) horrible
e , NEWSPApErs appalliwg terrible
Jdy isexual beiaicion awful (1900s) Nrp—
gay (1990s) homosexual radio awful (1 _9-9103)
lesbian hhc broadcast (1990s) awfully’="

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal
Statistical Laws of Semantic Change. Proceedings of ACL.

Embeddings reflect cultural bias!

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer
programmer as woman is to homemaker? debiasing word embeddings." In NeurlPS, pp. 4349-4357. 2016.

Ask “Paris : France :: Tokyo : x”
o X =Japan

Ask “father : doctor :: mother : x”
° X =nurse

Ask “man : computer programmer :: woman : x”
° X = homemaker

Algorithms that use embeddings as part of e.g., hiring searches for
programmers, might lead to bias in hiring

Historical embedding as a tool to study cultural biases

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes.
Proceedings of the National Academy of Sciences 115(16), E3635—-E3644.

* Compute a gender or ethnic bias for each adjective: e.g., how
much closer the adjective is to "woman" synonyms than
"man" synonyms, or names of particular ethnicities
 Embeddings for competence adjective (smart, wise,
brilliant, resourceful, thoughtful, logical) are biased toward
men, a bias slowly decreasing 1960-1990

 Embeddings for dehumanizing adjectives (barbaric,
monstrous, bizarre) were biased toward Asians in the
1930s, bias decreasing over the 20t century.

* These match the results of old surveys done in the 1930s

Properties of Embeddings

Vector
Semantics &
Embeddings

