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INTRODUCTION TO INFORMATION THEORY

This chapter introduces some of the basic concepts of information theory, as well
as the definitions and notations of probabilities that will be used throughout
the book. The notion of entropy, which is fundamental to the whole topic of
this book, is introduced here. We also present the main questions of information
theory, data compression and error correction, and state Shannon’s theorems.

1.1 Random variables

The main object of this book will be the behavior of large sets of discrete
random variables. A discrete random variable X is completely defined! by
the set of values it can take, X, which we assume to be a finite set, and its
probability distribution {px (z)}.cx. The value px (z) is the probability that
the random variable X takes the value x. The probability distribution px : X —
[0, 1] must satisfy the normalization condition

> px(@)=1. (1.1)

zeX

We shall denote by P(A) the probability of an event A C X, so that px(x) =
P(X = z). To lighten notations, when there is no ambiguity, we use p(z) to
denote px (z).

If f(X) is a real valued function of the random variable X, the expectation
value of f(X), which we shall also call the average of f, is denoted by:

Ef= px(x)f(z). (1.2)

zeX

While our main focus will be on random variables taking values in finite
spaces, we shall sometimes make use of continuous random variables taking
values in R? or in some smooth finite-dimensional manifold. The probability
measure for an ‘infinitesimal element’ dz will be denoted by dpx (x). Each time
px admits a density (with respect to the Lebesgue measure), we shall use the
notation px (x) for the value of this density at the point x. The total probability
P(X € A) that the variable X takes value in some (Borel) set A C X is given
by the integral:

'In probabilistic jargon (which we shall avoid hereafter), we take the probability space
(X,P(X),px) where P(X) is the o-field of the parts of X and px = >~ o x Px () da.

{ch:intro_info}

{proba_norm}
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P(X e A) = / dpx(x) = /]I(x €A dpx(x), (1.3)

zeA
where the second form uses the indicator function I(s) of a logical statement
s,which is defined to be equal to 1 if the statement s is true, and equal to 0 if
the statement is false.

The expectation value of a real valued function f(z) is given by the integral
on X:

E f(X) = / f(z) dpx(z) . (1.4)

Sometimes we may write Ex f(X) for specifying the variable to be integrated
over. We shall often use the shorthand pdf for the probability density func-

tion px (z).

Example 1.1 A fair dice with M faces has X = {1,2,..., M} and p(i) = 1/M
for all i € {1,..., M}. The average of x is EX = (1+...+ M)/M = (M +1)/2.

Example 1.2 Gaussian variable: a continuous variable X € R has a Gaussian
distribution of mean m and variance o2 if its probability density is

exp <_M) . (15)

202

(¢) = —

45 =

P V2mo
One has EX = m and E(X —m)? = o2,

The notations of this chapter mainly deal with discrete variables. Most of the
expressions can be transposed to the case of continuous variables by replacing
sums ) by integrals and interpreting p(z) as a probability density.

Exercise 1.1 Jensen’s inequality. Let X be a random variable taking value
in aset X C R and f a convex function (i.e. a function such that Vz,y and
Vo € [0,1]: flaz+ (1 —ay)) < af(z) + (1 —«a)f(y)). Then

{eq:Jensen} Ef(X) > f(EX) . (1.6)

Supposing for simplicity that X is a finite set with |X'| = n, prove this equality
by recursion on n.

{se:entropyl 1.2 Entropy

The entropy Hx of a discrete random variable X with probability distribution
p(x) is defined as

{S_def} Hx =— Z p(z)logy p(z) = Elog, [;} , (1.7)
reEX p
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where we define by continuity 0log, 0 = 0. We shall also use the notation H(p)
whenever we want to stress the dependence of the entropy upon the probability
distribution of X.

In this Chapter we use the logarithm to the base 2, which is well adapted
to digital communication, and the entropy is then expressed in bits. In other
contexts one rather uses the natural logarithm (to base e &~ 2.7182818). It is
sometimes said that, in this case, entropy is measured in nats. In fact, the two
definitions differ by a global multiplicative constant, which amounts to a change
of units. When there is no ambiguity we use H instead of Hx.

Intuitively, the entropy gives a measure of the uncertainty of the random
variable. It is sometimes called the missing information: the larger the entropy,
the less a priori information one has on the value of the random variable. This
measure is roughly speaking the logarithm of the number of typical values that
the variable can take, as the following examples show.

Example 1.3 A fair coin has two values with equal probability. Its entropy is
1 bit.

Example 1.4 Imagine throwing M fair coins: the number of all possible out-
comes is 2. The entropy equals M bits.

Example 1.5 A fair dice with M faces has entropy log, M.

Example 1.6 Bernouilli process. A random variable X can take values 0,1
with probabilities p(0) = ¢, p(1) = 1 — ¢. Its entropy is

Hx = —qlogy q — (1 —q)logy(1 —q) , (1.8)

it is plotted as a function of ¢ in fig.1.1. This entropy vanishes when ¢ = 0
or ¢ = 1 because the outcome is certain, it is maximal at ¢ = 1/2 when the
uncertainty on the outcome is maximal.

Since Bernoulli variables are ubiquitous, it is convenient to introduce the
function H(q) = —qlogq — (1 — q) log(1 — q), for their entropy.

Exercise 1.2 An unfair dice with four faces and p(1) = 1/2, p(2) =
1/4, p(3) = p(4) = 1/8 has entropy H = 7/4, smaller than the one of the
corresponding fair dice.

{S_bern}
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Fic. 1.1. The entropy H(g) of a binary variable with p(X = 0) = g,
p(X =1) =1 — ¢, plotted versus ¢

Exercise 1.3 DNA is built from a sequence of bases which are of four types,
A T,G,C. In natural DNA of primates, the four bases have nearly the same
frequency, and the entropy per base, if one makes the simplifying assumptions
of independence of the various bases, is H = —log,(1/4) = 2. In some genus of
bacteria, one can have big differences in concentrations: p(G) = p(C) = 0.38,
p(A) = p(T) = 0.12, giving a smaller entropy H =~ 1.79.

Exercise 1.4 In some intuitive way, the entropy of a random variable is related
to the ‘risk’ or ‘surprise’ which are associated to it. In this example we discuss
a simple possibility for making these notions more precise.

Consider a gambler who bets on a sequence of bernouilli random variables
X; € {0,1}, t € {0,1,2,...} with mean EX; = p. Imagine he knows the
distribution of the X;’s and, at time ¢ he bets a fraction w(1) = p of his money
on 1 and a fraction w(0) = (1 —p) on 0. He looses whatever is put on the wrong
number, while he doubles whatever has been put on the right one. Define the
average doubling rate of his wealth at time ¢ as

W, = %IE log, {H 2w(Xt«)} . (1.9)

=il

It is easy to prove that the expected doubling rate EW, is related to the entropy
of Xy: EW; = 1 — H(p). In other words, it is easier to make money out of
predictable events.

Another notion that is directly related to entropy is the Kullback-Leibler

{fig_bernouilli}
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(KL) divergence between two probability distributions p(x) and ¢(z) over the
same finite space X. This is defined as:

D) = Y (@) log 1 (1.10)

= p()

where we adopt the conventions 0log0 = 0, 01log(0/0) = 0. It is easy to show
that: (i) D(q||p) is convex in g(z); (i4) D(q|lp) > 0; (iii) D(q||p) > 0 unless
q(x) = p(x). The last two properties derive from the concavity of the logarithm
(i.e. the fact that the function —logx is convex) and Jensen’s inequality (1.6):
if E denotes expectation with respect to the distribution ¢(z), then —D(ql||p) =
Elogp(x)/q(x)] < logE[p(z)/q(x)] = 0. The KL divergence D(q||p) thus looks
like a distance between the probability distributions ¢ and p, although it is not
symmetric.

The importance of the entropy, and its use as a measure of information,
derives from the following properties:

1. Hx > 0.

2. Hx = 0 if and only if the random variable X is certain, which means that
X takes one value with probability one.

3. Among all probability distributions on a set X with M elements, H is

maximum when all events x are equiprobable, with p(z) = 1/M. The
entropy is then Hx = log, M.
Notice in fact that, if X has M elements, then the KL divergence D(p||p)
between p(z) and the uniform distribution p(x) = 1/M is D(p||p) =
logy M — H(p). The thesis follows from the properties of the KL diver-
gence mentioned above.

4. If X and Y are two independent random variables, meaning that px y (z,y) =
px (2)py (y), the total entropy of the pair X,Y is equal to Hx + Hy:

Hxy ==Y plw,y)logs px v (z,y) =

==Y px(@)py(y) (logy px (z) + logz py (y)) = Hx + H1.11)

5. For any pair of random variables, one has in general Hxy < Hx + Hy,
and this result is immediately generalizable to n variables. (The proof can *
be obtained by using the positivity of the KL divergence D(p1||p2), where
p1 = px,y and ps = pxpy).

6. Additivity for composite events. Take a finite set of events X', and decom-
pose it into X = X} U X,, where X1 N Xy = (. Call ¢; = > wex, P(T)
the probability of &7, and ¢o the probability of A5. For each = € A},
define as usual the conditional probability of z, given that x € AXj, by
ri(z) = p(x)/q1 and define similarly ro(x) as the conditional probability
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of z, given that x € X5. Then the total entropy can be written as the sum
of two contributions Hx = — 3", p(x)log, p(x) = H(q) + H(r), where:

H(q) = —q1logy 1 — g210g5 g2 (1.12)
H(r) = —q Z ri(x)logy r1(z) — 2 Z r2(7)logy ra(z)  (1.13)
TEX, TEX,

The proof is obvious by just substituting the laws r; and ry by their ex-
panded definitions. This property is interpreted as the fact that the average
information associated to the choice of an event x is additive, being the
sum of the relative information H(q) associated to a choice of subset, and
the information H(r) associated to the choice of the event inside the sub-
sets (weighted by the probability of the subsetss). It is the main property
of the entropy, which justifies its use as a measure of information. In fact,
this is a simple example of the so called chain rule for conditional entropy,
which will be further illustrated in Sec. 1.4.

Conversely, these properties together with some hypotheses of continuity and
monotonicity can be used to define axiomatically the entropy.

1.3 Sequences of random variables and entropy rate

In many situations of interest one deals with a random process which generates
sequences of random variables {X;};cn, each of them taking values in the
same finite space X. We denote by Py(z1,...,2y) the joint probability dis-
tribution of the first N variables. If A C {1,..., N} is a subset of indices, we
shall denote by A its complement A = {1,..., N} \ A and use the notations
24 = {25, € A} and 27 = {z;,i € A}. The marginal distribution of the
variables in A is obtained by summing Py on the variables in A:

Pa(zs) =) Py(z1,...,2n) . (1.14)

Example 1.7 The simplest case is when the X;’s are independent. This
means that Py (z1,...,zx) = p1(x1)p2(x2)...py(zx). If all the distributions
p; are identical, equal to p, the variables are independent identically dis-
tributed, which will be abbreviated as iid. The joint distribution is

Py(z1,...,zn) = [ [ pla:). (1.15)



SEQUENCES OF RANDOM VARIABLES AND ENTROPY RATE 7

Example 1.8 The sequence {X;}ien is said to be a Markov chain if

N-1
Py(z1,...,xN) = p1(x1) H w(wy — Tptq) - (1.16)
t=1

Here {p1(z)}zex is called the initial state, and {w(z — y)}, ecx are the
transition probabilities of the chain. The transition probabilities must be
non-negative and normalized:

Zw(:ﬂ—>y)= 1, foranyyeX. (1.17)
yeX

When we have a sequence of random variables generated by a certain process,
it is intuitively clear that the entropy grows with the number N of variables. This
intuition suggests to define the entropy rate of a sequence {X;}cn as

hx = lim Hy, /N, (1.18)

if the limit exists. The following examples should convince the reader that the
above definition is meaningful.

Example 1.9 If the X;’s are i.i.d. random variables with distribution
{p(2)}+ex, the additivity of entropy implies

hx =H(p) = - p(x)logp(). (1.19)

reX
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Example 1.10 Let {X;}:en be a Markov chain with initial state {p;(2)}.ecx
and transition probabilities {w(z — y)}s yex. Call {pi(x)}recr the marginal
distribution of X; and assume the following limit to exist independently of the
initial condition:

p*(x) = lim p(z). (1.20)

As we shall see in chapter 4, this turns indeed to be true under quite mild
hypotheses on the transition probabilities {w(z — ¥)}a,yex. Then it is easy to
show that

hx =— Z p () w(z — y)logw(z — y). (1.21)
z,YyeX

If you imagine for instance that a text in English is generated by picking letters
randomly in the alphabet X, with empirically determined transition probabil-
ities w(z — y), then Eq. (1.21) gives a first estimate of the entropy of English.
But if you want to generate a text which looks like English, you need a more
general process, for instance one which will generate a new letter x4, 1 given the
value of the k previous letters z;, x¢_1,...,24_t1, through transition probabil-
ities w(Xs, Tt—1, .oy Tt—k41 — r+1). Computing the corresponding entropy
rate is easy. For k = 4 one gets an entropy of 2.8 bits per letter, much smaller
than the trivial upper bound log, 27 (there are 26 letters, plus the space sym-
bols), but many words so generated are still not correct English words. Some
better estimates of the entropy of English, through guessing experiments, give
a number around 1.3.

1.4 Correlated variables and mutual entropy

Given two random variables X and Y, taking values in X and )}, we denote their
joint probability distribution as px,y (x,y), which is abbreviated as p(x,y), and
the conditional probability distribution for the variable y given = as py |x (y|z),
abbreviated as p(y|z). The reader should be familiar with Bayes’ classical theo-
rem:
p(ylz) = p(z,y)/p(x) . (1.22)

When the random variables X and Y are independent, p(y|z) is z-independent.
When the variables are dependent, it is interesting to have a measure on their
degree of dependence: how much information does one obtain on the value of y
if one knows x? The notions of conditional entropy and mutual entropy will be
useful in this respect.

Let us define the conditional entropy Hy|x as the entropy of the law
p(y|x), averaged over x:

Hy|x =~ ) pl) Y plyle)logy plylz) . (1.23)

rzeX yeY
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The total entropy Hxy = — >, cx ,ey P(2,y)logy p(x, y) of the pair of variables
x,y can be written as the entropy of x plus the conditional entropy of y given x:

HX,Y :Hx+Hy‘X. (1.24)

In the simple case where the two variables are independent, Hy x = Hy,
and Hx y = Hx + Hy. One way to measure the correlation of the two variables
is the mutual entropy /x y which is defined as:

_ T LCY)
IX,Y = we‘/yz’yeyp( 7y)1 22 p(x)p(y) . (125)

It is related to the conditional entropies by:
Ixy =Hy —Hy)x =Hx — Hxy , (1.26)

which shows that Ix y measures the reduction in the uncertainty of  due to the
knowledge of y, and is symmetric in x, y.

Proposition 1.11 Ixy > 0. Moreover Ixy = 0 if and only if X and Y are
independent variables.

Proof: Write —Ixy = E,,log, %. Consider the random variable u =
(z,y) with probability distribution p(z, y). As the logarithm is a concave function
(i.e. -log is a convex function), one and applies Jensen’s inequality (1.6). This

gives the result Ixy > 00

Exercise 1.5 A large group of friends plays the following game (telephone
without cables). The guy number zero chooses a number X, € {0,1} with
equal probability and communicates it to the first one without letting the
others hear, and so on. The first guy communicates the number to the second
one, without letting anyone else hear. Call X, the number communicated from
the n-th to the (n+1)-th guy. Assume that, at each step a guy gets confused and
communicates the wrong number with probability p. How much information
does the n-th person have about the choice of the first one?

We can quantify this information through Iy, x, = I,. A simple calculation
shows that I,, = 1 — H(p,) with p, given by 1 —2p,, = (1 —2p)™. In particular,
as n — oo

1—2 2n
I, = % [1+0((1 - 2p)*™)] . (1.27)
The ‘knowledge’ about the original choice decreases exponentially along the
chain.

The mutual entropy gets degraded when data is transmitted or processed.
This is quantified by:

{Smut_def}
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Proposition 1.12 Data processing inequality.

Consider a Markov chain X — Y — Z (so that the joint probability of the
three varaibles can be written as p1(x)ws(x — y)ws(y — 2)). Then: Ix z < Ixy.
In particular, if we apply this result to the case where Z is a function of Y,
Z = f(Y), we find that applying f degrades the information: Ix svy < Ixy.
Proof: Let us introduce, in general, the mutual entropy of two varaibles con-
ditioned to a third one: Ixy|z = Hx|z — Hx, (vz). The mutual information
between a variable X and a pair of varaibles (Y Z) can be decomposed in a sort
of chain rule: I'x (yz) = Ix z + Ixy|z = Ixy + Ix z)y- If we have a Markov
chain X - Y — Z, X and Z are independent when one conditions on the value
of Y, therefore Iy 7y = 0. The result follows from the fact that Ix y |z > 0. [

1.5 Data compression

Imagine an information source which generates a sequence of symbols X =
{X1,..., Xy} taking values in a finite alphabet X. Let us assume a probabilistic
model for the source: this means that the X;’s are taken to be random variables.
We want to store the information contained in a given realization z = {z1 ... 2N}
of the source in the most compact way.

This is the basic problem of source coding. Apart from being an issue of
utmost practical interest, it is a very instructive subject. It allows in fact to
formalize in a concrete fashion the intuitions of ‘information’ and ‘uncertainty’
which are associated to the definition of entropy. Since entropy will play a crucial
role throughout the book, we present here a little detour into source coding.

1.5.1 Codewords

We first need to formalize what is meant by “storing the information”. We define?
therefore a source code for the random variable X to be a mapping w which
associates to any possible information sequence in XN a string in a reference
alphabet which we shall assume to be {0,1}:

w: XN {0,1}*
z— w(z). (1.28)

Here we used the convention of denoting by {0,1}* the set of binary strings
of arbitrary length. Any binary string which is in the image of w is called a
codeword.

Often the sequence of symbols X; ... Xy is a part of a longer stream. The
compression of this stream is realized in three steps. First the stream is broken
into blocks of length N. Then each block is encoded separately using w. Finally
the codewords are glued to form a new (hopefully more compact) stream. If
the original stream consisted in the blocks z™), 2 ... (") the output of the

2The expert will notice that here we are restricting our attention to “fixed-to-variable”
codes.
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encoding process will be the concatenation of w(z™), ..., w(z(). In general
there is more than one way of parsing this concatenation into codewords, which
may cause troubles to any one willing to recover the compressed data. We shall
therefore require the code w to be such that any concatenation of codewords can
be parsed unambiguously. The mappings w satisfying this property are called
uniquely decodable codes.

Unique decodability is surely satisfied if, for any pair z,2" € AN, w(z) is
not a prefix of w(z'). If this stronger condition is verified, the code is said to be
instantaneous (see Fig. 1.2). Hereafter we shall focus on instantaneous codes,
since they are both practical and (slightly) simpler to analyze.

Now that we precised how to store information, namely using a source code,
it is useful to introduce some figure of merit for source codes. If I,,(x) is the
length of the string w(z), the average length of the code is:

Lw)= > pla)ls(z) . (1.29)

Example 1.13 Take N = 1 and consider a random variable X which takes
values in X = {1,2,...,8} with probabilities p(1) = 1/2, p(2) = 1/4, p(3) =
1/8, p(4) = 1/16, p(5) = 1/32, p(6) = 1/64, p(7) = 1/128, p(8) = 1/128.
Consider the two codes w; and ws defined by the table below

p(z) jwi(@)| wa(z)
1/2 | 000 0
1/4 | 001 10
1/8 | 010 110
1/16 | 011 1110 (1.30)
1/32| 100 | 11110
1/64 | 101 | 111110
1/128| 110 | 1111110
1/128| 111 |11111110

0 ~N O Ol W N~ &

These two codes are instantaneous. For instance looking at the code ws, the
encoded string 10001101110010 can be parsed in only one way since each symbol
0 ends a codeword. It thus corresponds to the sequence z1 = 2,29 = 1,23 =
1,24 = 3,25 = 4,26 = 1,27 = 2. The average length of code w; is L(wy) = 3,
the average length of code ws is L(wy) = 247/128. Notice that wy achieves a
shorter average length because it assigns the shortest codeword (namely 0) to
the most probable symbol (i.e. 1).

{avlength}
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F1G. 1.2. An instantaneous source code: each codeword is assigned to a node in
a binary tree in such a way that no one among them is the ancestor of another
one. Here the four codewords are framed. {fig_kraft}

Example 1.14 A useful graphical representation of source code is obtained by
drawing a binary tree and associating each codeword to the corresponding node
in the tree. In Fig. 1.2 we represent in this way a source code with |XV| =
4. Tt is quite easy to recognize that the code is indeed instantaneous. The
codewords, which are framed, are such that no codeword is the ancestor of
any other codeword in the tree. Given a sequence of codewords, parsing is
immediate. For instance the sequence 00111000101001 can be parsed only in
001,11,000,101,001

1.5.2  Optimal compression and entropy

Suppose to have a ‘complete probabilistic characterization’ of the source you
want to compress. What is the ‘best code’ w for this source? What is the shortest
achievable average length?

This problem was solved (up to minor refinements) by Shannon in his cel-
ebrated 1948 paper, by connecting the best achievable average length to the
entropy of the source. Following Shannon we assume to know the probability
distribution of the source p(x) (this is what ‘complete probabilistic character-
ization’ means). Moreover we interpret ‘best’ as ‘having the shortest average
length’.

Theorem 1.15 Let Ly, the shortest average length achievable by an instanta-
neous code for X = {Xy,...,Xn}, and Hx the entropy of the same variable.

{theorem: ShannonSource}

Then
1. For any N > 1:
{Shcomp1} Hx < Ly < Hyx +1. (1.31)
2. If the source has a finite entropy rate h = imy_.oo Hx /N, then
1
{Shcomp2} Nlim —Ly=h. (1.32)

Proof: The basic idea in the proof of Eq. (1.31) is that, if the codewords
were too short, the code wouldn’t be instantaneous. ‘Kraft’s inequality’ makes
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this simple remark more precise. For any instantaneous code w, the lengths [, (x)
satisfy:

> o<, (1.33)

zeX N

This fact is easily proved by representing the set of codewords as a set of leaves
on a binary tree (see fig.1.2). Let Ljs be the length of the longest codeword.
Consider the set of all the 2XM possible vertices in the binary tree which are
at the generation Ljs, let us call them the ’descendants’. If the information x
is associated with a codeword at generation [ (i.e. l,(z) = [), there can be no
other codewords in the branch of the tree rooted on this codeword, because the
code is instantaneous. We ’erase’ the corresponding 2 ~! descendants which
cannot be codewords. The subsets of erased descendants associated with each
codeword are not overlapping. Therefore the total number of erased descendants,
Yo 2Lm—lw(z) must be smaller or equal to the total number of descendants, 25 .
This establishes Kraft’s inequality.

Conversely, for any set of lengths {I(z)},cax~ which satisfies the inequality
(1.33) there exist at least a code, whose codewords have the lengths {I(2)},cxn.
A possible construction is obtained as follows. Consider the smallest length I(z)
and take the first allowed binary sequence of length I(z) to be the codeword for
x. Repeat this operation with the next shortest length, and so on until you have
exhausted all the codewords. It is easy to show that this procedure is successful
if Eq. (1.33) is satisfied.

The problem is therefore reduced to finding the set of codeword lengths I(z) =
I*(z) which minimize the average length L = )" p(z)i(z) subject to Kraft’s
inequality (1.33). Supposing first that I(x) are real numbers, this is easily done
with Lagrange multipliers, and leads to l(z) = —log, p(z). This set of optimal
lengths, which in general cannot be realized because some of the I(z) are not
integers, gives an average length equal to the entropy Hx. This gives the lower
bound in (1.31). In order to build a real code with integer lengths, we use

I"(z) = [—logy p(z)] - (1.34)

Such a code satisfies Kraft’s inequality, and its average length is less or equal
than Hy + 1, proving the upper bound in (1.31).

The second part of the theorem is a straightforward consequence of the first
one. []

The code we have constructed in the proof is often called a Shannon code.
For long strings (N > 1), it gets close to optimal. However it has no reason to be
optimal in general. For instance if only one p(z) is very small, it will code it on
a very long codeword, while shorter codewords are available. It is interesting to
know that, for a given source { X1, ..., Xy}, there exists an explicit construction
of the optimal code, called Huffman’s code.

At first sight, it may appear that Theorem 1.15, together with the construc-
tion of Shannon codes, completely solves the source coding problem. But this is
far from true, as the following arguments show.

{kraft}
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From a computational point of view, the encoding procedure described above
is unpractical. One can build the code once for all, and store it somewhere, but
this requires O(]X'|Y) memory. On the other hand, one could reconstruct the
code each time a string requires to be encoded, but this takes O(|X|V) time.
One can use the same code and be a bit smarter in the encoding procedure, but
this does not improve things dramatically.

From a practical point of view, the construction of a Shannon code requires
an accurate knowledge of the probabilistic law of the source. Suppose now you
want to compress the complete works of Shakespeare. It is exceedingly difficult
to construct a good model for the source ‘Shakespeare’. Even worse: when you
will finally have such a model, it will be of little use to compress Dante or Racine.

Happily, source coding has made tremendous progresses in both directions in
the last half century.

1.6 Data transmission

In the previous pages we considered the problem of encoding some information
in a string of symbols (we used bits, but any finite alphabet is equally good).
Suppose now we want to communicate this string. When the string is transmit-
ted, it may be corrupted by some noise, which depends on the physical device
used in the transmission. One can reduce this problem by adding redundancy to
the string. The redundancy is to be used to correct (some) transmission errors, in
the same way as redundancy in the English language can be used to correct some
of the typos in this book. This is the field of channel coding. A central result
in information theory, again due to Shannon’s pioneering work in 1948, relates
the level of redundancy to the maximal level of noise that can be tolerated for
error-free transmission. The entropy again plays a key role in this result. This
is not surprising in view of the symmetry between the two problems. In data
compression, one wants to reduce the redundancy of the data, and the entropy
gives a measure of the ultimate possible reduction. In data transmission, one
wants to add some well tailored redundancy to the data.

1.6.1 Communication channels

The typical flowchart of a communication system is shown in Fig. 1.3. It applies
to situations as diverse as communication between the earth and a satellite, the
cellular phones, or storage within the hard disk of your computer. Alice wants
to send a message m to Bob. Let us assume that m is a M bit sequence. This
message is first encoded into a longer one, a IV bit message denoted by z with
N > M, where the added bits will provide the redundancy used to correct for
transmission errors. The encoder is a map from {0, 1} to {0,1}". The encoded
message is sent through the communication channel. The output of the channel
is a message y. In a noiseless channel, one would simply have y = z. In a realistic
channel, y is in general a string of symbols different from z. Notice that y is
not even necessarily a string of bits. The channel will be described by the
transition probability Q(y|z). This is the probability that the received signal is
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Original Encoded Received Estimate of the
message message message original message
M bits N bits M bits

Fic. 1.3. Typical flowchart of a communication device.

y, conditional to the transmitted signal being z. Different physical channels will
be described by different Q(y|z) functions. The decoder takes the message y and
deduces from it an estimate m’ of the sent message.

Exercise 1.6 Consider the following example of a channel with insertions.
When a bit x is fed into the channel, either x or x0 are received with equal
probability 1/2. Suppose that you send the string 111110. The string 1111100
will be received with probability 2-1/64 (the same output can be produced by
an error either on the 5** or on the 6'" digit). Notice that the output of this
channel is a bit string which is always longer or equal to the transmitted one.

A simple code for this channel is easily constructed: use the string 100 for
each 0 in the original message and 1100 for each 1. Then for instance you have
the encoding

01101 — 100110011001001100. (1.35)

The reader is invited to define a decoding algorithm and verify its effectiveness.

Hereafter we shall consider memoryless channels. In this case, for any input
x = (x1,...,xN), the output message is a string of N letters, y = (y1, ..., yn ), from
an alphabet ) 3 y; (not necessarily binary). In memoryless channels, the noise
acts independently on each bit of the input. This means that the conditional
probability Q(y|x) factorizes:

N

Qylz) = [T Quilz) (1.36)

i=1

and the transition probability Q(y;|z;) is ¢ independent.

Example 1.16 Binary symmetric channel (BSC). The input x; and the
output y; are both in {0,1}. The channel is characterized by one number, the
probability p that an input bit is transmitted as the opposite bit. It is customary
to represent it by the diagram of Fig. 1.4.

{fig_channel}
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1-p

Fi1G. 1.4. Three communication channels. Left: the binary symmetric channel.
An error in the transmission, in which the output bit is the opposite of the input
one, occurs with probability p. Middle: the binary erasure channel. An error in
the transmission, signaled by the output e, occurs with probability p. Right: the
Z channel. An error occurs with probability p whenever a 1 is transmitted.

Example 1.17 Binary erasure channel (BEC). In this case some of the
input bits are erased instead of being corrupted: x; is still in {0,1}, but y;
now belongs to {0,1,e}, where e means erased. In the symmetric case, this
channel is described by a single number, the probability p that a bit is erased,
see Fig. 1.4.

Example 1.18 Z channel. In this case the output alphabet is again {0,1}.
Moreover, a 0 is always transmitted correctly, while a 1 becomes a 0 with
probability p. The name of this channel come from its graphical representation,
see Fig. 1.4.

A very important characteristics of a channel is the channel capacity C. It
is defined in terms of the mutual entropy Ixy of the variables X (the bit which
was sent) and Y (the signal which was received), through:

C = max Ixy = max Z p(z,y)log, pl()(x)’y) (1.37)

p(a) Pe) L Sy 2)p(y)

We recall that I measures the reduction on the uncertainty of z due to the
knowledge of y. The capacity C' gives a measure of how faithful a channel can
be: If the output of the channel is pure noise, x and y are uncorrelated and
C = 0. At the other extreme if y = f(x) is known for sure, given x, then
C = max(,(y); H(p) = 1 bit. The interest of the capacity will become clear in
section 1.6.3 with Shannon’s coding theorem which shows that C' characterizes
the amount of information which can be transmitted faithfully in a channel.

{fig_bsc}
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Example 1.19 Consider a binary symmetric channel with flip probability p.
Let us call ¢ the probability that the source sends x = 0, and 1 — ¢ the prob-
ability of = 1. It is easy to show that the mutual information in Eq. (1.37)
is maximized when zeros and ones are transmitted with equal probability (i.e.
when ¢ = 1/2).

Using the expression (1.37), we get, C' = 1 — H(p) bits, where H(p) is the
entropy of Bernouilli’s process with parameter p (plotted in Fig. 1.1).

Example 1.20 Consider now the binary erasure channel with error probabil-
ity p. The same argument as above applies. It is therefore easy to get C' = 1—p.

Exercise 1.7 Compute the capacity of the Z channel.

1.6.2  Error correcting codes

The only ingredient which we still need to specify in order to have a complete
definition of the channel coding problem, is the behavior of the information
source. We shall assume it to produce a sequence of uncorrelated unbiased bits.
This may seem at first a very crude model for any real information source.
Surprisingly, Shannon’s source-channel separation theorem assures that there is
indeed no loss of generality in treating this case.

The sequence of bits produced by the source is divided in blocks m1, mo, ms, . ..

of length M. The encoding is a mapping from {0,1}* > m to {0,1}", with
N > M. Each possible M-bit message m is mapped to a codeword z(m) which
is a point in the N-dimensional unit hypercube. The codeword length N is also
called the blocklength. There are 2™ codewords, and the set of all possible
codewords is called the codebook. When the message is transmitted, the code-
word z is corrupted to y € YN with probability Q(y|z) = [T~ Q(y:|x:). The
output alphabet ) depends on the channel. The decoding is a mapping from
YN to {0,1}M which takes the received message y € YV and maps it to one of
the possible original messages m’ = d(y) € {0, 1}.

An error correcting code is defined by the set of two functions, the encod-
ing z(m) and the decoding d(y). The ratio

M
R= N (1.38)
of the original number of bits to the transmitted number of bits is called the rate
of the code. The rate is a measure of the redundancy of the code. The smaller
the rate, the more redundancy is added to the code, and the more errors one
should be able to correct.
The block error probability of a code on the input message m, denoted
by P (m), is given by the probability that the decoded messages differs from the
one which was sent:

{sec:ECC}
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Pp(m) =Y Q(ylz(m)) I(d(y) # m) . (1.39)

Knowing thee probability for each possible transmitted message is an exceedingly
detailed characterization of the code performances. One can therefore introduce
a maximal block error probability as

PR = Py (m). 1.40
BU= mex B(m) (1.40)

This corresponds to characterizing the code by its ‘worst case’ performances.
A more optimistic point of view consists in averaging over the input messages.
Since we assumed all of them to be equiprobable, we introduce the average
block error probability as

PE = oy > Pg(m). (1.41)

me{0,1}M

Since this is a very common figure of merit for error correcting codes, we shall call
it block error probability and use the symbol Py without further specification
hereafter.
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Example 1.21 Repetition code. Consider a BSC which transmits a wrong
bit with probability p. A simple code consists in repeating k times each bit,
with k& odd. Formally we have M =1, N = k and

z(0) = 000...00, (1.42)
—_—
k
z(1) =111...11 (1.43)
—_—
k
For instance with k& = 3, the original stream 0110001 is encoded as

00011111100000 0000111. A possible decoder consists in parsing the received
sequence in groups of k bits, and finding the message m’ from a majority
rule among the k& bits. In our example with & = 3, if the received group
of three bits is 111 or 110 or any permutation, the corresponding bit is as-
signed to 1, otherwise it is assigned to 0. For instance if the channel output is
000101111011000010111, the decoding gives 0111001.

This k = 3 repetition code has rate R = M/N = 1/3. It is a simple exercise
to see that the block error probability is Pg = p*® + 3p?(1 — p) independently
of the information bit.

Clearly the k = 3 repetition code is able to correct mistakes induced from
the transmission only when there is at most one mistake per group of three
bits. Therefore the block error probability stays finite at any nonzero value of
the noise. In order to improve the performances of these codes, k must increase.
The error probability for a general £ is

k
Pp= Y (f)(l—p)k”p” (1.44)
r=k/2]

Notice that for any finite k, p > 0 it stays finite. In order to have Py — 0
we must consider k& — oo. Since the rate is R = 1/k, the price to pay for a
vanishing block error probability is a vanishing communication rate!

Happily enough much better codes exist as we will see below.

1.6.3 The channel coding theorem

Consider a communication device in which the channel capacity (1.37) is C. In
his seminal 1948 paper, Shannon proved the following theorem.

Theorem 1.22 For every rate R < C, there exists a sequence of codes {Cn},
of blocklength N, rate Ry, and block error probability P n, such that Ry — R
and Pg ny — 0 as N — oo. Conversely, if for a sequence of codes {Cn}, one has
Rn — R and P,y — 0 as N — oo, then R < C.

In practice, for long messages (i.e. large N), reliable communication is possible
if and only if the communication rate stays below capacity. We shall not give the

{sec:channeltheorem}

{theorem:Shannon_channel}
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proof here but differ it to Chapters 6 and ???. Here we keep to some qualitative
comments and provide the intuitive idea underlying this result.

First of all, the result is rather surprising when one meets it for the first
time. As we saw on the example of repetition codes above, simple minded codes
typically have a finite error probability, for any non-vanishing noise strength.
Shannon’s theorem establishes that it is possible to achieve zero error probability,
while keeping the communication rate finite.

One can get an intuitive understanding of the role of the capacity through a
qualitative reasoning, which uses the fact that a random variable with entropy
H ‘typically’ takes 2 values. For a given codeword z(m) € {0,1}", the channel
output y is a random variable with an entropy Hy,, = NH,,. There exist of
order 2V ful= such outputs. For a perfect decoding, one needs a decoding function
d(y) that maps each of them to the original message m. Globally, the typical
number of possible outputs is 2V Hv therefore one can send at most 2N (Hv—Hyjz)
codewords. In order to have zero maximal error probability, one needs to be able
to send all the 2 = 2N% codewords. This is possible only if R < H,-H,,<C.

Notes

There are many textbooks introducing to probability and to information theory.
A standard probability textbook is the one of Feller (Feller, 1968). The original
Shannon paper (Shannon, 1948) is universally recognized as the foundation of
information theory. A very nice modern introduction to the subject is the book
by Cover and Thomas (Cover and Thomas, 1991). The reader may find there a
description of Huffman codes which did not treat in the present Chapter, as well
as more advanced topics in source coding.

We did not show that the six properties listed in Sec. 1.2 provide in fact an
alternative (axiomatic) definition of entropy. The interested reader is referred to
(Csiszar and Korner, 1981). An advanced information theory book with much
space devoted to coding theory is (Gallager, 1968). The recent (and very rich)
book by MacKay (MacKay, 2002) discusses the relations with statistical inference
and machine learning.

The information-theoretic definition of entropy has been used in many con-
texts. It can be taken as a founding concept in statistical mechanics. Such an
approach is discussed in (Balian, 1992).
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STATISTICAL PHYSICS AND PROBABILITY THEORY

One of the greatest achievement of science has been to realize that matter is
made out of a small number of simple elementary components. This result seems
to be in striking contrast with our experience. Both at a simply perceptual level
and with more refined scientific experience, we come in touch with an ever-
growing variety of states of the matter with disparate properties. The ambitious
purpose of statistical physics (and, more generally, of a large branch of condensed
matter physics) is to understand this variety. It aims at explaining how complex
behaviors can emerge when large numbers of identical elementary components
are allowed to interact.

We have, for instance, experience of water in three different states (solid,
liquid and gaseous). Water molecules and their interactions do not change when
passing from one state to the other. Understanding how the same interactions
can result in qualitatively different macroscopic states, and what rules the change
of state, is a central topic of statistical physics.

The foundations of statistical physics rely on two important steps. The first
one consists in passing form the deterministic laws of physics, like Newton’s law,
to a probabilistic description. The idea is that a precise knowledge of the motion
of each molecule in a macroscopic system is inessential to the understanding of
the system as a whole: instead, one can postulate that the microscopic dynam-
ics, because of its chaoticity, allows for a purely probabilistic description. The
detailed justification of this basic step has been achieved only in a small num-
ber of concrete cases. Here we shall bypass any attempt at such a justification:
we directly adopt a purely probabilistic point of view, as a basic postulate of
statistical physics.

The second step starts from the probabilistic description and recovers deter-
minism at a macroscopic level by some sort of law of large numbers. We all know
that water boils at 100° Celsius (at atmospheric pressure) or that its density
(at 25° Celsius and atmospheric pressures) is 1gr/cm®. The regularity of these
phenomena is not related to the deterministic laws which rule the motions of
water molecule. It is instead the consequence of the fact that, because of the
large number of particles involved in any macroscopic system, the fluctuations
are “averaged out”. We shall discuss this kind of phenomena in Sec. 2.4 and,
more mathematically, in Ch. 4.

The purpose of this Chapter is to introduce the most basic concepts of this
discipline, for an audience of non-physicists with a mathematical background.
We adopt a somewhat restrictive point of view, which keeps to classical (as
opposed to quantum) statistical physics, and basically describes it as a branch
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of probability theory (Secs. 2.1 to 2.3). In Section 2.4 we focus on large systems,
and stress that the statistical physics approach becomes particularly meaningful
in this regime. Theoretical statistical physics often deal with highly idealized
mathematical models of real materials. The most interesting (and challenging)
task is in fact to understand the qualitative behavior of such systems. With this
aim, one can discard any “irrelevant” microscopic detail from the mathematical
description of the model. This modelization procedure is exemplified on the case
study of ferromagnetism through the introduction of the Ising model in Sec. 2.5.
It is fair to say that the theoretical understanding of Ising ferromagnets is quite
advanced. The situation is by far more challenging when Ising spin glasses are
considered. Section 2.6 presents a rapid preview of this fascinating subject.

2.1 The Boltzmann distribution
The basic ingredients for a probabilistic description of a physical system are:

e A space of configurations X. One should think of x € X as giving
a complete microscopic determination of the state of the system under
consideration. We are not interested in defining the most general mathe-
matical structure for X such that a statistical physics formalism can be
constructed. Throughout this book we will in fact consider only two very
simple types of configuration spaces: () finite sets, and (i) smooth, com-
pact, finite-dimensional manifolds. If the system contains IV ‘particles’, the
configuration space is a product space:

Av=Xx--xX. (2.1)
—_——
N
The configuration of the system has the form x = (z1,...,2zy). Each co-

ordinate x; € X is meant to represent the state (position, orientation, etc)
of one of the particles.

But for a few examples, we shall focus on configuration spaces of type ().
We will therefore adopt a discrete-space notation for X'. The generaliza-
tion to continuous configuration spaces is in most cases intuitively clear
(although it may present some technical difficulties).

e A set of observables, which are real-valued functions on the configuration
space O : x — O(z). If X is a manifold, we shall limit ourselves to observ-
ables which are smooth functions of the configuration z. Observables are
physical quantities which can be measured through an experiment (at least
in principle).

e Among all the observables, a special role is played by the energy function
E(x). When the system is a N particle system, the energy function gen-
erally takes the form of sums of terms involving few particles. An energy
function of the form:

E(x) =) Ei(x) (2.2)
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corresponds to a non-interacting system. An energy of the form

E(@)= Y Ei_i(Tiy,.0r i) (2.3)

T1,eylk

is called a k-body interaction. In general, the energy will contain some
pieces involving k-body interactions, with & € {1,2,..., K}. An important
feature of real physical systems is that K is never a large number (usually
K =2 or 3), even when the number of particles N is very large. The same
property holds for all measurable observables. However, for the general
mathematical formulation which we will use here, the energy can be any
real valued function on X.

Once the configuration space X and the energy function are fixed, the prob-
ability pg(z) for the system to be found in the configuration z is given by the
Boltzmann distribution:

pole) = o e P 5 2(8) = 3 e, (2.4)

reX

The real parameter T' = 1/ is the temperature (and one refers to 8 as the
inverse temperature)®. The normalization constant Z(3) is called the partition
function. Notice that Eq. (2.4) defines indeed the density of the Boltzmann
distribution with respect to some reference measure. The reference measure is
usually the counting measure if X is discrete or the Lebesgue measure if X
is continuous. It is customary to denote the expectation value with respect to
Boltzmann’s measure by brackets: the expectation value (O(x)) of an observable
O(x), also called its Boltzmann average is given by:

©) = ps(x)0() = % 3 e PEDO() | (2.5)
reX zeX

3Tn most books of statistical physics, the temperature is defined as T = 1/(kg3) where
kp is a constant called Boltzmann’s constant, whose value is determined by historical reasons.
Here we adopt the simple choice kg = 1 which amounts to a special choice of the temperature
scale
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Example 2.1 One intrinsic property of elementary particles is their spin. For
‘spin 1/2’ particles, the spin o takes only two values: 0 = £1. A localized spin
1/2 particle, in which the only degree of freedom is the spin, is described by
X = {+1, -1}, and is called an Ising spin. The energy of the spin in the state
o € X in a magnetic field B is

E(o)=—-Bo (2.6)

Boltzmann’s probability of finding the spin in the state o is

1
pa(0) = == e PP Z(B) = e PB 4 PB = 2cosh(8B). (2.7)
Z(P)
The average value of the spin, called the magnetization is
(o) = Z pg(o) o = tanh(8B) . (2.8)
oe{l,-1}

At high temperatures, T' > |B|, the magnetization is small. At low temper-
atures, the magnetization its close to its maximal value, (o) = 1 if B > 0.
Section 2.5 will discuss the behaviors of many Ising spins, with some more
complicated energy functions.

Example 2.2 Some spin variables can have a larger space of possible values.
For instance a Potts spin with ¢ states takes values in X = {1,2,...,¢}. In
presence of a magnetic field of intensity h pointing in direction r € {1, ..,q},
the energy of the Potts spin is

E(o) =—Bdo - (2.9)
In this case, the average value of the spin in the direction of the field is

exp(8B)

=p(B) + (1) ' (2.10)

<5a,r> =

{eq:Ising_energy_1spin}

{eq:boltz_spin}

{eq:mag_tanh_beta_B}
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Example 2.3 Let us consider a single water molecule inside a closed container,
for instance, inside a bottle. A water molecule HyO is already a complicated
object. In a first approximation, we can neglect its structure and model the
molecule as a point inside the bottle. The space of configurations reduces then
to:

X = BOTTLE C R?, (2.11)

where we denoted by BOTTLE the region of R? delimited by the container. Notice
that this description is not very accurate at a microscopic level.

The description of the precise form of the bottle can be quite complex. On
the other hand, it is a good approximation to assume that all positions of the
molecule are equiprobable: the energy is independent of the particle’s position
x € BOTTLE. One has then:

p(z) = = Z =|X|, (2.12)

and the Boltzmann average of the particle’s position, (x), is the barycentre of
the bottle.
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Example 2.4 In assuming that all the configurations of the previous example
are equiprobable, we neglected the effect of gravity on the water molecule. In
the presence of gravity our water molecule at position x has an energy:

E(xz) = whe(z), (2.13)

where he(x) is the height corresponding to the position = and w is a positive
constant, determined by terrestrial attraction, which is proportional to the
mass of the molecule. Given two positions  and y in the bottle, the ratio of
the probabilities to find the particle at these positions is

b gg — exp{—Bulbe() — he()]} (2.14)

For a water molecule at a room temperature of 20 degrees Celsius (7' = 293
degrees Kelvin), one has fw ~ 7 x 10~ m~!. Given a point = at the bottom of
the bottle and y at a height of 20 cm, the probability to find a water molecule
‘near’ x is approximatively 1.000014 times larger than the probability to find it
‘near’ y. For a tobacco-mosaic virus, which is about 2 x 10° times heavier than
a water molecule, the ratio is pg(z)/pg(y) &~ 1.4 x 10'2 which is very large. For
a grain of sand the ratio is so large that one never observes it floating around y.
Notice that, while these ratios of probability densities are easy to compute, the
partition function and therefore the absolute values of the probability densities
can be much more complicated to estimate, depending on the shape of the
bottle.

Example 2.5 In many important cases, we are given the space of configura-
tions X and a stochastic dynamics defined on it. The most interesting probabil-
ity distribution for such a system is the stationary state ps(z) (we assume that
it is unique). For sake of simplicity, we can consider a finite space X and a dis-
crete time Markov chain with transition probabilities {w(z — y)} (in Chapter
4 we shall recall some basic definitions concerning Markov chains). It happens
sometimes that the transition rates satisfy, for any couple of configurations
x,y € X, the relation

f@w(z —y) = flywly — z), (2.15)

for some positive function f(z). As we shall see in Chapter 4, when this condi-
tion, called the detailed balance, is satisfied (together with a couple of other

technical conditions), the stationary state has the Boltzmann form (2.4) with
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Exercise 2.1 As a particular realization of the above example, consider an
8 x 8 chessboard and a special piece sitting on it. At any time step the piece
will stay still (with probability 1/2) or move randomly to one of the neighboring
positions (with probability 1/2). Does this process satisfy the condition (2.15)?
Which positions on the chessboard have lower (higher) “energy”? Compute the
partition function.

From a purely probabilistic point of view, one can wonder why one bothers
to decompose the distribution ps(x) into the two factors e "##(@) and 1/Z(). Of
course the motivations for writing the Boltzmann factor e ##(®) in exponential
form come essentially from physics, where one knows (either exactly or within
some level of approximation) the form of the energy. This also justifies the use
of the inverse temperature § (after all, one could always redefine the energy
function in such a way to set g = 1).

However, it is important to stress that, even if we adopt a mathematical view-
point, and if we are interested in a particular distribution p(z) which corresponds
to a particular value of the temperature, it is often illuminating to embed it into
a one-parameter family as is done in the Boltzmann expression (2.4). Indeed,
(2.4) interpolates smoothly between several interesting situations. As § — 0
(high-temperature limit), one recovers the flat probability distribution

1
I =—. 2.16
Jim (@) = T (2.16)

Both the probabilities pg(x) and the observables expectation values (O(z)) can
be expressed as convergent Taylor expansions around 3 = 0. For small § the
Boltzmann distribution can be thought as a “softening” of the original one.

In the limit 8 — oo (low-temperature limit), the Boltzmann distribution
concentrates over the global maxima of the original one. More precisely, one says
xo € X to be a ground state if E(x) > E(xg) for any x € X. The minimum
value of the energy Ey = E(x) is called the ground state energy. We will
denote the set of ground states as Xj. It is elementary to show that

1
lim )= —I(x € Ay), 2.17
Jim ps(x) = (g Lw € X0 (247)
where [(z € Xy) =1 if x € Ap and I(z € Xp) = 0 otherwise. The above behavior
is summarized in physicists jargon by saying that, at low temperature, “low
energy configurations dominate” the behavior of the system.

2.2 Thermodynamic potentials

Several properties of the Boltzmann distribution (2.4) are conveniently summa-
rized through the thermodynamic potentials. These are functions of the temper-
ature 1/0 and of the various parameters defining the energy FE(z). The most
important thermodynamic potential is the free energy:

{se:Potentials}
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~ log 2(9). (2.18)

where Z(3) is the partition function already defined in Eq. (2.4). The factor —1/3
in Eq. (2.18) is due essentially to historical reasons. In calculations it is sometimes
more convenient to use the free entropy? ®(3) = —3F(3) = log Z(3).

Two more thermodynamic potentials are derived from the free energy: the
internal energy U(3) and the canonical entropy S(():

9 OF(8)
= —(BF S(8) = p—. 2.19
FOE@). 86 = (219)
By direct computation one obtains the following identities concerning the po-
tentials defined so far:

F(B)

U(p)

F(B) = U(B) - %sm - f%w), (2.20)
U(8) = (E)). (2.21)
S(8) = — 3 ps() ogps(a), (2.22)
62 2 2
-5 BF®) = (B@?) — (B@). (2.23)

Equation (2.22) can be rephrased by saying that the canonical entropy is the
Shannon entropy of the Boltzmann distribution, as we defined it in Ch. 1. It
implies that S(3) > 0. Equation (2.23) implies that the free entropy is a con-
vex function of the temperature. Finally, Eq. (2.21) justifies the name “internal
energy” for U([3).

In order to have some intuition of the content of these definitions, let us
reconsider the high- and low-temperature limits already treated in the previous
Section. In the high-temperature limit, § — 0, one finds

F(g) = —% log | X] + (E(x))o + ©(F)., (2.24)
U(B) = (E(z))o +O(B), (2.25)
S(B) = log | X[+ ©(B). (2.26)

(The symbol © means ’of the order of’; the precise definition is given in Appendix
). The interpretation of these formulae is straightforward. At high temperature
the system can be found in any possible configuration with similar probabilities
(the probabilities being exactly equal when S = 0). The entropy counts the
number of possible configurations. The internal energy is just the average value
of the energy over the configurations with flat probability distribution.

4Unlike the other potentials, there is no universally accepted name for ®(8); because this
potential is very useful, we adopt for it the name ‘free entropy’
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T
Fic. 2.1. Thermodynamic potentials for a two-level system with ¢; = —1,

€2 = +1 as a function of the temperature 7' = 1/4.

While the high temperature expansions (2.24)—(2.26) have the same form
both for a discrete and a continuous configuration space X', in the low tempera-
ture case, we must be more careful. If X' is finite we can meaningfully define the
energy gap AFE > 0 as follows (recall that we denoted by Ey the ground-state

energy)

AE =min{E(y) — Ey : y € X\X}. (2.27)

With this definition we get

F(8) = Fo - 5 log| ] + (e ™2F), (2.28)
E(f) = Eq + (e 72F), (2.29)
S(B) = log|Xy| + O(e PAF). (2.30)

The interpretation is that, at low temperature, the system is found with equal
probability in any of the ground states, and nowhere else. Once again the entropy
counts the number of available configurations and the internal energy is the
average of their energies (which coincide with the ground state).

{fig:twolevel}
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Exercise 2.2 A two level system. This is the simplest non-trivial example:
X = {1,2}, E(1) = e, E(2) = €. Without loss of generality we assume
€1 < €. It can be used as a mathematical model for many physical systems,
like the spin 1/2 particle discussed above.

Derive the following results for the thermodynamic potentials (A = ez — €;
is the energy gap):

F(B)=ea — %IOg(l +e %), (2.31)
e‘ﬂA
UB) =1+ 1o=pm A (2.32)
e BA A
5(6) = mﬂA + log(1 +e~P2). (2.33)

The behavior of these functions is presented in Fig. 2.1. The reader can work
out the asymptotics, and check the general high and low temperature behaviors
given above.



THERMODYNAMIC POTENTIALS 31

Exercise 2.3 We come back to the example of the previous section: one water
molecule, modeled as a point, in a bottle. Moreover, we consider the case of a
cylindric bottle of base B C R? (surface |B|) and height d.

Using the energy function (2.13), derive the following explicit expressions
for the thermodynamic potentials:

_ eBuw
F(B) = —% log |B| — %log 1;—wd : (2.34)
1 wd
Up) = B Pwd_1 (2.35)
d d
S(B) =log|Bd| +1 — eﬂf%l — log (%) : (2.36)

Notice that the internal energy formula can be used to compute the average
height of the molecule (he(x)) = U(8)/w. This is a consequence of the defini-
tion of the energy, cf. Eq. (2.13) and of Eq. (2.21). Plugging in the correct w
constant, one may find that the average height descends below 49.99% of the
bottle height d = 20 cm only when the temperature is below 3.2° K.

Using the expressions (2.34)—(2.36) one obtains the low-temperature expan-
sions for the same quantities:

_ L (1Bl o~ fwd
F(B) = ﬂl g (ﬂw) + 6( ), (2.37)
U(p) = % + O(e Pl (2.38)
S(B) = log ('%) + Qe Pud), (2.39)

In this case X is continuous, and the energy has no gap. But these results
can be understood as follows: at low temperature the molecule is confined to
a layer of height of order 1/(fSw) above the bottom of the bottle. It occupies
therefore a volume of size |B|/(Bw). Its entropy is approximatively given by
the logarithm of such a volume.



{se:free_energy}
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Exercise 2.4 Let us reconsider the above example and assume the bottle to
have a different shape, for instance a sphere of radius R. In this case it is
difficult to compute explicit expressions for the thermodynamic potentials but
one can easily compute the low-temperature expansions. For the entropy one
gets at large (:

7T€2
S(8) = log (ZQ—wﬂ +0(1/8). (2.40)

The reader should try understand the difference between this result and Eq.
(2.39) and provide an intuitive explanation as in the previous example. Physi-
cists say that the low-temperature thermodynamic potentials reveal the “low-
energy structure” of the system.

2.3 The fluctuation dissipation relations

It often happens that the energy function depends smoothly upon some real
parameters. They can be related to the experimental conditions under which
a physical system is studied, or to some fundamental physical quantity. For
instance, the energy of a water molecule in the gravitational field, cf. Eq. (2.13),
depends upon the weight w of the molecule itself. Although this is a constant
number in the physical world, it is useful, in the theoretical treatment, to consider
it as an adjustable parameter.

It is therefore interesting to consider an energy function F(z) which depends
smoothly upon some parameter A and admit the following Taylor expansion in
the neighborhood of A = A\g:

() + O((X = X0)?).- (2.41)

Ao

Ek(x) = E)\O(Z‘) + ()\ — )\0) %

The dependence of the free energy and of other thermodynamic potentials
upon A in the neighborhood of A is easily related to the explicit dependence of
the energy function itself. Let us consider the partition function, and expand it
to first order in A — Ag:

Z\) =) exp (ﬂ

B0 O

oE
Exg(@) + (= o) =5

() + O((A = /\0)2)] )

Ao

= Z(Mo)

Yo+ O((A = )\0)2)] (2.42)
Ao

where we denoted by ()¢ the expectation with respect to the Boltzmann distri-
bution at A = \g.
This shows that the free entropy behaves as:
0P oF
—| =-8(=—
o\ 2NN

)o (2.43)
Ao 0



THE THERMODYNAMIC LIMIT 33

One can also consider the A dependence of the expectation value of a generic
observable A(x). Using again the Taylor expansion one finds that

A(A)x OF

o |, = PR,

Yo (2.44)

0

where we denoted by (A; B) the connected correlation function: (4; B) =
(AB) — (A)(B). A particular example of this relation was given in Eq. (2.23).

The result (2.44) has important practical consequences and many general-
izations. Imagine you have an experimental apparatus that allows you to tune
some parameter A (for instance the pressure of a gas, or the magnetic or electric
field acting on some material) and to monitor the value of the observable A(z)
(the volume of the gas, the polarization or magnetization of the material). The
quantity on the left-hand side of Eq. (2.44) is the response of the system to an
infinitesimal variation of the tunable parameter. On the right-hand side, we find
some correlation function within the “unperturbed” system. One possible appli-
cation is to measure correlations within a system by monitoring its response to
an external perturbation. Such a relation between a correlation and a response
is called a fluctuation dissipation relation.

2.4 The thermodynamic limit

The main purpose of statistical physics is to understand the macroscopic be-
havior of a large number, N > 1, of simple components (atoms, molecules, etc)
when they are brought together.

To be concrete, let us consider a few drops of water in a bottle. A configuration
of the system is given by the positions and orientations of all the HoO molecules
inside the bottle. In this case X is the set of positions and orientations of a single
molecule, and N is typically of order 10?® (more precisely 18 gr of water contain
approximatively 6102 molecules). The sheer magnitude of such a number leads
physicists to focus on the N — oo limit, also called the thermodynamic limit.

As shown by the examples below, for large N the thermodynamic potentials
are often proportional to N. One is thus lead to introduce the intensive ther-
modynamic potentials as follows. Let us denote by Fx(5), Un(53), Sy (8) the
free energy, internal energy and canonical entropy for a system with NV ‘particles’.
The free energy density is defined by

7(8) = lim Fx(3)/N, (2.45)

if the limit exists °. One defines analogously the energy density () and the
entropy density s(3).

The free energy Fn(0), is, quite generally, an analytic function of § in a
neighborhood of the real § axis. This is a consequence of the fact that Z(J3)

5The limit usually exist, at least if the forces between particles decrease fast enough at large
inter-particle distances

{se:Thermodynamic}
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is analytic throughout the entire 8 plane, and strictly positive for real §’s. A
question of great interest is whether analyticity is preserved in the thermody-
namic limit (2.45), under the assumption that the limit exists. Whenever the free
energy density f(8) is non-analytic, one says that a phase transition occurs.
Since the free entropy density ¢(3) = —(f(3) is convex, the free energy density
is necessarily continuous whenever it exists.

In the simplest cases the non-analyticities occur at isolated points. Let 3. be
such a point. Two particular type of singularities occur frequently:

e The free energy density is continuous, but its derivative with respect to
[ is discontinuous at (.. This singularity is named a first order phase
transition.

e The free energy and its first derivative are continuous, but the second
derivative is discontinuous at (.. This is called a second order phase
transition.

Higher order phase transitions can be defined as well on the same line.

Apart from being interesting mathematical phenomena, phase transitions
correspond to qualitative changes in the underlying physical system. For instance
the transition from water to vapor at 100°C at normal atmospheric pressure is
modeled mathematically as a first order phase transition in the above sense. A
great part of this book will be devoted to the study of phase transitions in many
different systems, where the interacting ‘particles’ can be very diverse objects
like information bits or occupation numbers on the vertices of a graph.

When N grows, the volume of the configuration space increases exponentially:
|Xn| = |X|V. Of course, not all the configurations are equally important under
the Boltzmann distribution: lowest energy configurations have greater proba-
bility. What is important is therefore the number of configurations at a given
energy. This information is encoded in the energy spectrum of the system:

Na(E)=Qa(E)|];  Qa(B)={r € Xy : E<E(z)<E+A}. (2.46)

In many systems of interest, the energy spectrum diverges exponentially as N —
00, if the energy is scaled linearly with N. More precisely, there exist a function
s(e) such that, given two fixed numbers e and § > 0,

1
lim —log Nys(Ne) = sup s(e). (2.47)
N—oco N e’ €le,e+6]

The function s(e) is called microcanonical entropy density. The statement
(2.47) is often rewritten in the more compact form:

Na(E) =x exp [Ns (ff)] . (2.48)

The notation Ay =5 By is used throughout the book to denote that two quan-
tities Ax and By, which normally behave exponentially in N, are equal to lead-
ing exponential order when N is large, meaning: limy .o (1/N)log(Anx/Bn) =
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0. We often use = without index when there is no ambiguity on what the large
variable N is.

The microcanonical entropy density s(e) conveys a great amount of infor-
mation about the system. Furthermore it is directly related to the intensive
thermodynamic potentials through a fundamental relation:

Proposition 2.6 If the microcanonical entropy density (2.47) exists for any e
and if the limit in (2.47) uniform in e, then the free entropy density (2.45) exists
and is given by:

6(8) = max[s(e) - fe] . (2.49)

If the mazimum of the s(e) — fe is unique, then the internal energy density equals
arg max/[s(e) — Qe].

Proof: For a rigorous proof of this statement, we refer the reader to (Galavotti,
1999; Ruelle, 1999). The basic idea is to write the partition function as follows

Zn(B) = Z Na(kA)e P2 = /de exp{Ns(e) — NGe}, (2.50)

k=—oc0

and to evaluate the last integral by saddle point. [J.

Example 2.7 Let us consider N identical two-level systems: Xy = X' x---xX X,
with X = {1,2}. We take the energy to be the sum of single-systems energies:
E(x) = Egingle(%1) + - - - + Egingle (), With z; € X'. As in the previous Section
we set Fgingle(1) = €1, and FEgingle(2) = €2 > €1 and A = €3 — €.

The energy spectrum of this model is quite simple. For any energy F =
Ney +nA, there are (JZ) configurations « with E(x) = E. Therefore, using the
definition (2.47), we get

s(e) =M (e _Aq) . (2.51)

Equation (2.49) can now be used to get
1
B

which agrees with the result obtained directly from the definition (2.18).

f(B) = e — = log(1+e P4, (2.52)

The great attention paid by physicists to the thermodynamic limit is ex-
tremely well justified by the huge number of degrees of freedom involved in a
macroscopic piece of matter. Let us stress that the interest of the thermodynamic
limit is more general than these huge numbers might suggest. First of all, it often
happens that fairly small systems are well approximated by the thermodynamic
limit. This is extremely important for numerical simulations of physical systems:

{prop:micro_cano}
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Fic. 2.2. A configuration of a two dimensional Ising model with L = 5. There
is an Ising spin o; on each vertex ¢, shown by an arrow pointing up if o; = 41,
pointing down if o; = —1. The energy (2.53) is given by the sum of two types of
contributions: (i) A term —o;0; for each edge (ij) of the graph, such that the
energy is minimized when the two neighboring spins o; and o; point in the same
direction; (i) A term —Bo; for each site 4, due to the coupling to an external
{fig:ising_def} magnetic field. The configuration depicted here has energy —8 + 9B

one cannot of course simulate 10?3 molecules on a computer! Even the cases in
which the thermodynamic limit is not a good approximation are often fruitfully
analyzed as wiolations of this limit. Finally, the insight gained in analyzing the
N — oo limit is always crucial in understanding moderate-size systems.

{se:ising} 2.5 Ferromagnets and Ising models

Magnetic materials contain molecules with a magnetic moment, a three-dimensional
vector which tends to align with the magnetic field felt by the molecule. More-
over, the magnetic moments of two distinct molecules interact with each other.
Quantum mechanics plays an important role in magnetism. Because of its effects,
the space of possible configurations of a magnetic moment becomes discrete. It
is also at the origin of the so-called exchange interaction between magnetic mo-
ments. In many materials, the effect of the exchange interactions are such that
the energy is lower when two moments align. While the behavior of a single
magnetic moment in an external field is qualitatively simple, when we consider a
bunch of interacting moments, the problem is much richer, and exhibits remark-
able collective phenomena.

A simple mathematical model for such materials is the Ising model. It de-
scribes the magnetic moments by Ising spins localized at the vertices of a certain
region of the d-dimensional cubic lattice. To keep things simple, let us consider
a region L which is a cube of side L: L = {1,..., L}%. On each site i € L there
is an Ising spin o; € {+1, —1}.
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A configuration ¢ = (o7...0y) of the system is given by assigning the
values of all the spins in the system. Therefore the space of configurations
Xy = {+1,—1}"* has the form (2.1) with X = {+1,—1} and N = L%

The definition of ferromagnetic Ising models is completed by the definition
of the energy function. A configuration ¢ has an energy:

E(o) =— ZUin - BZUZ' , (2.53)

(i5) ieL

where the sum over (ij) runs over all the (unordered) couples of sites i,7 € L
which are nearest neighbors. The real number B measures the applied external
magnetic field.

Determining the free energy density f(3) in the thermodynamic limit for
this model is a non-trivial task. The model was invented by Wilhem Lenz in the
early twenties, who assigned the task of analyzing it to his student Ernst Ising.
In his dissertation thesis (1924) Ising solved the d = 1 case and showed the
absence of phase transitions. In 1948, Lars Onsager brilliantly solved the d = 2
case, exhibiting the first soluble “finite-dimensional” model with a second order
phase transition. In higher dimensions the problem is unsolved although many
important features of the solution are well understood.

Before embarking in any calculation, let us discuss what we expect to be
the qualitative properties of this model. Two limiting cases are easily under-
stood. At infinite temperature, 5 = 0, the energy (2.53) no longer matters and
the Boltzmann distribution weights all the configurations with the same factor
2=N. We have therefore an assembly of completely independent spins. At zero
temperature, § — oo, the Boltzmann distribution concentrates onto the ground
state(s). If there is no magnetic field, h = 0, there are two degenerate ground
states: the configurations ¢(*) with all the spins pointing up, o; = +1, and the
configuration ¢(~) with all the spins pointing down, o; = —1. If the magnetic
field is set to some non-zero value, one of the two configuration dominates: ¢(*)
for h > 0 and o) for h < 0.

Notice that the reaction of the system to the external magnetic field h is
quite different in the two cases. To see this fact, define a “rescaled” magnetic
field x = Sh and take the limits 8 — 0 or § — oo keeping « fixed. The expected
value of any spin in L, in the two limits, is:

_ Jtanh(z) for §—0
{oi) = {tanh(Nx) for § — o0’ (2.54)

Each spin reacts independently for  — 0. On the contrary, they react as a whole
as 8 — oo: one says that the response is cooperative.

A useful quantity for describing the response of the system to the external
field is the average magnetization:

My (3,B) = %Z(UJ . (2.55)

i€l
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Because of the symmetry between the up and down directions, My (8, B) is an
odd function of B. In particular My (3,0) = 0. A cooperative response can be
evidenced by considering the spontaneous magnetization

M ()= Jlim lim My(3,B). (2.56)

It is important to understand that a non-zero spontaneous magnetization can
appear only in an infinite system: the order of the limits in Eq. (2.56) is crucial.
Our analysis so far has shown that the spontaneous magnetization exists at § =
00: My (00) = 1. On the other hand M, (0) = 0. It can be shown that actually
the spontaneous magnetization M () is always zero in a high temperature phase
B < Bc(d) (such a phase is called paramagnetic). In one dimension (d = 1), we
will show below that §.(1) = co. The spontaneous magnetization is always zero,
except at zero temperature (8 = 00): one speaks of a zero temperature phase
transition. In dimensions d > 2, 3.(d) is finite, and M () becomes non zero in
the so called ferromagnetic phase 3 > [.: a phase transition takes place at
8 = Bc. The temperature T, = 1/0, is called the critical temperature. In the
following we shall discuss the d = 1 case, and a variant of the model, called the
Curie Weiss model, where each spin interacts with all the other spins: this is a
solvable model which exhibits a finite temperature phase transition.
ec:OneDimensionallsing} 2.5.1 The one-dimensional case

The d = 1 case has the advantage of being simple to solve. We want to com-

pute the partition function (2.4) for a system of N spins with energy E(o) =

— SN oo — BY 0;. We will use a method called the transfer matrix

method, which belongs to the general ‘dynamic programming’ strategy familiar

to computer scientists.

We introduce the partial partition function where the configurations of all

spins o1,..., 0, have been summed over, at fixed op1:
P P
2p(B, B, 0pt1) = Z exp /6’207;014_1 + ﬂBZO’i . (2.57)
T1,..,0p 1=1 1=1

The partition function (2.4) is given by Zn (3, B) = >_
Obviously z, satisfies the recursion relation

zn-1(8, B, UN) eXP(ﬂBUN)

ON

2p(B, B,0p41) = Z T(op+1,0p)2p-1(8, B, 0p) (2.58)
op==%1

where we define the so-called transfer matrix T'(o,0’) = exp oo’ + 3Bd’],

which is a 2 x 2 matrix:
oP+BB ,—B-0B
T: e_ﬁ"l‘BB eﬁ_ﬁB (259)
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Introducing the two component vectors v, = (ei}[()l()(—ﬂﬁBBg)> and YR = (1)7

and the standard scalar product between such vectors (a,b) = a1b; + agbs, the
partition function can be written in matrix form:

Zn(B,B) = (Y, TN "4r) . (2.60)

Let us call A1, Ao the eigenvalues of T, and 1)1, 95 the corresponding eigenvectors.
Since 11,19 can be chosen to be linearly independent, g can be decomposed
as Yr = u1¥1 + ugto. The partition function is then expressed as:

ZN(B,B) = w1 (YL, 1) Ay +ua (Yr, ) AY L (2.61)

The diagonalization of the matrix T gives:

M = € cosh(BB) + /2 sinh? BB + =28 (2.62)

For f finite, in the large N limit, the partition function is dominated by the
largest eigenvalue Aq, and the free entropy density is given by ¢ = log A;.

(08, B) = log [eﬂ cosh(8B) + \/@23 sinh? BB + e=28| . (2.63)

Using the same transfer matrix technique we can compute expectation values
of observables. For instance the expected value of a given spin is
1

(o3) = Zn(3.B) (YL, T 16TV "yg) , (2.64)

where ¢ is the following matrix:

6= ((1) _01> : (2.65)

Averaging over the position 4, one can compute the average magnetization My (3, B).
In the thermodynamic limit we get
sinh BB 109

Vsinh? Bh + ¢4  BOB

Both the free energy and the average magnetization turn out to be analytic
functions of B and h for § < oo. In particular the spontaneous magnetization
vanishes at any non-zero temperature:

Jim My(5,B) = (8,B). (2.66)

M,(3)=0, V3<o. (2.67)

In Fig. 2.3 we plot the average magnetization M (3, B) = limy_. My (5, B) as
a function of the applied magnetic field h for various values of the temperature
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Fic. 2.3. The average magnetization of the one dimensional Ising model, as a
function of the magnetic field B, at inverse temperatures 3 = 0.5,1,1.5,2 (from
bottom to top)

(. The curves become steeper and steeper as 3 increases. This statement can
be made more quantitative by computing the susceptibility associated to the
average magnetization:

xar() = o (6,0) = 5. (2.69)

This result can be interpreted as follows. A single spin in a field has sus-
ceptibility x(8) = B. If we consider N spins constrained to take the the same
value, the corresponding susceptibility will be N3, as in Eq (2.54). In the present
case the system behaves as if the spins were blocked into groups of x(3)/5 spins
each. The spins in each group are constrained to take the same value, while spins
belonging to different blocks are independent.

This qualitative interpretation receives further support by computing a cor-
relation function. For A = 0 and 0N < i < j < (1 — d)N, one finds, at large
N:

(0i0j) = e71P=I1/E0) L @(ema )| (2.69)

with £(8) = —1/logtanh 3. Notice that £(8) gives the typical distance below
which two spins in the system are well correlated. For this reason it is usually
called the correlation length of the model. This correlation length increases
when the temperature decreases: spins become correlated at larger and larger
distances. The result (2.69) is clearly consistent with our interpretation of the
susceptibility. In particular, as 3 — oo, £(3) ~ €27/2 and x(8) ~ 28¢(3).

The connection between correlation length and susceptibility is very general
and can be understood as a consequence of the fluctuation-dissipation theorem
(2.44):

{fig:isingld_mag}
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1 & 1
xm(B) = BN N;lﬂ ; N;Ui
N N
= B Y s =g Y owe), (2.70)

where the last equality comes from the fact that (o;) = 0 when B = 0. Using
(2.69), we get

+oo
xu(B)=p Y e B L g(eN). (2.71)

i=—00

It is therefore evident that a large susceptibility must correspond to a large
correlation length.

2.5.2 The Curie-Weiss model

The exact solution of the one-dimensional model, lead Ising to think that there
couldn’t be a phase transition in any dimension. Some thirty years earlier a
qualitative theory of ferromagnetism had been put forward by Pierre Curie. Such
a theory assumed the existence of a phase transition at non-zero temperature T,
(the so-called the “Curie point”) and a non-vanishing spontaneous magnetization
for T' < T,. The dilemma was eventually solved by Onsager solution of the two-
dimensional model.

Curie theory is realized exactly within a rather abstract model: the so-called
Curie-Weiss model. We shall present it here as one of the simplest solvable
models with a finite temperature phase transition. Once again we have N Ising
spins o; € {£1} and a configuration is given by g = (01,...,0n). However the
spins no longer sits on a d-dimensional lattice: they all interact in pairs. The
energy function, in presence of a magnetic field B, is given by:

N
E(o) = —%Zaiaj —BZUi, (2.72)
(i7) =1

where the sum on (¢j) runs over all the couples of spins. Notice the peculiar 1/N
scaling in front of the exchange term. The exact solution presented below shows
that this is the only choice which yields a non-trivial free-energy density in the
thermodynamic limit. This can be easily understood intuitively as follows. The
sum over (ij) involves O(N?) terms of order O(1). In order to get an energy
function scaling as N, we need to put a 1/N coefficient in front.

In adopting the energy function (2.72), we gave up the description of any
finite-dimensional geometrical structure. This is a severe simplification, but has
the advantage of making the model exactly soluble. The Curie-Weiss model is
the first example of a large family: the so-called mean-field models. We will
explore many instances of this family throughout the book.

{se:CurieWeiss}
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A possible approach to the computation of the partition function consists in
observing that the energy function can be written in terms of a simple observable,
the instantaneous magnetization:

N
m(o) = % Z 0. (2.73)

Notice that this is a function of the configuration ¢, and shouldn’t be confused
with its expected value, the average magnetization, cf. Eq. (2.55). It is a “simple”
observable because it is equal to the sum of observables depending upon a single
spin.

We can write the energy of a configuration in terms of its instantaneous
magnetization:

E(o) = %N — %Nm(g)Q —~ NBm(a). (2.74)

This implies the following formula for the partition function

Zn(B,B) = e NP3 " Niy(m) exp {meQ + NﬁBm} , (2.75)

where the sum over m runs over all the possible instantaneous magnetizations of
N Ising spins: m = —1+2k/N with 0 < k < N an integer number, and N (m) is
the number of configurations having a given instantaneous magnetization. This
is given by a binomial coefficient whose large N behavior is given in terms of the
entropy function of a Bernoulli process:

Ny(m) = (le\%m> = exp {NH (1+2m>} . (2.76)

To leading exponential order in IV, the partition function can thus be written
as:

+1
Zn(8,B) i/ dm, eN¢mt(m:B.B) (2.77)
-1

where we have defined

Ome(m; B, B) = —g(l —m?) +BBm+H <1—;m> . (2.78)

The integral in (2.77) is easily evaluated by Laplace method, to get the final
result for the free-energy density

(B, B) = anax Gme(m; 5, B) . (2.79)
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Fia. 2.4. Left: the function ¢ne(m;B,B = 0) is plotted versus m, for
6 = .7,.9,1.1,1.3 (from top to bottom). For 8 < [. = 1 there is a unique
maximum at m = 0, for § < . = 1 there are two degenerate maxima at two
symmetric values +m (3).Right: values of m which maximize ¢,¢(m; 3, B =0)
are plotted versus 3. The phase transition at 8. = 1 is signaled by the bifurcation.

One can see that the maximum is obtained away from the boundary points, so
that the corresponding m must be a stationary point of ¢n¢(m; 3, B), which
satisfies the saddle-point equation 0¢.,¢(m; 3, B)/Om = 0:

m., = tanh(Sm. + 6B). (2.80)

In the above derivation we were slightly sloppy at two steps: substituting the
binomial coefficient with its asymptotic form and changing the sum over m into
an integral. The mathematically minded reader is invited to show that these
passages are indeed correct.

With a bit more work the above method can be extended to expectation
values of observables. Let us consider for instance the average magnetization
M(8, B). It can be easily shown that, whenever the maximum of ¢n,¢(m; 3, B)
over m is non-degenerate,

M(3,B) = ]\;iirlm<m(g)> =m.(8,B) = arg max dmte(m; 8, B), (2.81)

We can now examine the implications that can be drawn from Egs. (2.79)
and (2.80). Let us first consider the B = 0 case (see Fig.2.4). The function
Ome(m; 8,0) is symmetric in m. For 0 < 8 < 1 = f,, it is also concave and
achieves its unique maximum in m.(8) = 0. For § > 1, m = 0 remains a
stationary point but becomes a local minimum, and the function develops two
degenerate global maxima at m(3) with m,(38) = —m_(8) > 0. These two
maxima bifurcate continuously from m =0 at 8 = f..

A phase transition takes place at (.. Its meaning can be understood by com-
puting the expectation value of the spins. Notice that the energy function (2.72)
is symmetric a spin-flip transformation which maps o; — —o; for all i’s. There-
fore (0;) = ((—0;)) = 0 and the average magnetization vanishes M (3,0) = 0.
On the other hand, the spontaneous magnetization, defined in (2.56), is zero

{fig:phiCW}
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in the paramagnetic phase 8 < ., and equal to m4(8) in the ferromagnetic
phase 3 > .. The physical interpretation of this phase is the following: for any
finite N the pdf of the instantaneous magnetization m(c) has two symmetric
peaks, at my (), which become sharper and sharper as N increases. Any exter-
nal perturbation which breaks the symmetry between the peaks, for instance a
small positive magnetic field B, favors one peak with respect to the other one,
and therefore the system develops a spontaneous magnetization. Notice that, in
mathematical terms, the phase transition is a property of systems in the ther-
modynamic limit N — oo.

In physical magnets the symmetry breaking can come for instance from im-
purities, subtle effects of dipolar interactions together with the shape of the
magnet, or an external magnetic field. The result is that at low enough temper-
atures some systems, the ferromagnets develop a spontaneous magnetization. If
you heat a magnet made of iron, its magnetization disappears at a critical tem-
perature T, = 1/8. = 770 degrees Celsius. The Curie Weiss model is a simple
solvable case exhibiting the phase transition.

Exercise 2.5 Compute the expansion of m4(8) and of ¢(8,B = 0) near
6 = B¢, and show that the transition is of second order. Compute the low
temperature behavior of the spontaneous magnetization.

Exercise 2.6 Inhomogeneous Ising chain. The one dimensional Ising problem
does not have a finite temperature phase transition, as long as the interactions
are short range and translational invariant. But when the couplings in the Ising
chain grow fast enough at large distance, one can have a phase transition. This
is not a very realistic model from the point of view of physics, but it is useful
as a solvable example of phase transition.

Consider a chain of Ising spins o0g,01,...,0n with energy FE(o) =
= Zg;ol JnOnony1. Suppose that the coupling constants J, form a positive,

monotonously increasing sequence, growing logarithmically. More precisely, we
assume that lim,_J,/logn = 1. Denote by (.)+ (resp. (.)_) the expectation
value with respect to Boltzmann’s probability distribution when the spin oy
is fixed to oy = +1 (resp. fixed to oy = —1).
(i) Show that , for any n € {0...., N — 1}, the magnetization is (o,,)+ =
[T, tanh(g.7;)
(7) Show that the critical inverse temperature . = 1/2 separates two
regimes, such that: for § < (., one has imy_, o0 {0y, )+ = limy_, oo (0,) - =
0; for 8 > [, one has limy_.o {0y )x = £M(B), and M(3) > 0.

Notice that in this case, the role of the symmetry breaking field is played by
the choice of boundary condition.
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F1c. 2.5. A configuration of a two dimensional Edwards-Anderson model with
L = 5. Spins are coupled by two types of interactions: ferromagnetic (J;; = +1),
indicated by a continuous line, and antiferromagnetic (J;; = —1), indicated by
a dashed line. The energy of the configuration shown here is —14 — 7h.

2.6 The Ising spin glass

In real magnetic materials, localized magnetic moments are subject to several
sources of interactions. Apart from the exchange interaction mentioned in the
previous Section, they may interact through intermediate conduction electrons,
etc... As aresult, depending on the material which one considers, their interaction
can be either ferromagnetic (their energy is minimized when they are parallel)
or antiferromagnetic (their energy is minimized when they point opposite to
each other ). Spin glasses are a family of materials whose magnetic properties
are particularly complex. They can be produced by diluting a small fraction of
a ‘transition magnetic metal’ like manganese into a ‘noble metal’ like copper in
a ratio 1 : 100. In such an alloy, magnetic moments are localized at manganese
atoms, which are placed at random positions in a copper background. Depend-
ing on the distance of two manganese atoms, the net interaction between their
magnetic moments can be either ferromagnetic or antiferromagnetic.

The Edwards-Anderson model is a widely accepted mathematical ab-
straction of these physical systems. Once again, the basic degrees of freedom are
Ising spins o; € {—1,+1} sitting at the corners of a d-dimensional cubic lattice
L = {1,...,L}¢, i € L. The configuration space is therefore {—1,+1}". As in
the Ising model, the energy function reads

E(Q):—ZjijUiO'j—BZO'i, (282)

(45) i€L

where Z(ij) runs over each edge of the lattice. Unlike in the Ising ferromagnet,
a different coupling constant J;; is now associated to each edge (ij), and its

{fig:ea_def}
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F1c. 2.6. Four configurations of a small Edwards-Anderson model: continuous
lines indicate ferromagnetic interactions (.J;; = +1), while dashed lines are for
antiferromagnetic interactions (J;; = —1). In zero magnetic field (h = 0), the
four configurations are degenerate and have energy £ = —2. The bars indicate
the unsatisfied interaction. Notice that there is no configuration with lower en-
ergy. This system is frustrated since it is impossible to satisfy simultaneously all
constraints.
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sign can be positive or negative. The interaction between spins o; and o; is
ferromagnetic if J;; > 0 and antiferromagnetic if J;; < 0.

A pictorial representation of this energy function is given in Fig. 2.5. The
Boltzmann distribution is given by

1
palo) = A6 exp 5% Jijoi0; JrﬂB%Ui , (2.83)

Z(B) =Y exp{ B> Jijoio; +BBY oip . (2.84)

(i4) i€l

It is important to notice that the couplings {J;;} play a completely different role
from the spins {o;}. The couplings are just parameters involved in the definition
of the energy function, as the magnetic field B, and they are not summed over
when computing the partition function. In principle, for any particular sample
of a magnetic material, one should estimate experimentally the values of the
Ji;j's, and then compute the partition function. We could have made explicit
the dependence of the partition function and of the Boltzmann distribution on
the couplings by using notations such as Z(8, B;{Ji;}), ps,B:{s,,}(a). However,
when it is not necessary, we prefer to keep to lighter notations.

The present understanding of the Edwards-Anderson model is much poorer
than for the ferromagnetic models introduced in the previous Section. The basic
reason of this difference is frustration and is illustrated in Fig. 2.6 on an L = 2,
d = 2 model (a model consisting of just 4 spins). A spin glass is frustrated
whenever there exist local constraints that are in conflict, meaning that it is not
possible to all of them satisfy simultaneously. In the Edwards Anderson model,
a plaquette is a group of four neighbouring spins building a square. A plaquette
is frustrated if and only if the product of the J;; along all four edges of the
plaquette is negative. As shown in Fig. 2.6, it is then impossible to minimize
simultaneously all the four local energy terms associated with each edge. In a
spin glass, the presence of a finite density of frustrated plaquettes generates a
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very complicated energy landscape. The resulting effect of all the interactions
is not obtained by ‘summing’ the effects of each of them separately, but is is
the outcome of a complex interplay. The ground state spin configuration (the
one satisfying the largest possible number of interactions) is difficult to find: it
cannot be guessed on symmetry grounds. It is also frequent to find in a spin glass
a configuration which is very different form the ground state but has an energy
very close to the ground state energy. We shall explore these and related issues
throughout the book.

Notes

There are many good introductory textbooks on statistical physics and thermo-
dynamics, for instance the books by Reif (Reif, 1965) or Huang (Huang, 1987).
Going towards more advanced texts, one can suggest the books by Ma (Ma,
1985) and Parisi (Parisi, 1998b). A more mathematically minded presentation
can be found in the books by Gallavotti (Galavotti, 1999) and Ruelle (Ruelle,
1999).

The two dimensional Ising model at vanishing external field can also be solved
by a transfer matrix technique, see for instance (Baxter, 1982). The transfer
matrix, which passes from a column of the lattice to the next, is a 2% x 2
matrix, and its dimension diverges exponentially with the lattice size L. Finding
its largest eigenvalue is therefore a complicated task. Nobody has found the
solution so far for B # 0.

Spin glasses will be a recurring theme in this book, and more will be said
about them in the next Chapters. An introduction to this subject from a physicist
point of view is provided by the book of Fischer and Hertz (Fischer and Hetz,
1993) or the review by Binder and Young (Binder and Young, 1986). The concept
of frustration was introduced in a beautiful paper by Gerard Toulouse (Toulouse,
1977).
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3

INTRODUCTION TO COMBINATORIAL OPTIMIZATION

This Chapter provides an elementary introduction to some basic concepts in
theoretical computer science. Which computational tasks can/cannot be accom-
plished efficiently by a computer? How much resources (time, memory, etc.) are
needed for solving a specific problem? What are the performances of a spe-
cific solution method (an algorithm), and, whenever more than one method is
available, which one is preferable? Are some problems intrinsically harder than
others? This are some of the questions one would like to answer.

One large family of computational problems is formed by combinatorial op-
timization problems. These consist in finding a member of a finite set which
maximizes (or minimizes) an easy-to-evaluate objective function. Several fea-
tures make such problems particularly interesting. First of all, most of the time
they can be converted into decision problems (questions which require a YES/NO
answer), which are the simplest problems allowing for a rich theory of computa-
tional complexity. Second, optimization problems are ubiquitous both in appli-
cations and in pure sciences. In particular, there exist some evident connections
both with statistical mechanics and with coding theory. Finally, they form a very
large and well studied family, and therefore an ideal context for understanding
some advanced issues. One should however keep in mind that computation is
more than just combinatorial optimization. A distinct (and in some sense larger)
family consists of counting problems. In this case one is asked to count how many
elements of a finite set have some easy-to-check property. We shall say something
about such problems in later Chapters. Another large family on which we will
say basically nothing consists of continuous optimization problems.

This Chapter is organized as follows. The study of combinatorial optimization
is introduced in Sec. 3.1 through a simple example. This section also contains
the basic definition of graph theory that we use throughout the book. General
definitions and terminology are given in Sec. 3.2. These definitions are further
illustrated in Sec. 3.3 through several additional examples. Section 3.4 provides
an informal introduction to some basic concepts in computational complexity.
As mentioned above, combinatorial optimization problems often appear in pure
sciences and applications. The examples of statistical physics and coding are
briefly discussed in Secs. 3.5 and 3.6.

3.1 A first example: minimum spanning tree
The minimum spanning tree problem is easily stated and may appear in many

practical applications. Suppose for instance you have a bunch of computers in a

48
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b 2 C 5 d

F1c. 3.1. This graph has 7 vertices (labeled a to g) and 10 edges. The ‘cost’ of
each edge is indicated next to it. In the Minimum Spanning Tree problem, one
seeks a subgraph connecting all vertices, without any loop, of minimum cost.

building. You may want to connect them pairwise in such a way that the resulting
network is completely connected and the amount of cable used is minimum.

3.1.1  Definition of the problem and basics of graph theory

A mathematical abstraction of the above practical problem requires us to first
define basic graph theoretic definitions. A graph is a set V' of vertices, labeled
by {1,2,...,|V|} and a set £ of edges connecting them: G = (V,€). The ver-
tex set can be any finite set but one often takes the set of the first |V| inte-
gers: V = {1,2,...,|V|}. The edges are simply unordered couples of distinct
vertices £ C V x V. For instance an edge joining vertices ¢ and j is identi-
fied as e = (i,5). A weighted graph is a graph where a cost (a real num-
ber) is associated with every edge. The degree of a vertex is the number of
edges connected to it. A path between two vertices ¢ and j is a set of edges
{(J,i2), (i2,13), (i3,%4)s .-, (ir—1,1r), (ir,J). A graph is connected if, for every
pair of vertices, there is a path which connects them. A completely con-
nected graph, or complete graph, also called a clique, is a graph where all the
[V|(JV| — 1)/2 edges are present. A cycle is a path starting and ending on the
same vertex. A tree is a connected graph without a cycle.

Consider the graph in Fig. 3.1. You are asked to find a tree (a subset of the
edges buiding a cycle-free subgraph) such that any two vertices are connected
by exactly one path (in this case the tree is said to be spanning). To find such
a subgraph is an easy task. The edges {(a,b); (b,¢); (¢,d); (b,9); (d,e)}, for in-
stance, do the job. However in our problem a cost is associated with each edge.
The cost of a subgraph is assumed to be equal to the sum of the costs of its
edges. Your problem is to find the spanning tree with minimum cost. This is a
non-trivial problem.

In general, an instance of the minimum spanning tree (MST) problem is
given by a connected weighted graph (each edge e has a cost w(e) € R). The
optimization problem consists in finding a spanning tree with minimum cost.
What one seeks is an algorithm which, given an instance of the MST problem,
outputs the spanning tree with lowest cost.

{fig:MSTree}
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3.1.2  An efficient algorithm for the minimum spanning tree problem

The simple minded approach would consist in enumerating all the spanning
trees for the given graph, and comparing their weights. However the number of
spanning trees grows very rapidly with the size of the graph. Consider, as an
example, the complete graph on N vertices. The number of spanning trees of
such a graph is, according to the Cayley formula, N~ ~2. Even if the cost of any
such tree were evaluated in 1072 sec, it would take 2 years to find the MST of
a N = 12 graph, and half a century for N = 13. At the other extreme, if the
graph is very simple, it may contain a small number of spanning trees, a single
one in the extreme case where the graph is itself a tree. Nevertheless, in most
interesting examples the situation is nearly as dramatic as in the complete graph
case.
A much better algorithm can be obtained from the following theorem:

Theorem 3.1 LetU C V be a proper subset of the vertex set V (such that neither
U nor V\U are empty). Let us consider the subset F of edges which connect a
vertex in U to a vertex in V\U, and let e € F be an edge of lowest cost in this
subset: w(e) < w(e') for any €’ € F. If there are several such edges, e can be any
of them. Then there exists a minimum spanning tree which contains e.

Proof: Consider a MST 7, and suppose that it does not contain the edge e.
This edge is such that e = (i,7) with ¢ € U and j € V\U. The spanning tree
7 must contain a path between 7 and j. This path contains at least one edge
f connecting a vertex in U to a vertex in V\U, and f is distinct from e. Now
consider the subgraph 7 built from 7 by removing the edge f and adding the
edge e. We leave to the reader the exercise of showing that 7’ is a spanning tree.
Moreover E(T') = E(T) + w(e) — w(f). Since T is a MST, E(7') > E(T). On
the other hand e has minimum cost within F, hence w(e) < w(f). Therefore
w(e) = w(f) and 7’ is a MST containing e. [J

This result allows to construct a minimum spanning tree of a graph incre-
mentally. One starts from a single vertex. At each step a new edge can be added
to the tree, whose cost is minimum among all the ones connecting the already
existing tree with the remaining vertices. After N — 1 iterations, the tree will be
spanning.

MST algorithm ((Prim, 1957))

Input: A non-empty connected graph G = (V,€), and a weight function w:

E— R+.
Output: A minimum spanning tree 7 and its cost E(7).
1. Set U:={1}, T:=0 and E=0.
2. While V\U is not empty
2.1 Let F:={e=(ij) € £ such that i €U, j € V\U}.
2.2 Find e, := argminccr{w(e)}. Let e. := (ix,7+) with i, € U,
Je € V\U.
2.3 Set U:=UUiy, T:=TUes, and E:= E + w(e).
3. Output the spanning tree 7 and its cost E.

{sec:efficient}
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Fic. 3.2. A minimum spanning tree for the graph defined in Fig. 3.1. The cost
of this tree is £ = 17. {fig:MSTree_sol}

Figure 3.2 gives the MST for the problem described in Fig. 3.1. It is easy to
obtain it by applying the above algorithm. *

Exercise 3.1 Show explicitly that the algorithm MST always outputs a mini-
mum spanning tree.

Theorem 3.1 establishes that, for any &/ C V, and any lowest cost edge e
among the ones connecting U to V\U, there exists a MST containing e. This
does not guarantee that, when two different sets U; and Us, and the correspond-
ing lowest cost edges e; and es are considered, there exists a MST containing
both e; and es. The above algorithm works by constructing a sequence of such
U’s and adding to the tree the corresponding lowest weight edges. It is therefore
not obvious a priori that it will output a MST (unless this is unique).

Let us analyze the number of elementary operations required by the algorithm
to construct a spanning tree on an N nodes graph. By ‘elementary operation’
we mean comparisons, sums, multiplications, etc, all of them counting as one.
Of course, the number of such operations depends on the graph, but we can
find a simple upper bound by considering the completely connected graph. Most
of the operations in the above algorithm are comparisons among edge weights
for finding e, in step 2.2. In order to identify e,, one has to scan at most
[U| x |V\U| = [U| x (N — |U|) edges connecting U to V\U. Since |[U| =1 at the
beginning and is augmented of one element at each iteration of the cycle 2.1-2.3,
the number of comparisons is upper bounded by Y p_ U(N — U) < N3/65.
This is an example of a polynomial algorithm, whose computing time grows like
a power law of the number of vertices. The insight gained from the theorem
provides an algorithm which is much better than the naive one, at least when NV
gets large.

3.2 General definitions {sec:gendef}

MST is an example of a combinatorial optimization problem. This is defined
by a set of possible instances. An instance of MST is defined by a connected

6The algorithm can be easily improved by keeping an ordered list of the edges already
encountered
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weighted graph. In general, an instance of a combinatorial optimization problem
is described by a finite set X of allowed configurations and a cost function F
defined on this set and taking values in R. The optimization problem consists in
finding the optimal configuration C' € X', namely the one with the smallest cost
E(C). Any set of such instances defines a combinatorial optimization problem.
For a particular instance of MST, the space of configurations is simply the set of
spanning trees on the given graph, while the cost function associated with each
spanning tree is the sum of the costs of its edges.

We shall say that an algorithm solves an optimization problem if, for every
instance of the optimization problem, it gives the optimal configuration, or if it
computes its cost. In all the problems which we shall discuss, there is a ‘natural’
measure of the size of the problem N (typically a number of variables used
to define a configuration, like the number of edges of the graph in MST), and
the number of configurations scales, at large N like ¢V, or in some cases even
faster, e. g. like N! or NV. Notice that, quite generally, evaluating the cost
function on a particular configuration is an easy task. The difficulty of solving
the combinatorial optimization problem comes therefore essentially from the size
of the configuration space.

It is a generally accepted practice to estimate the complexity of an algorithm
as the number of ‘elementary operations’ required to solve the problem. Usually
one focuses onto the asymptotic behavior of this quantity as N — oo. It is
obviously of great practical interest to construct algorithms whose complexity is
as small as possible.

One can solve a combinatorial optimization problem at several levels of re-
finement. Usually one distinguishes three types of problems:

e The optimization problem: Find an optimal configuration C*.

e The evaluation problem: Determine the cost E(C*) of an optimal config-
uration.

e The decision problem: Answer to the question: “Is there a configuration
of cost less than a given value Ey?”

3.3 More examples

The general setting described in the previous Section includes a large variety of
problems having both practical and theoretical interest. In the following we shall
provide a few selected examples.

3.3.1 Eulerian circuit

One of the oldest documented examples goes back to the 18th century. The
old city of Konigsberg had seven bridges (see Fig. 3.3), and its habitants were
wondering whether it was possible to cross once each of this bridges and get back
home. This can be generalized and translated in graph-theoretic language as the
following decision problem. Define a multigraph exactly as a graph but for the
fact that two given vertices can be connected by several edges. The problem
consists in finding whether there is there a circuit which goes through all edges
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Fi1G. 3.3. Left: a map of the old city of Konigsberg, with its seven bridges, as
drawn in FEuler’s paper of 1736. The problem is whether one can walk along the
city, crossing each bridge exactly once and getting back home. Right: a graph
summarizing the problem. The vertices A, B, C, D are the various parts of lands
separated by a river, an edge exists between two vertices whenever there is a
bridge. The problem is to make a closed circuit on this graph, going exactly once
through every edge.

of the graph only once, and returns to its starting point. Such a circuit is now
called a Eulerian circuit, because this problem was solved by Euler in 1736,
when he proved the following nice theorem. As for ordinary graphs, we define
the degree of a vertex as the number of edges which have the vertex as an
end-point.

Theorem 3.2 Given a connected multigraph, there exists an Fulerian circuit if
and only if every vertex has an even degree.

This theorem automatically provides an algorithm for the decision problem
whose complexity grows linearly with the number of vertices of the graph: just
go through all the vertices of the graph and check their degree.

Exercise 3.2 Show that, if an Eulerian circuit exists the degrees are necessar-
ily even.

Proving the inverse implication is slightly more difficult. A possible ap-
proach consists in showing the following slightly stronger result. If all the ver-
tices of a connected graph G have even degree but 7 and j, then there exists a
path from ¢ to j that visits once each edge in G. This can be proved by induc-
tion on the number of vertices. [Hint: Stat from ¢ and make a step along the
edge (7,7"). Show that it is possible to choose ¢’ in such a way that the residual
graph G\(4,4") is connected.]

3.3.2  Hamiltonian cycle

More than a century after Euler’s theorem, the great scientist sir William Hamil-
ton introduced in 1859 a game called the icosian game. In its generalized form,

{fig:seven-bridges}

{th:euler}
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it basically asks whether there exists, in a graph, a Hamiltonian cycle, which
is a path going once through every vertex of the graph, and getting back to its
starting point. This is another decision problem, and, at a first look, it seems
very similar to the Eulerian circuit. However it turns out to be much more com-
plicated. The best existing algorithms for determining the existence of an Hamil-
tonian cycle on a given graph run in a time which grows exponentially with the
number of vertices N. Moreover, the theory of computational complexity, which
we shall describe later in this Chapter, strongly suggests that this problem is in
fact intrinsically difficult.

3.3.3  Traveling salesman

Given a complete graph with N points, and the distances d;; between all pairs
of points 1 <14 < j < N, the famous traveling salesman problem (TSP) is an
optimization problem: find a Hamiltonian cycle of minimum total length. One
can consider the case where the points are in a portion of the plane, and the
distances are Euclidean distances (we then speak of a Euclidean TSP), but of
course the problem can be stated more generally, with d;; representing general
costs, which are not necessarily distances. As for the Hamiltonian cycle prob-
lem, the best algorithms known so far for the TSP have a running time which
grows exponentially with N at large N. Nevertheless Euclidean problems with
thousands of points can be solved.

3.3.4  Assignment

Given N persons and N jobs, and a matrix Cj; giving the affinity of person ¢ for
job j, the assignment problem consists in finding the assignment of the jobs
to the persons (an exact one-to-one correspondence between jobs and persons)
which maximizes the total affinity. A configuration is characterized by a permu-
tation of the N indices (there are thus N! configurations), and the cost of the
permutation 7 is ), Cjr¢;). This is an example of a polynomial problem: there
exists an algorithm solving it in a time growing like N3.

3.3.5  Satisfiability

In the satisfiability problem one has to find the values of N Boolean variables
x; € {T, F'} which satisfy a set of logical constraints. Since each variable can be
either true or false, the space of configurations has size |X'| = 2V. Each logical
constraint, called in this context a clause, takes a special form: it is the logical
OR (for which we use the symbol V) of some variables or their negations. For
instance z1 V Ty is a 2-clause (2-clause means a clause of length 2, i.e. which
involves exactly 2 variables), which is satisfied if either 1 = T, or x93 = F, or
both. T1 VT2 V3 is a 3-clause, which is satisfied by all configurations of the three
variables except 1 = 9 = T, 3 = F. The problem is to determine whether
there exists a configuration which satisfies all constraints (decision problem), or
to find the configuration which minimizes the number of violated constraints
(optimization problem). The decision problem is easy when all the clauses have
length smaller or equal to 2: there exists an algorithm running in a time growing
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linearly with N. In other cases, all known algorithms solving the satisfiability
decision problem run in a time which grows exponentially with V.

3.3.6  Coloring and vertex covering

Given a graph and an integer ¢, the famous g-coloring problem asks if it is
possible to color the vertices of the graph using ¢ colors, in such a way that
two vertices connected by an edge have different colors. In the same spirit, the
vertex-cover problem asks to cover the vertices with ‘pebbles’, using the small-
est possible number of pebbles, in such a way that every edge of the graph has
at least one of its two endpoints covered by a pebble.

3.3.7  Number partitioning

Number partitioning is an example which does not come from graph theory.
An instance is a set S of N integers S = {z1,..,xn}. A configuration is a partition
of these numbers into two groups A and S\ A . Is there a partition such that
DicATi = Dies\ATi?

3.4 Elements of the theory of computational complexity

One main branch of theoretical computer science aims at constructing an intrinsic
theory of computational complexity. One would like, for instance, to establish
which problems are harder than others. By ‘harder problem’, we mean a problem
that takes a longer running time to be solved. In order to discuss rigorously
the computational complexity of a problem, we would need to define a precise
model of computation (introducing, for instance, Turing machines). This would
take us too far. We will instead evaluate the running time of an algorithm in
terms of ‘elementary operations’: comparisons, sums, multiplications, etc. This
informal approach is essentially correct as long as the size of the operands remains
uniformly bounded.

3.4.1 The worst case scenario

As we already mentioned in Sec. 3.2, a combinatorial optimization problem,
is defined by the set of its possible instances. Given an algorithm solving the
problem, its running time will vary from instance to instance, even if the instance
‘size’ is fixed. How should we quantify the overall hardness of the problem? A
crucial choice of computational complexity theory consists in considering the
‘worst’ (i.e. the one which takes longer time to be solved) instance among all the
ones having the same size.

This choice has two advantages: (i) It allows to construct a ‘universal’ theory.
(i) Once the worst case running time of a given algorithm is estimated, this
provides a performance guarantee on any instance of the problem.

3.4.2  Polynomial or not?

A second crucial choice consists in classifying algorithms in two classes: (i) Poly-
nomial, if the running time is upper bounded by a fixed polynomial in the size

{sec:Complexity}
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of the instance. In mathematical terms, let Ty the number of operations required
for solving an instance of size N in the worst case. The algorithm is polynomial
when there exist a constant k such that Ty = O(N*). (ii) Super-polynomial,
if no such upper bound exists. This is for instance the case if the time grows
exponentially with the size of the instance (we shall call algorithms of this type
exponential), i.e. Ty = O(k") for some constant k.

Example 3.3 In 3.1.2, we were able to show that the running time of the
MST algorithm is upper bounded by N3, with N the number of vertices tin the
graph. This implies that such an algorithm is polynomial.

Notice that we did not give a precise definition of the ‘size’ of a problem.
One may wonder whether, changing the definition, a particular problem can be
classified both as polynomial an as super-polynomial. Consider, for instance, the
assignment problem with 2/N points. One can define the size as being N, or 2N |
or even N? which is the number of possible person-job pairs. The last definition
would be relevant if one would work for instance with occupation numbers n;; €
{0,1}, the number n;; being one if and only if the job i is assigned to person j.
However, any two of these ‘natural’ definitions of size are a polynomial function
one of the other. Therefore they do not affect the classification of an algorithm
as polynomial or super-polynomial. We will discard other definitions (such as e™
or N!) as ‘unnatural’, without any further ado. The reader can convince himself
on each of the examples of the previous Section.

3.4.3  Optimization, evaluation, decision

In order to get a feeling of their relative levels of difficulty, let us come back for a
while to the three types of optimization problems defined in Sec. 3.2, and study
which one is the hardest.

Clearly, if the cost of any configuration can be computed in polynomial time,
the evaluation problem is not harder than the optimization problem: if one can
find the optimal configuration in polynomial time, one can compute its cost also
in polynomial time. The decision problem (deciding whether there exists a con-
figuration of cost smaller than a given Ep) is not harder than the evaluation
problem. So the order of increasing difficulty is: decision, evaluation, optimiza-
tion.

But actually, in many cases where the costs take discrete values, the evalu-
ation problem is not harder than the decision problem, in the following sense.
Suppose that we have a polynomial algorithm solving the decision problem, and
that the costs of all configurations can be scaled to be integers in an interval
[0, Ermax) of length Eyay = exp{O(N¥)} for some k& > 0. An algorithm solving
the decision problem can be used to solve the evaluation problem by dichotomy:
one first takes Ey = Emax/2. If there exists a configuration of energy smaller
than Fjy, one iterates with Ey the center of the interval [0, Fyyax/2]. In the oppo-
site case, one iterates with Ey the center of the interval [Epax/2, Emax]. Clearly
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this procedure finds the cost of the optimal configuration(s) in a time which is
also polynomial.

3.4.4  Polynomial reduction

One would like to compare the levels of difficulty of various decision problems.
The notion of polynomial reduction formalizes the sentence “not harder than”
which we used so far, and helps to get a classification of decision problems.

Roughly speaking, we say that a problem B is not harder than A if any effi-
cient algorithm for A (if such an algorithm existed) could be used as a subroutine
of an algorithm solving efficiently B. More precisely, given two decision problems
A and B, one says that B is polynomially reducible to A if the following
conditions hold:

1. There exists a mapping R which transforms any instance I of problem B
into an instance R(I) of problem A, such that the solution (yes/no) of the
instance R(I) of A gives the solution (yes/no) of the instance I of B.

2. The mapping I — R(I) can be computed in a time which is polynomial in
the size of I.

3. The size of R(I) is polynomial in the size of I. This is in fact a consequence
of the previous assumptions but there is no harm in stating it explicitly.

A mapping R satisfying the above requirements is called a polynomial reduc-
tion. Constructing a polynomial reduction among two problems is an important
achievement since it effectively reduces their study to the study of just one of
them. Suppose for instance to have a polynomial algorithm Alg 4 for solving A.
Then a polynomial reduction of B to A can be used for constructing a poly-
nomial algorithm for solving B. Given an instance I of B, the algorithm just
compute R(I), feeds it into the Alg 4, and outputs the output of Alg 4. Since the
size of R(I) is polynomial in the size of I, the resulting algorithm for B is still
polynomial.

For concreteness, we will work out an explicit example. We will show that the
problem of existence of a Hamiltonian cycle in a graph is polynomially reducible
to the satisfiability problem.

{sub:polred}
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Example 3.4 An instance of the Hamiltonian cycle problem is a graph with
N vertices, labeled by 7 € {1, ..., N}. If there exists a Hamiltonian cycle in the
graph, it can be characterized by N2 Boolean variables z,; € {0,1}, where
Zr; = 1 if vertex number ¢ is the r’th vertex in the cycle, and z,; = 0 otherwise
(one can take for instance 21; = 1). We shall now write a number of constraints
that the variables x,; must satisfy in order for a Hamiltonian cycle to exist,
and we shall ensure that these constraints take the forms of the clauses used
in the satisfiability problem (identifying x = 1 as true, 2 = 0 as false):

e Each vertex i € {1,..., N} must belong to the cycle: this can be written
as the clause x1; V xo9; V .... V &4, which is satisfied only if at least one of
the numbers x1;, s, ..., n; equals one.

e For every r € {1,..., N}, one vertex must be the r’th visited vertex in the
cycle: 1 Vo V...V xpn

e Each vertex i € {1,..., N} must be visited only once. This can be imple-
mented through the N(N — 1)/2 clauses Z,; V Zy;, for 1 <r < s < N.

e For every r € {1,..., N}, there must be only one r’th visited vertex in the
cycle; This can be implemented through the N (N —1)/2 clauses T,; VZ,;,
for1<i<j<N.

e For every pair of vertices ¢ < j which are not connected by an edge of
the graph, these vertices should not appear consecutively in the list of
vertices of the cycle. Therefore we add, for every such pair and for every
r € {1,..., N} the clauses Tp; V T(r41); and Tr; V Z(r41); (With the ‘cyclic’
convention N + 1 = 1).

It is straightforward to show that the size of the satisfiability problem con-
structed in this way is polynomial in the size of the Hamiltonian cycle prob-
lem. We leave as an exercise to show that the set of all above clauses is a
sufficient set: if the N2 variables satisfy all the above constraints, they describe
a Hamiltonian cycle.

3.4.5 Complexity classes

Let us continue to focus onto decision problems. The classification of these prob-
lems with respect to polynomiality is as follows:

e Class P: These are the polynomial problems, for which there exists an
algorithm running in polynomial time. An example, cf. Sec. 3.1, is the
decision version of the minimum spanning tree (which asks for a yes/no
answer to the question: given a graph with costs on the edges, and a number
Ey, is there a spanning tree with total cost less than Ey?).

e Class NP: This is the class of non-deterministic polynomial problems,
which can be solved in polynomial time by a ‘non deterministic’ algorithm.
Roughly speaking, such an algorithm can run in parallel on an arbitrarily
large number of processors. We shall not explain this notion in detail here,
but rather use an alternative and equivalent characterization. We say that a
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problem is in the class NP if there exists a ‘short’ certificate which allows to
check a ‘yes’ answer to the problem. A short certificate means a certificate
that can be checked in polynomial time.

A polynomial problem like the minimum spanning tree describes above
is automatically in NP so P C NP. The decision version of the TSP is
also in NP: if there is a TSP tour with cost smaller than FEj, the short
certificate is simple: just give the tour, and its cost will be computed in
linear time, allowing to check that it is smaller than Ej. Satisfiability also
belongs to NP: a certificate is obtained from the assignment of variables
satisfying all clauses. Checking that all clauses are satisfied is linear in
the number of clauses, taken here as the size of the system. In fact there
are many important problems in the class NP, with a broad spectrum of
applications ranging from routing to scheduling, to chip verification, or to
protein folding. . .

e Class NP-complete: These are the hardest problem in the NP class. A
problem is NP-complete if: (i) it is in NP, (i¢) any other problem in NP
can be polynomially reduced to it, using the notion of polynomial reduction
defined in Sec. 3.4.4. If A is NP-complete, then: for any other problem B
in NP, there is a polynomial reduction mapping B to A. So if we had a
polynomial algorithm to solve A, then all the problems in the broad class
NP would be solved in polynomial time.

It is not a priori obvious whether there exist any NP-complete problem. A major
achievement of the theory of computational complexity is the following theorem,
obtained by Cook in 1971.

Theorem 3.5 The satisfiability problem is NP-complete

We shall not give here the proof of the theorem. Let us just mention that the
satisfiability problem has a very universal structure (an example of which was
shown above, in the polynomial reduction of the Hamiltonian cycle problem to
satisfiability). A clause is built as the logical OR (denoted by V) of some variables,
or their negations. A set of several clauses, to be satisfied simultaneously, is the
logical AND (denoted by A) of the clauses. Therefore a satisfiability problem is
written in general in the form (a1 VasV...)A (b1 VbaV...)A...., where the a;, b; are
‘literals’; i.e. any of the original variables or their negations. This form is called
a conjunctive normal form (CNF), and it is easy to see that any logical
statement between Boolean variables can be written as a CNF. This universal
decomposition gives some idea of why the satisfiability problem can play a central
role.

346 P=NP?

When a NP-complete problem A is known, one can relatively easily find other
NP-complete problems: if there exists a polynomial reduction from A to another
problem B € NP, then B is also NP-complete. In fact, whenever R4 p is a
polynomial reduction from a problem P to A and Rp. 4 is a polynomial reduc-
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NP-complete .
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FiG. 3.4. Classification of some famous decision problems. If P # NP, the classes
P and N P-complete are disjoint. If it happened that P = N P, all the problems in
NP, and in particular all those mentioned here, would be solvable in polynomial
time.

tion from A to B, then Rg. 4 o R4 p is a polynomial reduction from P to B.
Starting from satisfiability, it has been possible to find, with this method, thou-
sands of NP-complete problems. To quote a few of them, among the problems
we have encountered so far, Hamiltonian circuit, TSP, and 3-satisfiability (i.e.
satisfiability with clauses of length 3 only) are NP-complete. Actually most of
NP problems can be classified either as being in P, or being NP-complete. The
precise status of some NP problems, like graph isomorphism, is still unknown.

Finally, those problems which, not being in NP are at least as hard as NP-
complete problems, are usually called NP-hard. These includes both decision
problems for which a short certificate does not exist, and non-decision problems.
For instance the optimization and evaluation versions of TSP are NP-hard. How-
ever, in such cases, we shall chose among the expressions ‘TSP is NP-complete’
or ‘TSP is NP-hard’ rather freely.

One major open problem in the theory of computational complexity is whether
the classes P and NP are distinct or not. It might be that P=NP=NP-complete:
this would be the case if someone found a polynomial algorithm for one NP-
complete problem. This would imply that no problem in the broad NP-class
could be solved in polynomial time.

It is a widespread conjecture that there exist no polynomial algorithm for
NP-complete problems. Then the classes P and NP-complete would be disjoint.
In fact it is known that, if P £ NP, then there are NP problems which are neither
in P nor in NP-complete.

3.4.7  Other complezity classes

Notice the fundamental asymmetry in the definition of the NP class: the exis-
tence of a short certificate is requested only for the yes answers. To understand
the meaning of this asymmetry, consider the problem of unsatisfiability (which
is the complement of the satisfiability problem) formulated as: “given a set of
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clauses, is the problem unsatisfiable?”. It is not clear if there exists a short cer-
tificate allowing to check a yes answer: it is very difficult to prove that a problem
cannot be satisfied without checking an exponentially large number of possible
configurations. So it is not at all obvious that unsatisfiability is in NP. Problems
which are complements of those in NP define the class of co-NP problems, ans
it is not known whether NP=co-NP or not, although it is widely believed that
co-NP is different from NP. This consideration opens a Pandora box with many
other classes of complexities, but we shall immediately close it since it would
carry us too far.

3.5 Optimization and statistical physics
3.5.1 General relation

There exists a natural mapping from optimization to statistical physics. Consider
an optimization problem defined by a finite set X’ of allowed configurations, and a
cost function E defined on this set with values in R. While optimization consists
in finding the configuration C' € X with the smallest cost, one can introduce a
probability measure of the Boltzmann type on the space of configurations: For
any f3, each C' is assigned a probability 7

PO = g5 PO s 2= T O (1)

The positive parameter J plays the role of an inverse temperature. In the limit
B — oo, the probability distribution pg concentrates on the configurations of
minimum energy (ground states in the statistical physics jargon). This is the
relevant limit for optimization problems. In the statistical physics approach one
generalizes the problem to study properties of the distribution pg at finite 3. In
many cases it is useful to follow pg when [ increases (for instance by monitoring
the thermodynamic properties: internal energy, the entropy, and the specific
heat). This may be particularly useful, both for analytical and for algorithmic
purpose, when the thermodynamic properties evolve smoothly. An example of
practical application is the simulated annealing method, which actually samples
the configuration space at larger and larger values of [ until it finds a ground
state. It will be described in Chap. 4. Of course the existence of phase transitions
pose major challenges to this kind of strategies, as we will see.

3.5.2  Spin glasses and mazimum cuts

To give a concrete example, let us go back to the spin glass problem of Sec. 2.6.
This involves N Ising spins o1,...,0nx in {£1}, located on the vertices of a
graph, and the energy function is:

"Notice that there exist alternatives to the straightforward generalization (3.1). In some
problems the configuration space involves hard constraints, which can also be relaxed in a
finite temperature version.

{sec:0OptimizationPhysics}

{eq:boltzmann_optim}
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E(g) - _Zjijaiaju (32)
(i5)

where the sum Z(ij) runs over all edges of the graph and the J;; variables are
exchange couplings which can be either positive or negative. Given the graph and
the exchange couplings, what is the ground state of the corresponding spin glass?
This is a typical optimization problem. In fact, it very well known in computer
science in a slightly different form.

Each spin configuration partitions the set of vertices into two complementary
subsets: Vi = {i|o; = £1}. Let us call v(V) the set of edges with one endpoint
in V., the other in V_. The energy of the configuration can be written as:

E(@)=-C+2 > Jy (3.3)

(i5)ev(Vy)

where C' =3 (i) Ji;. Finding the ground state of the spin glass is thus equivalent
to finding a partition of the vertices, V' =V, U V_, such that Z(ij)ew(v+) cij is
maximum, where ¢;; = —J;;. This problem is known as the maximum cut
problem (MAX-CUT): the set of edges (VL) is a cut, each cut is assigned a
weight Z(ij) e(vy) Cig and one seeks the cut with maximal weight.

Standard results on max-cut immediately apply: In general this is an NP-hard
problem, but there are some categories of graphs for which it is polynomially
solvable. In particular the max-cut of a planar graph can be found in polynomial
time, providing an efficient method to obtain the ground state of a spin glass
on a square lattice in two dimensions. The three dimensional spin glass problem
falls into the general NP-hard class, but nice ‘branch and bound’ methods, based
on its max-cut formulation, have been developed for it in recent years.

Another well known application of optimization to physics is the random
field Ising model, which is a system of Ising spins with ferromagnetic couplings
(all J;; are positive), but with a magnetic field h; which varies from site to site
taking positive and negative values. Its ground state can be found in polynomial
time thanks to its equivalence with the problem of finding a maximal flow in a
graph.

3.6 Optimization and coding

Computational complexity issues are also crucial in all problems of information
theory. We will see it recurrently in this book, but let us just give here some
small examples in order to fix ideas.

Consider the error correcting code problem of Chapter 1. We have a code,
which maps an original message to a codeword zx, which is a point in the N-
dimensional hypercube {0, 1}?V. There are 2 codewords (with M < N), which
we assume to be a priori equiprobable. When the message is transmitted, the
codeword z is corrupted to -say- a vector y with probability Q(y|z). The decoding
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maps the received message y to one of the possible original codewords z’ = d(y).
As we saw, a measure of performance is the average block error probability:

P = 51 Y03 QUule) 1d(y) # 2) (3.4

A simple decoding algorithm would be the following: for each received message
y, consider all the 2V codewords, and determine the most likely one: d(y) =
arg max, Q(y|z). It is clear that this algorithm minimizes the average block error
probability.

For a general code, there is no better way for maximizing Q(y|z) than going
through all codewords and computing their likelihood one by one. This takes a
time of order 2™, which is definitely too large. Recall in fact that, to achieve
reliable communication, M and N have to be large (in data transmission appli-
cation one may use N as large as 10°). One may object that ‘decoding a general
code’ is too a general optimization problem. Just for specifying a single instance
we would need to specify all the codewords, which takes N 2M bits. Therefore,
the complexity of decoding could be a trivial consequence of the fact that even
reading the input takes a huge time. However, it can be proved that also decod-
ing codes possessing a concise (polynomial in the blocklength) specification is
NP-hard. Examples of such codes will be given in the following chapters.

Notes

We have left aside most algorithmic issues in this chapter. In particular many
optimization algorithms are based on linear programming. There exist nice the-
oretical frameworks, and very efficient algorithms, for solving continuous opti-
mization problems in which the cost function, and the constraints, are linear
functions of the variables. These tools can be successfully exploited for address-
ing optimization problems with discrete variables. The idea is to relax the integer
constraints. For instance, in the MAX-CUT problem, one should assign a value
z. € {0,1} to an edge e, saying whether e is in the cut. If ¢, is the cost of the
edge, one needs to maximize ) x.c. over all feasible cuts. A first step consists
in relaxing the integer constraints z. € {0,1} to x. € [0, 1], enlarging the space
search. One then solves the continuous problem using linear programming. If the
maximum is achieved over integer x.’s, this yields the solution of the original
discrete problem. In the opposite case one can add extra constraints in order
to reduce again the space search until the a real MAX-CUT will be found. A
general introduction to combinatorial optimization, including all these aspects,
is provided by (Papadimitriou and Steiglitz, 1998).

A complete treatment of computational complexity theory can be found in
(Garey and Johnson, 1979), or in the more recent (Papadimitriou, 1994). The
seminal theorem by Cook was independently rediscovered by Levin in 1973. The
reader can find its proof in one of the above books.

Euler discussed the Konisberg’s 7 bridges problem in (Euler, 1736).
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The TSP, which is simple to state, difficult to solve, and lends itself to nice
pictorial representations, has attracted lots of works. The interested reader can
find many references, pictures of TSP’s optimal tours with thousands of vertices,
including tours among the main cities in various countries, applets, etc.. on the
web, starting from instance from (Applegate, Bixby, Chvatal and Cook, ).

The book (Hartmann and Rieger, 2002) focuses on the use of optimization al-
gorithms for solving some problems in statistical physics. In particular it explains
the determination of the ground state of a random field Ising model with a max-
imum flow algorithm. A recent volume edited by these same authors (Hartmann
and Rieger, 2004) addresses several algorithmic issues connecting optimization
and physics; in particular chapter 4 by Liers, Jiinger, Reinelt and Rinaldi de-
scribes the branch-and-cut approach to the maximum cut problem used for spin
glass studies.

An overview classical computational problems from coding theory is the re-
view by Barg (Barg, 1998). Some more recent issues are addressed by Spielman
(Spielman, 1997). Finally, the first proof of NP-completeness for a decoding
problem was obtained by Berlekamp, McEliecee and van Tilborg (Berlekamp,
McEliecee and van Tilborg, 1978).
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PROBABILISTIC TOOLBOX

The three fields that form the subject of this book, all deal with large sets of
random variables. Not surprisingly, they possess common underlying structures
and techniques. This Chapter describes some of them, insisting on the mathe-
matical structures, large deviations on one hand, and Markov chains for Monte
Carlo computations on the other hand. These tools will reappear several times
in the following Chapters.

Since this Chapter is more technical than the previous ones, we devote the
entire Section 4.1 to a qualitative introduction to the subject. In Sec. 4.2 we
consider the large deviation properties of simple functions of many independent
random variables. In this case many explicit results can be easily obtained. We
present a few general tools for correlated random variables in Sec. 4.3 and the
idea of Gibbs free energy in Sec. 4.4. Section 4.5 provide a simple introduction to
the Monte Carlo Markov chain method for sampling configurations from a given
probability distribution. Finally, in Sec. 4.6 we show how sinulated annealing
exploits Monte Carlo techniques for solving optimization problems.

4.1 Many random variables: a qualitative preview

Consider a set of random variables = (z1,22,...,2N), with ; € X and an N
dependent probability distribution

PN(Q):PN(IM...,.TN). (41)

This could be for instance the Boltzmann distribution for a physical system with
N degrees of freedom. The entropy of this law is Hy = —Elog P (z). It often
happens that this entropy grows linearly with N at large N. This means that
the entropy per variable hy = Hy /N has a finite limit limy_.oo hy = h. It is
then natural to characterize any particular realization of the random variables
(z1,...,2n) by computing the quantity

Fla) = 1 los [ PNl(x)] , (4.2)

which measures how probable the event (z1,...,zy) is.. The expectation of f
is Ef(z) = hy. One may wonder if f(x) fluctuates a lot, or if its distribution
is strongly peaked around f = hpy. The latter hypothesis turns out to be the
correct one in many cases: When N > 1, it often happens that the probability
distribution of f, @ (f) behaves exponentially:
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Qn(f) = e N (4.3)

where I(f) has a non-degenerate minimum at f = h, and I(h) = 0. This means
that, with large probability, a randomly chosen configuration z has f(z) ‘close
to’ h, and, because of the definition (4.2) its probability is approximatively
exp(—Nh). Since the total probability of realizations x such that f(z) ~ h
is close to one, their number must behave as N = exp(Nh). In other words,
the whole probability is carried by a small fraction of all configurations (since
their number, exp(Nh), is in general exponentially smaller than |X'|"), and these
configurations all have the same probability. When such a property (often called
‘asymptotic equipartition’) holds, it has important consequences.

Suppose for instance one is interested in compressing the information con-
tained in the variables (x1,...,xx), which is a sequence of symbols produced by
an information source. Clearly, one should focus on those ‘typical’ sequences x
such that f(x) is close to h, because all the other sequences have vanishing small
probability. Since there are exp(INh) such typical sequences, one must be able to
encode them in Nh/log2 bits by simply numbering them.

Another very general problem consists in sampling from the probability distri-
bution Py (z). With 7 realizations z',...,z" drawn independently from Py (z),
one can estimate an expectation values EO(z) = > Pn(2)O(z) as EO(z) =
131 O(2*) without summing over | X[V terms, and the precision usually im-
proves like 1/4/r at large r. A naive sampling algorithm could be the follow-
ing. First ‘propose’ a configuration x from the uniform probability distribution
Pyrif(x) = 1/|X|N: this is simple to be sampled®. Then ‘accept’ the configuration
with probability Py (z). Such an algorithm is totally unefficient: It is clear that,
for the expectation values of ‘well behaved’ observables, we seek configurations
2 such that f(z) is close to h. However, such configurations are exponentially
rare, and the above algorithm will require a time of order exp[N (log |X| — h)] to
find just one of them. The Monte Carlo method will provide a better alternative.

4.2 Large deviations for independent variables

A behavior of the type (4.3) is an example of a large deviation principle. One often
encounters systems with this property, and it can also hold with more general
functions f(z). The simplest case where such behaviors are found, and the case
where all properties can be controlled in great details, is that of independent
random variables. We study this case in the present section.

4.2.1 How typical is a series of observations?

Suppose that you are given given the values si,...,sy of N ii.d. random vari-
ables drawn from a finite space X according to a known probability distribution

8Here we are assuming that we have access to a source of randomness: [N log, |X|] unbiased
random bits are sufficient to sample from PJ‘ffmf(g). In practice one replaces the source of
randomness by a pseudorandom generator.

{eq:larged_ex}
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{p(s)}scx. The s;’s could be produced for instance by an information source, or
by some repeated measurements on a physical system. You would like to know
if the sequence s = (s1,...,sn) s a typical one, or if you found a rare event.
If N is large, one can expect that the number of appearances of a given x € X
in a typical sequence should be close to Np(x). The method of types allows to
quantify this statement.

The type ¢s(x) of the sequence s is the frequency of appearance of symbol
z in the sequence:

1 N
gs(z) = N Z(Swm ) (4.4)
i=1

where 0 is the Kronecker symbol, such that ¢, , = 1 if + = y and 0 otherwise.
For any observation s, the type ¢s(x), considered as a function of z, has the
properties of a probability distribution over X: ¢(x) > 0 for any z € X and
> . q(x) = 1. In the following we shall denote by 9t(X’) the space of probability
distributions over X: M(X) = {q € RY s.t. g(z) >0, >, g(z) = 1}. Therefore
qs € M(X).

The expectation of the type ¢s(z) coincides with the original probability
distribution:

E¢s(x) = p(z). (4.5)

Sanov’s theorem estimates the probability that the type of the sequence differs
from p(zx).

Theorem 4.1. (Sanov) Let z1,...,any € X be N i.i.d.’s random variables
drawn from the probability distribution p(x), and K C IM(X) a compact set
of probability distributions over X. If q is the type of (x1,...,xN), then

Prob[q € K] = exp[-ND(q"||p)], (4.6)

where ¢, = argmingex D(q||p), and D(q||p) is the KL divergence defined in
Eq. (1.10) .

Basically this theorem means that the probability of finding a sequence with
type g behaves at large N like exp[—ND(ql||p)]. Therefore, for large N, typical
sequences have a type ¢(z) = p(z), and those with a different type are exponen-
tially rare. The proof of the theorem is a straightforward application of Stirling’s
formula and is left as an exercise for the reader. In Appendix 4.7 we give a
derivation using a ‘field theoretical’ method as used in physics. It may be an
instructive simple example for the reader who wants to get used to these kinds
of techniques, frequently used by physicists.

{thm:Sanov}



68 PROBABILISTIC TOOLBOX

Example 4.2 Let the z;’s be the outcome of a biased coin: X = {head, tail},
with p(head) = 1 — p(tail) = 0.8. What is the probability of getting 50 heads
and 50 tails in 100 throws of the coin? Using the expression (4.6) and (1.10) with
N =100 and g(head) = g(tail) = 0.5, we get Prob[50 tails] ~ 2.04 - 10710,

Example 4.3 Let us consider the reverse case: we take a fair coin (p(head) =
p(tail) = 0.5) and ask what is the probability of getting 80 heads and 20 tails.
Sanov theorem provides the estimate Prob[80 heads] ~ 4.27 - 10~?, which is
much higher than the one computed in the previous example.
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Example 4.4 A simple model of a column of the atmosphere consists in
studying N particles in the earth gravitational field. The state of particle
i €{1,...,N}is given by a single coordinate z; > 0 which measures its height
with respect to earth level. For the sake of simplicity, we assume z;’s to be in-
teger numbers. We can, for instance, imagine to discretize the heights in terms
of some small unit length (e.g. millimeters). The N-particles energy function
reads, in properly chosen units:

E = ﬁ: Z. (4.7)

The type of a configuration {z,...,zy} can be interpreted as the density
profile p(z)of the configuration:

1 N
= > e (4.8)
=1l

Using the Boltzmann probability distribution (2.4), it is simple to compute the
expected density profile, which is usually called the ‘equilibrium’ profile:

pea(?) = (p(2)) = (L — e P)e7P2. (4.9)

If we take a snapshot of the N particles at a given instant, their density will
present some deviations with respect to peq(z). The probability of seeing a
density profile p(z) is given by Eq. (4.6) with p(2) = peq(#) and ¢(z) = p(2). For
instance, we can compute the probability of observing an exponential density
profile, like (4.9) with a different parameter \: py(z) = (1 — e=*)e~**. Using
Eq. (1.10) we get:

il — g 06—
D(pallow) =108 (1 =5 ) + 527 (4.10)

The function Ig(A) = D(px||peq) is depicted in Fig. 4.1.

Exercise 4.1 The previous example is easily generalized to the density profile
of N particles in an arbitrary potential V' (z). Show that the Kullback-Leibler
divergence takes the form

D(pl|peq) ﬁZV Zp )log p(x) +log2(8).  (4.11)
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150

Fic. 4.1. Example 3: In an atmosphere where the equilibrium density profile is
Peq(2) o e7P% the probability of observing an atypical profile p(z) oc e=** is, for
a large number of particles N, exp[—NIg()\)]. The curves Ig(\), plotted here,
show that small values of A\ are very rare.

4.2.2  How typical is an empirical average?

The result (4.6) contains a detailed information concerning the large fluctua-
tions of the random variables {x;}. Often one is interested in monitoring the
fluctuations of the empirical average of a measurement, which is a real number

f@):

f

1 N
53 ). (4.12)
=1

Of course f, will be “close” to E f(z) with high probability. The following result
quantifies the probability of rare fluctuations.

Corollary 4.5 Let z1,...,ox be N i.i.d.’s random variables drawn from the
probability distribution p(z). Let f : X — R be a real valued function and f be
its empirical average. If A C R is a closed interval of the real axis

Prob[f € A] = exp[-NI(A)], (4.13)

where

S q(a)f(x) € A

zeX

1(4) = min [Dmnp) (4.14)

Proof: We apply Theorem 4.1 with the compact set

K ={qeMX)| Y qlz)f(x) € A}. (4.15)

zeX

{fig:profilefluc}
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F1G. 4.2. Probability of an atypical average height for N particles with energy
function (4.7). {fig:heightfluc}

This implies straightforwardly Eq. (4.13) with

Y ala)f(x) = w] - (4.16)

zeX

I(¢) = min lD(q Ip)

The minimum in the above equation can be found by Lagrange multipliers

method, yielding Eq. (4.14). O

Example 4.6 We look again at N particles in a gravitational field, as in Ex-
ample 3, and consider the average height of the particles:
N
(4.17)

The expected value of this quantity is E(Z) = zeq = (¢” — 1)~1. The prob-
ability of a fluctuation of Z is easily computed using the above Corollary. For

Z > Zeq, ONE gets P[Z > z] = exp[—N I(z)], with

I(z) = (1+2) log <11+:2q> + 2 log (;q) . (4.18)

Analogously, for z < zeq, P[Z < z| = exp[—N I(z)], with the same rate function

I(z). The function I(z) is depicted in Fig. 4.2.
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Exercise 4.2 One can construct a thermometer using the system of N par-
ticles with the energy function (4.7). Whenever the temperature is required,
you take a snapshot of the N particles, compute Z and estimate the inverse
temperature Best using the formula (et —1)~! = Z. What is (for N > 1) the
probability of getting a result Ses; # 67

4.2.3  Asymptotic equipartition

The above tools can also be used for counting the number of configurations
s = (s1,...,8n) with either a given type ¢(x) or a given empirical average of
some observable f. One finds for instance:

Proposition 4.7 The number Nk n of sequences s which have a type belonging
to the compact K C 9M(X) behaves as Nx n = exp{NH(q.)}, where q. =
argmax{H(q)|q € K}.

This result can be stated informally by saying that “there are approximately
eNH(9) sequences with type ¢”.

Proof:The idea is to apply Sanov’s theorem, taking the “reference” distribu-
tion p(x) to be the flat probability distribution paat(z) = 1/|X|. Using Eq. (4.6),
we get

N n = |X|VProbgailg € K] = exp{N log |X| =N D(q.||psat)} = exp{NH(q.)} -
(4.19)

O

We now get back to a generic sequence s = (s, ..., sy) of N iid variables with
a probability distribution p(x). As a consequence of Sanov’s theorem, we know
that the most probable type is p(z) itself, and that deviations are exponentially
rare in N. We expect that almost all the probability is concentrated on sequences
having a type in some sense close to p(z). On the other hand, because of the
above proposition, the number of such sequences is exponentially smaller than
the total number of possible sequences | X|V.

These remarks can be made more precise by defining what is meant by a
sequence having a type ‘close to p(z)’. Given the sequence s, we introduce the
quantity

1 1
r(s) = N log Py(s) = N Zlogp(xi) . (4.20)

Clearly, Er(s) = H(p). The sequence s is said to be e-typical if and only if
|r(s) — H(p)| < e. Let Ty be the set of e-typical sequences. It has the following
properties:
Theorem 4.8 (i) limy_o Prob[s € T | = 1.

(ii) For N large enough, eNHP)=el < Ty | < eNHP)Fel,

(iii) For any s € Ty ., e” NPTl < Py (s) < e NIH ) =],
Proof:Since r( s) is an empirical average, we can apply Corollary 4.5. This allows
to estimate the probability of not being typical as Prob[s ¢ Ty .| = exp(—N1I).
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The exponent is given by I = min, D(qg||p), the minimum being taken over all
probability distributions g(z) such that | Y- 4 q(x)log[1/q(z)] — H(p) | > e.
But D(gq||p) > 0 unless ¢ = p, and p does not belong to the of minimization.
Therefore I > 0 and limy_.o Prob[s ¢ T ] = 0, which proves (7).

The condition for ¢(z) to be the type of a e-typical sequence can be rewritten

as |D(q|lp) + H(q) — H(p)| < e. Therefore, for any e-typical sequence, |H(q) — H(p)| <

¢ and Proposition 4.7 leads to (i7). Finally, (ii7) is a direct consequence of the
definition of e-typical sequences. [

The behavior described in this proposition is usually denoted as asymptotic
equipartition property. Although we proved it for i.i.d. random variables, this
is not the only context in which it is expected to hold. In fact it will be found in
many interesting systems throughout the book.

4.3 Correlated variables

In the case of independent random variables on finite spaces, the probability of
a large fluctuation is easily computed by combinatorics. It would be nice to have
some general result for large deviations of non-independent random variables. In
this Section we want to describe the use of Legendre transforms and saddle point
methods to study the general case. As it often happens, this method corresponds
to a precise mathematical statement: the Géartner-Ellis theorem. We first describe
the approach informally and apply it to a few of examples. Then we will state
the theorem and discuss it.

4.3.1 Legendre transformation

To be concrete, we consider a set of random variables z = (z1,...,2zx), with
z; € X and an N dependent probability distribution

Let f: X — R be a real valued function. We are interested in estimating, at
large N, the probability distribution of its empirical average

?(&) = N Z f(w). (4.22)

In the previous Section, we studied the particular case in which the z;’s are
i.i.d. random variables. We proved that, quite generally, a finite fluctuation of
f(z) is exponentially unlikely. It is natural to expect that the same statement
holds true if the x;’s are “weakly correlated”. Whenever Py (z) is the Gibbs-
Boltzmann distribution for some physical system, this expectation is supported
by physical intuition. We can think of the x;’s as the microscopic degrees of
freedom composing the system and of f(z) as a macroscopic observable (pressure,
magnetization, etc.). It is a common observation that the relative fluctuations of
macroscopic observables are very small.

{sec:CorrelatedVariables}
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Let us thus assume that the distribution of f follows a large deviation
principle, meaning that the asymptotic behavior of the distribution at large N
is:

Py(f) = exp[-NI(])], (4.23)

with a rate function I(f) > 0.

In order to determine I(f), a useful method consists in “tilting” the measure
Py (-) in such a way that the rare events responsible for O(1) fluctuations of f
become likely. In practice we define the (logarithmic) moment generating

function of f as follows
Un(t) = = log (E eNt?@) , teR. (4.24)

When the property (4.23) holds, we can evaluate the large N limit of )y (¢) using
the saddle point method:

lim ¥y (t) = ]\}iillw%log { / eNthI(f)df} = (1), (4.25)

N—o0
with

W(t) = sup [iF — 1(F)] - (4.26)

fer

¥(t) is the Legendre transform of I(f), and it is a convex function of ¢ by con-
struction (this is proved by differentiating twice Eq. (4.24)). It is therefore natural
to invert the Legendre transform (4.26) as follows:

I,(f) =sup [tf —v(t)] (4.27)

teR

and we expect Iy, (f) to coincide with the convex envelope of I(f). This procedure
is useful whenever computing 1 (t) is easier than directly estimate the probability
distribution Py (f).

4.3.2  FExamples

It is useful to gain some insight by considering a few examples.
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Example 4.9 Consider the one-dimensional Ising model, without external
magnetic field, cf. Sec. 2.5.1. To be precise we have z; = o; € {+1,—1}, and
Py (o) = exp|—BE(c)]/Z the Boltzmann distribution with energy function

N-1
E(g) = — Z 0,041 - (428)
=1

We want to compute the large deviation properties of the magnetization

N
m(c) = % 2_:1 ;. (4.29)

We know from Sec. 2.5.1, and from the symmetry of the energy function under
spin reversal (o; — —o;) that (m(c)) = 0. In order to compute the probability
of a large fluctuation of m, we apply the method described above. A little
thought shows that ¥(t) = ¢(5,t/8) — ¢(5,0) where ¢(3, B) is the free energy
density of the model in an external magnetic field B, found in (2.63). We thus
get

¥(t) = log (4.30)

cosht + \/sinh? t 4+ e—48

1+e28 .
One sees that ¢(t) is convex and analytic for any 8 < oco. We can apply
Eq. (4.27) in order to obtain the rate function I, (m). In Fig. 4.3 we report
the resulting function for several temperatures . Notice that I,,(m) is analytic
and has strictly positive second derivative for any m and § < oo, so that we
expect I(m) = I,(m). This expectation is confirmed by Theorem 4.12 below.
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Fic. 4.3. Rate function for the magnetization of the one-dimensional Ising

model. Notice that, as the temperature is lowered (8 increased) the probabil-
{fig:largedevidIsing} ity of large fluctuations increases.

Example 4.10 Consider a Markov chain Xg, X1,...,X;,... taking values in
a finite state space X, as in the Example 2 of Sec. 1.3, and assume all the
elements of the transition matrix w(xz — y) to be strictly positive. Let us study
the large deviation properties of the empirical average % > f(X5).

One can show that the limit moment generating function v (t), cf. Eq. (4.24)
exists, and can be computed using the following recipe. Define the ‘tilted’ tran-
sition probabilities as wy(z — y) = w(x — y) exp[t f(y)]. Let A\(¢) be the largest
solution of the eigenvalue problem

Y @) wi(x — y) = AD) i(y) (4.31)

TeX

The moment generating function is simply given by ¥ (¢) = log A\(¢) (which is
unique and positive because of Perron-Frobenius theorem).

Notice that Eq. (4.31) resembles the stationarity condition for a Markov
chain with transition probabilities w:(z — y). Unhappily the rates w(z — y)
are not properly normalized (3., wi(z — y) # 1). This point can be overcome
as follows. Call ¢ (x) the right eigenvector of w;(z — y) with eigenvalue A(¢)
and define:

Tz = 9) =~ wi(& — 1) G (y) (4.32)
Wi(r = y) = v wilz —y Y) - .
A(t) ¢} (x) '
We leave to the reader the exercise of showing that: (i) These rates are prop-
erly normalized; (i) Eq. (4.31) is indeed the stationarity condition for the
distribution p;(z) o< ¢! (x)¢7 (x) with respect to the rates wi(x — ).
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Example 4.11 Consider now the Curie-Weiss model without external field,
cf. Sec. 2.5.2. As in Example 1, we take z; = 0, € {+1,—1} and Pn(g) =
exp|—BE(c)]/Z, and we are interested in the large fluctuations of the global
magnetization (4.29). The energy function is

1
E(o) = -~ Z 00 . (4.33)
(i5)

By repeating the arguments of Sec. 2.5.2, it is easy to show that, for any
—1<mp <myg < 1:

Py{m(a) € [m1,ms]} = ZN1<5> / i oMt (4.34)

my
where ¢me(m; 5) = ng —log[2 cosh(m)]. The large deviation property (4.23)
holds, with:

I(m) = ¢mt(m™; 8) — Gme(m; B) - (4.35)

and m*(3) is the largest solution of the Curie Weiss equation m = tanh(8m).
The function I(m) is represented in Fig. 4.4, left frame, for several values of
the inverse temperature . For § < . = 1, I(m) is convex and has its unique
minimum in m = 0.

A new and interesting situation appears when 5 > (.. The function I(m)
is non convex, with two degenerate minima at m = £m*((5). In words, the
system can be found in either of two well-distinguished ‘states’: the positive
and negative magnetization states. There is no longer a unique typical value
of the magnetization such that large fluctuations away from this value are
exponentially rare.

Let us now look at what happens if the generating function approach is
adopted. It is easy to realize that the limit (4.24) exists and is given by

()= sup [mt—I(m)]. (4.36)

me[—1,1]

While at high temperature 5 < 1, % (¢) is convex and analytic, for 5 > 1 it devel-
ops a singularity at ¢ = 0. In particular one has ¢'(0+) = m*(8) = —¢/(0—).
Compute now Iy(m) using Eq. (4.27). A little thought shows that, for any
m € [-m*(B),m*(B)] the supremum is achieved for ¢ = 0, which yields
I,(m) = 0. Outside this interval, the supremum is achieved at the unique
solution of ¢'(t) = m, and I,(m). As anticipated, I,(m) is the convex enve-
lope of I(m). In the range (—m*(3), m*(5)), an estimate of the magnetization
fluctuations through the function = exp(—NI,(m)) would overestimate the
fluctuations.
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4.3.3 The Gartner-Ellis theorem

The Gértner-Ellis theorem has several formulations which usually require some
technical definitions beforehand. Here we shall state it in a simplified (and some-
what weakened) form. We need only the definition of an exposed point: z € R
is an exposed point of the function F' : R — R if there exists t € R such that
ty — F(y) > ta — F(zx) for any y # x. If, for instance, F' is convex, a sufficient
condition for = to be an exposed point is that F' is twice differentiable at x with
F"(z) > 0.

Theorem 4.12. (Gértner-Ellis) Consider a function f(z) (not necessarily of
the form (4.22)) and assume that the moment generating function ¥ (t) defined
in (4.24) exists and has a finite limit (t) = limy_o0 YN (t) for any t € R.
Define Iy(-) as the inverse Legendre transform of Eq. (4.27) and let £ be the set
of exposed points of I (-).

1. For any closed set F' € R:

1 _
i - < —i . .
hfvnjfop v logPn(feF) < }gfwfw(f) (4.37)

2. For any open set G € R:

1 _
i — > — i . .
llﬁnjgoleogPN(feG) > fégfqglw(f) (4.38)
3. If moreover 1(t) is differentiable for any t € R, then the last statement

holds true with the inf being taken over the whole set G (rather than over
GNE).

Informally, the inverse Legendre transform (4.27) generically yields an upper
bound on the probability of a large fluctuation of the macroscopic observable.
This upper bound is tight unless a ‘first order phase transition’ occurs, corre-
sponding to a discontinuity in the first derivative of 1 (t).

It is worth mentioning that () can be non-analytic at a point ¢, while its
first derivative is continuous at t,. This correspondsm in the statistical mechanics
jargon, to a ‘higher order’ phase transition. As we shall see in the following
Chapters, such phenomena have interesting probabilistic interpretations too.

4.3.4  Typical sequences

Let us get back to the concept of typical sequences, introduced in Section 4.2.
More precisely, we want to investigate the large deviation of the probability itself,
measured by r(z) = —% log P(z). For independent random variables, the study
of sect. 4.2.3 led to the concept of e-typical sequences. What can one say about
general sequences?

Let us compute the corresponding moment generating function (4.24):

wzv(t)=%log > Pyt (4.39)
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Without loss of generality, we can assume Py (z) to have the Boltzmann form:

Pula) = =5 el —AEN ()} (4.40)
with energy function En(z). Inserting this into Eq. (4.39), we get
N (t) = Bfn(B) — BIn(B(1 = 1)), (4.41)

where fn(8) = —(1/N)log Zn () is the free energy density of the system with
energy function Fy(z) at inverse temperature . Let us assume that the ther-
modynamic limit f(8) = limy_o fn(0) exists and is finite. It follows that the
limiting generating function ¥(t) exists and we can apply the Gértner-Ellis the-
orem to compute the probability of a large fluctuation of r(x). As long as f(3)
is analytic, large fluctuations are exponentially depressed and the asymptotic
equipartition property of independent random variables is essentially recovered.
On the other hand, if there is a phase transition at 8 = [., where the first
derivative of f(f3) is discontinuous, then the likelihood r(x) may take several
distinct values with a non-vanishing probability. This is what happened with the
magnetization in Example 3 above.

4.4 Gibbs free energy

In the introduction to statistical physics of chapter 2, we assumed that the
probability distribution of the configurations of a physical system is Boltzmann’s
distribution. It turns out that this distribution can be obtained from a variational
principle. This is interesting, both as a matter of principle and in order to find
approximation schemes.

Consider a system with a configuration space X, and a real valued energy
function E(x) defined on this space. The Boltzmann distribution is Pg(x) =
exp[—fB(E(x) — F(0))], where F(3), the ‘free energy’, is a function of the inverse
temperature ( defined by the fact that )  _, Ps(z) = 1. Let us define the
Gibbs free energy G[P] (not to be confused with F(/3)), which is a real valued
functional over the space of probability distributions P(x) on X

1
GIP]=> P(z)E(x)+ = > P(x)log P(x). (4.42)
reX ﬂ reX
It is easy to rewrite the Gibbs free energy in terms of the KL divergence between

P(z) and the Boltzmann distribution Pg(x):

mm=%waw+me (4.43)

This representation implies straightforwardly the following proposition (Gibbs
variational principle):

{sec:Gibbs}
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Proposition 4.13 The Gibbs free energy G[P] is a convex functional of P(x),
and it achieves its unique minimum on the Boltzmann distribution P(x) = Pg(z).

Moreover G[Pg] = F(f3), where F(3) is the free energy.

When the partition function of a system cannot be computed exactly, the above
result suggests a general line of approach for estimating the free energy: one can
minimize the Gibbs free energy in some restricted subspace of “trial probability
distributions” P(x). These trial distributions should be simple enough that G[P]
can be computed, but the restricted subspace should also contain distributions
which are able to give a good approximation to the true behavior of the physical
system. For each new physical system one will thus need to find a good restricted
subspace.

Example 4.14 Consider a system with space of configurations X = R and
energy:
1 5,14
E(z) = -tz® + -2, (4.44)
2 4
with t € R. We ask the question of computing its free energy at temperature
6 =1 as a function of ¢t. With a slight abuse of notation, we are interested in

F(t) = —log < / da e—E<w>> : (4.45)

The above integral cannot be computed in closed form and so we recur to the
Gibbs variational principle. We consider the following family of trial probability
distributions:

Qa(z) = \/% g%/, (4.46)

=}

It is easy to compute the corresponding Gibbs free energy for § = 1:

1 3 1
GlQ.] = gta+t ZaZ -3 (1+log2ma) = G(a,t). (4.47)
The Gibbs principle implies that F'(¢) < min, G(a,t). In Fig. 4.5 we plot the
optimal value of a, aopt(t) = argmin, G(a,t) and the corresponding estimate
Gopt(t) = G(aops(t), t)-
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Fi1Gc. 4.4. The rate function for large fluctuations of the magnetization in the
{fig:largedevcw} Curie-Weiss model (left) and the corresponding generating function (right).

Example 4.15 Consider the same problem as above and the family of trials
distributions:
1

Qa(x) = me‘(x‘“)z/ 2 (4.48)

We leave as an exercise for the reader the determination of the optimal value
of aopt, and the corresponding upper bound on F(t), cf. Fig. 4.5. Notice the
peculiar phenomenon going on at e, = —3. For ¢ > to, we have aopi(t) = 0,
while G[Q,] has two degenerate local minima a = £aep(t) for ¢ < ;.
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Example 4.16 Consider the Ising model on a d-dimensional lattice L of linear
size L (i.e. L = [L]?), cf. Sec. 2.5. The energy function is (notice the change of
normalization with respect to Sec. 2.5)

E(g)=-) 0i0;—B) o;. (4.49)

(i5) =

For the sake of simplicity we assume periodic boundary conditions.
This means that two sites ¢ = (i1,...,%q) and j = (j1,...,ja) are considered
nearest neighbors if, for some I € {1,...,d}, iy—j; = £1 ( mod L) and iy = jyr
for any [’ # [. The sum over (ij) in Eq. (4.49) runs over all nearest neighbors
pairs in L.

In order to obtain a variational estimate of the free energy F(8) at in-
verse temperature 3, we evaluate the Gibbs free energy on the following trial
distribution:

i€L

with ¢, (+) = (1 +m)/2 and ¢, (=) = (1 —m)/2 and m € [-1,+1]. Notice
that, under Q,,(c), the o;’s are i.i.d. random variables with expectation m.

It is easy to evaluate the Gibbs free energy on this distribution. If we define
the per-site Gibbs free energy g(m; 3, B) = G[Q..]/L¢, we get

g(m; 3,B) = f%mQ -~ Bm+ %H((1+m)/2). (4.51)
Gibbs variational principle implies an upper bound on the free energy density
f(B) < inf,, g(m; B, h). Notice that, apart from an additive constant, this ex-
pression (4.51) has the same form as the solution of the Curie-Weiss model, cf.
Eq. (2.79). We refer therefore to Sec. 2.5.2 for a discussion of the optimization
over m. This implies the following inequality:

1

fa(B,h) < few(B:h) = 5 - (4.52)

The relation between Gibbs free energy and Kullback-Leibler divergence in
Eq. (4.43) implies a simple probabilistic interpretation of Gibbs variational prin-
ciple. Imagine to prepare a large number N of copies of the same physical system.
Each copy is described by the same energy function F(z). Now consider the em-
pirical distribution P(z) of the N copies. Typically P(z) will be close to the
Bolzmann distribution Pg(z). Sanov’s theorem implies that the probability of
an ‘atypical’ distribution is exponentially small in N:

P[P] = exp[-N(G[P] - F(0))]- (4.53)
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An illustration of this remark is provided by Exercise 4 of Sec. 4.2.

4.5 The Monte Carlo method

The Monte Carlo method is an important generic tool which is common to
probability theory, statistical physics and combinatorial optimization. In all of
these fields, we are often confronted with the problem of sampling a configuration
z € XN (here we assume X to be a finite space) from a given distribution
P(z). This can be quite difficult when N is large, because there are too many
configurations, because the typical configurations are exponentially rare and/or
because the distribution P(z) is specified by the Boltzmann formula with an
unknown normalization (the partition function).

A general approach consists in constructing a Markov chain which is guaran-
teed to converge to the desired P(z) and then simulating it on a computer. The
computer is of course assumed to have access to some source of randomness: in
practice pseudo-random number generators are used. If the chain is simulated
for a long enough time, the final configuration has a distribution ‘close’ to P(z).
In practice, the Markov chain is defined by a set of transition rates w(z — y)
with z,y € XN which satisfy the following conditions.

1. The chain is irreducible, i.e. for any couple of configurations z and y,
there exists a path (zg,z;,...x,) of length n, connecting x to y with non-
zero probability. This means that zy = z, z, = y and w(z; ;%-4-1) >0
fori=0...n—1.

2. The chain is aperiodic: for any couple z and y, there exists a positive
integer n(x,y) such that, for any n > n(x,y) there exists a path of length
n connecting & to y with non-zero probability. Notice that, for an irre-
ducible chain, aperiodicity is easily enforced by allowing the configuration
to remain unchanged with non-zero probability: w(z — z) > 0.

3. The distribution P(z) is stationary with respect to the probabilities
w(z — y):

> P(z) w(z —y) = Ply). (4.54)
T

Sometimes a stronger condition (implying stationarity) is satisfied by the

transition probabilities. For each couple of configurations z, y such that

either w(z — y) > 0 or w(y — x) > 0, one has

P(z)w(z —y) =Py)wly — z). (4.55)

This condition is referred to as reversibility or detailed balance.

The strategy of designing and simulating such a process in order to sample
from P(z) goes under the name of dynamic Monte Carlo method or Monte
Carlo Markov chain method (hereafter we shall refer to it simply as Monte
Carlo method). The theoretical basis for such an approach is provided by two
classic theorems which we collect below.

{sec:MonteCarlo}
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Theorem 4.17 Assume the rates w(z — y) to satisfy the hypotheses 1-3 above.
Let X, X,,...,X,,... be random variables distributed according to the Markov
chain with rates w(z — y) and initial condition X, = z,. Let f : XN — R be
any real valued function. Then

1. The probability distribution of X; converges to the stationary one:

lim P[X, = z] = P(x). (4.56)

t—oo

2. Time averages converge to averages over the stationary distribution

t—o0

t
lim % Sz:; f(X,) = Z P(z)f(xz) almost surely. (4.57)

z

The proof of this Theorem can be found in any textbook on Markov processes.
Here we will illustrate it by considering two simple Monte Carlo algorithms which
are frequently used in statistical mechanics (although they are by no means the
most efficient ones).

{thm:AsymptoticMarkov}
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Example 4.18 Consider a system of N Ising spins o = (07 ...0y) with en-
ergy function E(o) and inverse temperature . We are interested in sampling
the Boltzmann distribution P3. The Metropolis algorithm with random up-
datings is defined as follows. Call ¢(¥) the configuration which coincides with
o but for the site i (ai(l) = —0;), and let AE;(¢) = E(c?) — E(g). At each

step, an integer ¢ € [N] is chosen randomly with flat probability distribution
and the spin o; is flipped with probability

w;(o) = exp{—pF max[AE;(c),0]}. (4.58)

In formulae, the transition probabilities are given by

1 ¢ (i)
w(gegzﬁgwi@ o(z,a") +

1 X
- ;wi(a)] (. 0), (4.59)

where §(o,7) = 1 if ¢ = 7, and = 0 otherwise. It is easy to check that this
definition satisfies both the irreducibility and the stationarity conditions for
any energy function E(g) and inverse temperature § < 1. Furthermore, the
chain satisfies the detailed balance condition:

Ps(0) wi(o) = Pg(a™) wi(c™) . (4.60)

Whether the condition of aperiodicity is fulfilled depends on the energy. It is
easy to construct systems for which it does not hold. Take for instance a single
spin, N = 1, and let E(c) = 0: the spin is flipped at each step and there is no
way to have a transition from o = +1 to ¢ = —1 in an even number of steps.
(But this kind of pathology is easily cured modifying the algorithm as follows.
At each step, with probability 1 —e a site 7 is chosen and a spin flip is proposed
as above. With probability e nothing is done, i.e. a null transition o0 — ¢ is
realized.)

Exercise 4.3 Variants of this chain can be obtained by changing the flipping
probabilities (4.58). A popular choice consists in the heath bath algorithm
(also referred to as Glauber dynamics):

o) = } [t -t (PAE@)] "

Prove irreducibility, aperiodicity and stationarity for these transition probabil-
ities.

One of the reason of interest of the heath bath algorithm is that it can be
easily generalized to any system whose configuration space has the form XV. In
this algorithm one chooses a variable index i, fixes all the others variables, and
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assign a new value to the i-th one according to its conditional distribution. A
more precise description is provided by the following pseudocode. Recall that,
given a vector z € XV, we denote by z_;, the N — 1-dimensional vector obtained
by removing the i-th component of x.

~7

Heat bath algorithm()

Input: A probability distribution P(z) on the configuration space XN,
and the number r of iterations.

Output: a sequence 2@ M g™

1. Generate z(% uniformly at random in XN,

2. For t=1 to t=r:
2.1 Draw a uniformly random integer ¢ € {1,...,N}
2.2 For each z € X, compute
P(X; =2z X, = x(tv_l))

L ug

_ _ =)y
PXi=zX =z "y) S P =, X, = 20Dy
(4.62)
2.3 Set z§t) :x§t71) for each j #1i, and xgt) = z where z is drawn
from the distribution P(X; =z|X , = gg;l)g).

Let us stress that this algorithm does only require to compute the probability

P(z) up to a multiplicative constant. If, for instance, P(z) is given by Boltz-

mann law, cf. Sec. 2.1, it is enough to be able to compute the energy E(x) of

a configuration, and is instead not necessary to compute the partition function

Z(B)-

This is a very general method for defining a Markov chain with the desired

property. The proof is left as exercise.

Exercise 4.4 Assuming for simplicity that Va, P(z) > 0, prove irreducibility,
aperiodicity and stationarity for the heat bath algorithm.

Theorem 4.17 confirms that the Monte Carlo method is indeed a viable
approach for sampling from a given probability distribution. However, it does
not provide any information concerning its computational efficiency. In order to
discuss such an issue, it is convenient to assume that simulating a single step
X, — X, of the Markov chain has a unitary time-cost. This assumption is a
good one as long as sampling a new configuration requires a finite (fixed) number
of computations and updating a finite (and N-independent) number of variables.
This is the case in the two examples provided above, and we shall stick here to
this simple scenario.

Computational efficiency reduces therefore to the question: how many step
of the Markov chain should be simulated? Of course there is no unique answer
to such a generic question. We shall limit ourselves to introduce two important
figures of merit. The first concerns the following problem: how many steps should
be simulated in order to produce a single configuration z which is distributed
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approximately according to P(x)? In order to precise what is meant by “approx-
imately” we have to introduce a notion distance among distributions P;(-) and
Py(-) on XN. A widespread definition is given by the variation distance:

1P -Pli=5 3 1A - o)l (4.63)

zeXN

Consider now a Markov chain satisfying the hypotheses 1-3 above with respect to
a stationary distribution P(z) and call P;(z|z,) the distribution of X, conditional
to the initial condition X, = z4. Let dy (t) = [|Pi(-|z9) — P(-)|| be the distance
from the stationary distribution. The mixing time (or variation threshold
time) is defined as

Teq(€) = min{t > 0 : supd,,(t) <e}. (4.64)

Zy

In this book we shall often refer informally to this quantity (or to some close
relative) as the equilibration time. The number ¢ can be chosen arbitrarily, a
change in ¢ implying usually a simple multiplicative change in in 7.4 (¢). Because
of this reason the convention ¢ = 1/e is sometimes adopted.

Rather than producing a single configuration with the prescribed distribution,
one is often interested in computing the expectation value of some observable
O(z). In principle this can be done by averaging over many steps of the Markov
chain as suggested by Eq. (4.57). It is therefore natural to pose the following
question. Assume the initial condition X is distributed according to the sta-
tionary distribution P(z). This can be obtained by simulating 7., () steps of the
chain in a preliminary (equilibration) phase. We shall denote by () the expec-
tation with respect to the Markov chain with this initial condition. How many
steps should we average over in order to get expectation values within some
prescribed accuracy? In other words, we estimate Y P(z)O(z) = EpO by

T= 5 ; (4.65)

It is clear that (Or) = Y. P(x)O(xz). Let us compute the variance of this esti-
mator:

T—1 T—1
1 1
Var(Or) = — } : (0401 = 75 >~ (T = 1)(00; 01)., (4.66)
+=0 t=0

where we used the notation Oy = O(X,). Let us introduce the autocorrelation
function Co(t — s) = 2808;;, so that Var(Or) = wgpifcﬁ tT:_ol(T — 1) Col(t).
General results on Markov chain on finite state spaces imply that Co () decreases
exponentially as ¢ — oco. Therefore, for large 7', we have
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F1G. 4.5. Variational estimates of the free energy of the model (4.44). We use
the trial distributions (4.46) on the left and (4.48) on the right.

Var(Or) = % [EpO? — (EpO)?] + O(T~2). (4.67)
The integrated autocorrelation time 7, is given by
T =)_Co(t), (4.68)
t=0

and provides a reference for estimating how long the Monte Carlo simulation
should be run in order to get some prescribed accuracy. Equation (4.67) can
be interpreted by saying that one statistically independent estimate of EpQO is
obtained every 70, iterations.

Example 4.19 Consider the Curie-Weiss model, cf. Sec. 2.5.2, at inverse tem-
perature 3, and use the heath-bath algorithm of Example 2 in order to sample
from the Boltzmann distribution. In Fig. ?? we reproduce the evolution of the
global magnetization m(o) during three different simulations at inverse temper-
atures = 0.8, 1.0, 1.2 for a model of N = 150 spin. In all cases we initialized
the Markov chain by extracting a random configuration with flat probability.

A spectacular effect occurs at the lowest temperature, § = 1.2. Although
the Boltzmann average of the global magnetization vanishes, (m(g)) = 0, the
sign of the magnetization remains unchanged over extremely long time scales.
It is clear that the equilibration time is at least as large as these scales. An
order-of-magnitude estimate would be 7o, > 10°. Furthermore this equilibra-
tion time diverges exponentially at large N. Sampling from the Boltzmann
distribution using the present algorithm becomes exceedingly difficult at low
temperature.

4.6 Simulated annealing

As we mentioned in Sec. 3.5, any optimization problem can be ‘embedded’ in a
statistical mechanics problem. The idea is to interpret the cost function E(z), z €
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XN as the energy of a statistical mechanics system and consider the Boltzmann
distribution pg(z) = exp[—BE(z)]/Z. In the low temperature limit 8 — oo, the
distribution concentrates over the minima of E(xz), and the original optimization
setting is recovered.

Since the Monte Carlo method provides a general technique for sampling
from the Boltzmann distribution, one may wonder whether it can be used, in
the § — oo limit, as an optimization technique. A simple minded approach would
be to take § = oo at the outset. Such a straegy is generally referred to as quench
in statistical physics and greedy search in combinatorial optimization, and is
often bound to fail. Consider in fact the stationarity condition (4.54) and rewrite
it using the Boltzmann formula

S e PE@-EW] (g y) = 1. (4.69)

Since all the terms on the left hand side are positive, any of them cannot be larger
than one. This implies 0 < w(z — y) < exp{—F[F(y) — E(x)]}. Therefore, for
any couple of configurations z, y, such that F(y) > F(z) we have w(z — y) — 0
in the § — oo limit. In other words, the energy is always non-increasing along
the trajectories of a zero-temperature Monte Carlo algorithm. As a consequence,
the corresponding Markov chain is not irreducible, although it is irreducible at
any [ < oo, and is not guaranteed to converge to the equilibrium distribution,
i.e. to find a global minimum of F(z).

Another simple minded approach would be to set § to some large but finite
value. Although the Boltzmann distribution gives some weight to near-optimal
configurations, the algorithm will visit, from time to time, also optimal config-
uratons which are the most probable one. How large should be 3?7 How much
time shall we wait before an optimal configuration is visited? We can assume
without loss of generality that the minimum of the cost function (the ground
state energy) is zero: Ey = 0. A meaningful quantity to look at is the probability
for E(z) = 0 under the Boltzmann distribution at inverse temperature 5. We
can easily compute the logarithmic moment generating function of the energy:

1 R 1 S, e~ (B—1)E(x)
Un(t) = N log Zpﬁ@) e | — N log [w] . (4.70)

This is given by ¥ (t) = on (8 —t) — dn(5), where ¢y () is the free entropy
density at inverse temperature (. Clearly pg[E(x) = 0] = exp[Nyn(—00)] =
exp{N[pn(c0)—on(0)]}, and the average time to wait before visiting the optimal
configuration is 1/pg[E(x) = 0] = exp[—Nyn(—00)].
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Exercise 4.5 Assume that the cost function takes integer values E =
0,1,2... and call Xg the set of cofigurations z such that E(z) = E. You
want the Monte Carlo trajectories to spend a fraction (1 — ¢) of the time on
optimal solutions. Show that the temperature must be chosen such that

B = log <!S§J|> +0O(e). (4.71)

In Section 2.4 we argued that, for many statistical mechanics models, the free
entropy density has a finite thermodynamic limit ¢(3) = limy .0 ¢n(3). In the
following Chapters we will show that this is the case also for several interesting
optimization problems. This implies that pg[E(x) = 0] vanishes in the N — oo
limit. In order to have a non-negligibile probability of hitting a solution of the
optimization problem, § must be scaled with N in such a waythat 8 — oo as
N — o00. On the other hand, letting 8 — oo we are going to face the reducibility
problem mentioned above. Althouch the Markov chain is formally irreducible,
its equilibration time will diverge as  — oc.

The idea of simulated annealing consists in letting 8 vary with time. More
precisely one decides an annealing schedule {(31,n1); (82,n2);...(8r,n5)},
with inverse temperatures f3; € [0, 00] and integers n; > 0. The algorithm is ini-
tialized on a configutation z, and executes n; Monte Carlo steps at temperature
081, no at temperature s, ..., ny at temperature 3. The final configuration of
each cycle ¢ (with ¢ = 1,...,L — 1) is used as initial configuration of the next
cycle. Mathematically, such a process is a time-dependent Markov chain.
The common wisdom about the simulated annealing algorithm is that varying
the temperature with time should help avoiding the two problems encountered
above. Usually one takes the 3;’s to be an increasing sequence. In the first stages
a small 3 should help equilibrating across the space of configurations XV. As the
themperature is lowered the probability distribution concentrates on the lowest
energy regions of this space. Finally, in the late stages, a large 3 forces the sys-
tem to fix the few wrong details, and to find solution. Of course, this image is
very simplistic. In the following Chapter we shall try to refine it by considering
the application of simulated annealing to a variety of problems.

4.7 Appendix: A physicist’s approach to Sanov’s theorem

Let us show how the formulas of Sanov’s theorem can be obtained using the type
of ‘field theoretic’ approach used in statistical physics. The theorem is easy to
prove, the aim of this section is not so much to give a proof, but rather to show
on a simple example a type of approach that is very common in physics, and
which can be powerful. We shall not aim at a rigorous derivation.

The probability that the type of the sequence z1,--- ,2x be equal to g(x)
can be written as:
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N
Plo(a)) = { I <q<x> 3 a) }

TeEX
N
= Y plar)--plan) T <Q(33) = ]1[25“0) : (4.72)

A typical approach in field theory is to introduce some auxiliary variables in

order to enforce the constraint that ¢(z) = + Zf\]:l 0y, For each z € X, one
introduces a variable A\(x), and uses the ‘integral representation’ of the constraint

in the form:

N 2 2 N
I (q(x) = ;2517&) = /0 d;\; ) exp [z)\(x) (Nq(x) - Zég”>]

- (4.73)

Dropping g-independent factors, we get:

Pla(o)] = € [ T[ d\@) exp(NSIN}

reX

where C' is a normalization constant, and the action S is given by:

SN =1 Z Az)g(x) + log

Zp(ac)e_w‘(m)] (4.74)

In the large N limit, the integral in (4.74) can be evaluated with a saddle point
method. The saddle point A(xz) = A*(z) is found by solving the stationarity
equations 9S/0A(z) = 0 for any = € X. One gets a family of solutions —i\(z) =
C+1log(g(z)/p(x)) with C arbitrary. The freedom in the choice of C' comes from
the fact that > (>, 0s,2,) = N for any configuration x; ...z, and therefore
one of the constraints is in fact useless. This freedom can be fixed arbitrarily:
regardless of this choice, the action on the saddle point is

SIV] = 50— S ate) g 23 (1.75)

xT

where Sy is a ¢ independent constant. One thus gets P[q(z)] = exp[—ND(q||p)].
The reader who has never encountered this type of reasoning may wonder why
use such an indirect approach. It turns out that it is a very common formalism
in statistical physics, where similar methods are also applied, under the name
‘field theory’, to continuous X spaces (some implicit discretization is then usually
assumed at intermediate steps, and the correct definition of a continuum limit is
often not obvious). In particular the reader interested in the statistical physics
approach to optimizations problems or information theory will often find this
type of formalism in research papers. One of the advantages of this approach is
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that it provides a formal solution to a large variety of problems. The quantity to
be computed is expressed in an integral form as in (4.74). In problems having a
‘mean field’ structure, the dimension of the space over which the integration is
performed does not depend upon N. Therefore its leading exponential behavior
at large IV can be obtained by saddle point methods. The reader who wants
to get some practice of this approach is invited to ‘derive’ in the same way the
various theorems and corollaries of this chapter.

Notes

The theory of large deviations is exposed in the book of Dembo and Zeitouni
(Dembo and Zeitouni, 1998), and its use in statistical physics can be found in
Ellis’s book (Ellis, 1985).

Markov chains on discrete state spaces are treated by Norris (Norris, 1997)
A nice introduction to Monte Carlo methods in statistical physics is given in the
lecture notes by Krauth (Krauth, 1998) and by Sokal (Sokal, 1996).

Simulated annealing was introduced by Kirkpatrick, Gelatt and Vecchi 1983
(Kirkpatrick, C. D. Gelatt and Vecchi, 1983). It is a completely “universal”
optimization algorithm: it can be defined without reference to any particular
problem. Beacause of this reason it ofteen overlooks important structures that
may help solving the problem itself.



