---------------------------------------------------------------------------------
log: C:\AAA Miker Files\newer web pages\soc_388_notes\soc_388_2007\class_
> 17_log.log
log type: text
opened on: 27 Nov 2007, 11:34:18
. *A quick log about negative binomial and loglinear models.
. desmat: poisson count frace*fed6 mrace*med6 rendog blendog BW @BWsce
------------------------------------------------------------------------------
Poisson regression
------------------------------------------------------------------------------
Dependent variable count
Optimization: ml
Number of observations: 324
Initial log likelihood: -1335369.103
Log likelihood: -139712.934
LR chi square: 2391312.338
Model degrees of freedom: 38
Pseudo R-squared: 0.895
Prob: 0.000
------------------------------------------------------------------------------
nr Effect Coeff s.e.
------------------------------------------------------------------------------
count
frace
1 NH Black -3.412** 0.049
2 All Others -0.708** 0.017
fed6
3 10,11 0.342** 0.008
4 HS 2.069** 0.006
5 Some col 1.326** 0.007
6 BA 0.765** 0.007
7 >BA 0.115** 0.008
frace.fed6
8 NH Black.10,11 0.030 0.021
9 NH Black.HS -0.507** 0.017
10 NH Black.Some col -0.492** 0.019
11 NH Black.BA -0.998** 0.023
12 NH Black.>BA -0.977** 0.028
13 All Others.10,11 -0.361** 0.023
14 All Others.HS -1.029** 0.019
15 All Others.Some col -1.129** 0.022
16 All Others.BA -1.814** 0.031
17 All Others.>BA -1.541** 0.036
mrace
18 NH Black -1.959** 0.038
19 All Others -0.821** 0.017
med6
20 10,11 0.137** 0.008
21 HS 1.782** 0.006
22 Some col 1.223** 0.006
23 BA 0.739** 0.007
24 >BA 0.559** 0.007
mrace.med6
25 NH Black.10,11 0.034 0.019
26 NH Black.HS -0.584** 0.015
27 NH Black.Some col -0.721** 0.017
28 NH Black.BA -1.422** 0.023
29 NH Black.>BA -1.716** 0.026
30 All Others.10,11 -0.161** 0.024
31 All Others.HS -0.815** 0.019
32 All Others.Some col -0.840** 0.021
33 All Others.BA -1.584** 0.029
34 All Others.>BA -1.512** 0.030
rendog
35 1 2.291** 0.008
blendog
36 1 4.204** 0.073
BW
37 1 -0.546** 0.039
38 BWsce 0.136** 0.012
39 _cons 5.226** 0.011
------------------------------------------------------------------------------
* p < .05
** p < .01
. poisgof
Goodness-of-fit chi2 = 277491.9
Prob > chi2(285) = 0.0000
. *This is the Model 1 loglinear model from my AJS paper. Note the positive and significant BWsce (Black white status caste exchange) term.
. desmat: nbreg count frace*fed6 mrace*med6 rendog blendog BW @BWsce, verbose
Desmat generated the following design matrix:
nr Variables Term Parameterization
First Last
1 _x_1 _x_2 frace ind(1)
2 _x_3 _x_7 fed6 ind(1)
3 _x_8 _x_17 frace.fed6 ind(1).ind(1)
4 _x_18 _x_19 mrace ind(1)
5 _x_20 _x_24 med6 ind(1)
6 _x_25 _x_34 mrace.med6 ind(1).ind(1)
7 _x_35 rendog ind(0)
8 _x_36 blendog ind(0)
9 _x_37 BW ind(0)
10 _x_38 BWsce direct
Fitting Poisson model:
Iteration 0: log likelihood = -1785213.3
Iteration 1: log likelihood = -1335702.9 (backed up)
Iteration 2: log likelihood = -1072685.9
Iteration 3: log likelihood = -420545.17
Iteration 4: log likelihood = -177722.64
Iteration 5: log likelihood = -140348.62
Iteration 6: log likelihood = -139713.77
Iteration 7: log likelihood = -139712.93
Iteration 8: log likelihood = -139712.93
Fitting constant-only model:
Iteration 0: log likelihood = -2750.3011
Iteration 1: log likelihood = -2216.8924
Iteration 2: log likelihood = -2216.8896
Iteration 3: log likelihood = -2216.8896
Fitting full model:
Iteration 0: log likelihood = -2154.7704 (not concave)
Iteration 1: log likelihood = -2034.0179
Iteration 2: log likelihood = -1992.6755
Iteration 3: log likelihood = -1941.2353
Iteration 4: log likelihood = -1853.3137
Iteration 5: log likelihood = -1852.3806
Iteration 6: log likelihood = -1852.3774
Iteration 7: log likelihood = -1852.3774
Negative binomial regression Number of obs = 324
LR chi2(38) = 729.02
Prob > chi2 = 0.0000
Log likelihood = -1852.3774 Pseudo R2 = 0.1644
------------------------------------------------------------------------------
count | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_x_1 | -3.54226 .3671344 -9.65 0.000 -4.261831 -2.82269
_x_2 | -1.143256 .3275539 -3.49 0.000 -1.78525 -.5012625
_x_3 | .3411358 .3214777 1.06 0.289 -.2889489 .9712205
_x_4 | 1.617797 .3258008 4.97 0.000 .9792392 2.256355
_x_5 | 1.015074 .3359433 3.02 0.003 .3566369 1.67351
_x_6 | .4092661 .347168 1.18 0.238 -.2711706 1.089703
_x_7 | -.0381025 .3572391 -0.11 0.915 -.7382783 .6620733
_x_8 | .0191493 .4663474 0.04 0.967 -.8948748 .9331734
_x_9 | -.3327831 .4625601 -0.72 0.472 -1.239384 .573818
_x_10 | -.1818947 .467158 -0.39 0.697 -1.097508 .7337181
_x_11 | -.6255032 .4753208 -1.32 0.188 -1.557115 .3061085
_x_12 | -.5304081 .48833 -1.09 0.277 -1.487517 .4267012
_x_13 | -.3094955 .453883 -0.68 0.495 -1.19909 .5800989
_x_14 | -.6454152 .4537051 -1.42 0.155 -1.534661 .2438303
_x_15 | -.6475651 .4565164 -1.42 0.156 -1.542321 .2471907
_x_16 | -1.116904 .4595527 -2.43 0.015 -2.017611 -.2161974
_x_17 | -1.121978 .466346 -2.41 0.016 -2.036 -.2079567
_x_18 | -2.144572 .369716 -5.80 0.000 -2.869202 -1.419942
_x_19 | -.8657121 .3371297 -2.57 0.010 -1.526474 -.2049501
_x_20 | .0486761 .3283103 0.15 0.882 -.5948003 .6921525
_x_21 | 1.364141 .3305427 4.13 0.000 .7162892 2.011993
_x_22 | 1.025122 .3393403 3.02 0.003 .3600274 1.690217
_x_23 | .7357188 .3496288 2.10 0.035 .0504589 1.420979
_x_24 | 1.098691 .3597084 3.05 0.002 .3936753 1.803706
_x_25 | .1557508 .4615805 0.34 0.736 -.7489303 1.060432
_x_26 | -.2930492 .4610576 -0.64 0.525 -1.196706 .6106071
_x_27 | -.2825236 .4639913 -0.61 0.543 -1.19193 .6268826
_x_28 | -.9211377 .4720356 -1.95 0.051 -1.84631 .0040351
_x_29 | -1.275697 .481366 -2.65 0.008 -2.219157 -.3322372
_x_30 | -.1053643 .4646886 -0.23 0.821 -1.016137 .8054086
_x_31 | -.6205033 .4618318 -1.34 0.179 -1.525677 .2846704
_x_32 | -.6304821 .464632 -1.36 0.175 -1.541144 .2801799
_x_33 | -1.337587 .4705215 -2.84 0.004 -2.259792 -.4153817
_x_34 | -1.439732 .4750442 -3.03 0.002 -2.370801 -.5086626
_x_35 | 2.276199 .1601957 14.21 0.000 1.962222 2.590177
_x_36 | 4.065725 .4047264 10.05 0.000 3.272475 4.858974
_x_37 | -.6528239 .2048047 -3.19 0.001 -1.054234 -.2514141
_x_38 | .0450504 .083835 0.54 0.591 -.1192633 .2093641
_cons | 5.599588 .3222667 17.38 0.000 4.967957 6.231219
-------------+----------------------------------------------------------------
/lnalpha | -.1060076 .0771399 -.2571991 .0451839
-------------+----------------------------------------------------------------
alpha | .8994178 .069381 .7732142 1.04622
------------------------------------------------------------------------------
Likelihood-ratio test of alpha=0: chibar2(01) = 2.8e+05 Prob>=chibar2 = 0.000
------------------------------------------------------------------------------
Negative binomial regression
------------------------------------------------------------------------------
Dependent variable count
Optimization: ml
Number of observations: 324
Initial log likelihood: -2216.890
Log likelihood: -1852.377
LR chi square: 729.025
Model degrees of freedom: 38
Pseudo R-squared: 0.164
Dispersion: mean
Prob: 0.000
------------------------------------------------------------------------------
nr Effect Coeff s.e.
------------------------------------------------------------------------------
count
frace
1 NH Black -3.542** 0.367
2 All Others -1.143** 0.328
fed6
3 10,11 0.341 0.321
4 HS 1.618** 0.326
5 Some col 1.015** 0.336
6 BA 0.409 0.347
7 >BA -0.038 0.357
frace.fed6
8 NH Black.10,11 0.019 0.466
9 NH Black.HS -0.333 0.463
10 NH Black.Some col -0.182 0.467
11 NH Black.BA -0.626 0.475
12 NH Black.>BA -0.530 0.488
13 All Others.10,11 -0.309 0.454
14 All Others.HS -0.645 0.454
15 All Others.Some col -0.648 0.457
16 All Others.BA -1.117* 0.460
17 All Others.>BA -1.122* 0.466
mrace
18 NH Black -2.145** 0.370
19 All Others -0.866* 0.337
med6
20 10,11 0.049 0.328
21 HS 1.364** 0.331
22 Some col 1.025** 0.339
23 BA 0.736* 0.350
24 >BA 1.099** 0.360
mrace.med6
25 NH Black.10,11 0.156 0.462
26 NH Black.HS -0.293 0.461
27 NH Black.Some col -0.283 0.464
28 NH Black.BA -0.921 0.472
29 NH Black.>BA -1.276** 0.481
30 All Others.10,11 -0.105 0.465
31 All Others.HS -0.621 0.462
32 All Others.Some col -0.630 0.465
33 All Others.BA -1.338** 0.471
34 All Others.>BA -1.440** 0.475
rendog
35 1 2.276** 0.160
blendog
36 1 4.066** 0.405
BW
37 1 -0.653** 0.205
38 BWsce 0.045 0.084
39 _cons 5.600** 0.322
lnalpha
40 _cons -0.106 0.077
------------------------------------------------------------------------------
* p < .05
** p < .01
. *The negative binomial version of M1 totally erases what was a significant and positive finding for the status-caste exchange variable.
. *And nbreg fits dramatically better, adding one additional term.
. desmat: poisson count frace*fed6 mrace*med6 med6*fed6 rendog blendog BW @B
> Wsce
------------------------------------------------------------------------------
Poisson regression
------------------------------------------------------------------------------
Dependent variable count
Optimization: ml
Number of observations: 324
Initial log likelihood: -1335369.103
Log likelihood: -2153.154
LR chi square: 2666431.898
Model degrees of freedom: 63
Pseudo R-squared: 0.998
Prob: 0.000
------------------------------------------------------------------------------
nr Effect Coeff s.e.
------------------------------------------------------------------------------
count
frace
1 NH Black -3.868** 0.050
2 All Others -0.931** 0.018
fed6
3 10,11 -0.441** 0.014
4 HS 0.237** 0.012
5 Some col -1.613** 0.021
6 BA -3.226** 0.046
7 >BA -3.938** 0.063
frace.fed6
8 NH Black.10,11 0.117** 0.021
9 NH Black.HS -0.204** 0.018
10 NH Black.Some col 0.063** 0.021
11 NH Black.BA -0.110** 0.026
12 NH Black.>BA 0.063* 0.031
13 All Others.10,11 -0.290** 0.023
14 All Others.HS -0.835** 0.020
15 All Others.Some col -0.835** 0.023
16 All Others.BA -1.387** 0.032
17 All Others.>BA -1.085** 0.037
mrace
18 NH Black -2.055** 0.038
19 All Others -1.057** 0.018
med6
20 10,11 -0.592** 0.015
21 HS -0.021 0.013
22 Some col -1.607** 0.022
23 BA -3.300** 0.049
24 >BA -3.669** 0.059
mrace.med6
25 NH Black.10,11 0.046* 0.019
26 NH Black.HS -0.524** 0.016
27 NH Black.Some col -0.700** 0.019
28 NH Black.BA -1.405** 0.025
29 NH Black.>BA -1.723** 0.029
30 All Others.10,11 -0.076** 0.024
31 All Others.HS -0.601** 0.020
32 All Others.Some col -0.554** 0.022
33 All Others.BA -1.202** 0.030
34 All Others.>BA -1.105** 0.032
med6.fed6
35 10,11.10,11 0.927** 0.020
36 10,11.HS 0.946** 0.017
37 10,11.Some col 1.067** 0.028
38 10,11.BA 0.800** 0.062
39 10,11.>BA 0.623** 0.089
40 HS.10,11 1.085** 0.017
41 HS.HS 2.298** 0.015
42 HS.Some col 2.680** 0.024
43 HS.BA 2.868** 0.048
44 HS.>BA 2.506** 0.066
45 Some col.10,11 1.232** 0.028
46 Some col.HS 2.904** 0.023
47 Some col.Some col 4.582** 0.029
48 Some col.BA 5.043** 0.050
49 Some col.>BA 4.763** 0.067
50 BA.10,11 1.002** 0.063
51 BA.HS 3.493** 0.051
52 BA.Some col 5.626** 0.053
53 BA.BA 7.368** 0.067
54 BA.>BA 6.899** 0.080
55 >BA.10,11 0.615** 0.081
56 >BA.HS 3.081** 0.061
57 >BA.Some col 5.576** 0.063
58 >BA.BA 7.465** 0.075
59 >BA.>BA 8.163** 0.086
rendog
60 1 2.261** 0.008
blendog
61 1 4.320** 0.073
BW
62 1 -0.541** 0.039
63 BWsce 0.070** 0.018
64 _cons 6.949** 0.012
------------------------------------------------------------------------------
* p < .05
** p < .01
. poisgof
Goodness-of-fit chi2 = 2372.308
Prob > chi2(260) = 0.0000
That’s loglinear model 2.
. desmat: nbreg count frace*fed6 mrace*med6 med6*fed6 rendog blendog BW @BWsce
------------------------------------------------------------------------------
Negative binomial regression
------------------------------------------------------------------------------
Dependent variable count
Optimization: ml
Number of observations: 324
Initial log likelihood: -2216.890
Log likelihood: -1427.298
LR chi square: 1579.182
Model degrees of freedom: 63
Pseudo R-squared: 0.356
Dispersion: mean
Prob: 0.000
------------------------------------------------------------------------------
nr Effect Coeff s.e.
------------------------------------------------------------------------------
count
frace
1 NH Black -3.627** 0.116
2 All Others -1.021** 0.084
fed6
3 10,11 -0.313* 0.126
4 HS 0.312* 0.123
5 Some col -1.243** 0.133
6 BA -2.929** 0.152
7 >BA -3.412** 0.166
frace.fed6
8 NH Black.10,11 0.010 0.134
9 NH Black.HS -0.358** 0.126
10 NH Black.Some col -0.105 0.128
11 NH Black.BA -0.317* 0.134
12 NH Black.>BA -0.255 0.140
13 All Others.10,11 -0.341** 0.116
14 All Others.HS -0.749** 0.110
15 All Others.Some col -0.745** 0.112
16 All Others.BA -1.194** 0.120
17 All Others.>BA -1.120** 0.126
mrace
18 NH Black -1.981** 0.105
19 All Others -0.972** 0.090
med6
20 10,11 -0.486** 0.130
21 HS 0.175 0.127
22 Some col -1.141** 0.136
23 BA -2.872** 0.159
24 >BA -3.120** 0.169
mrace.med6
25 NH Black.10,11 0.043 0.123
26 NH Black.HS -0.467** 0.117
27 NH Black.Some col -0.516** 0.120
28 NH Black.BA -1.121** 0.127
29 NH Black.>BA -1.338** 0.133
30 All Others.10,11 -0.147 0.125
31 All Others.HS -0.585** 0.118
32 All Others.Some col -0.542** 0.119
33 All Others.BA -1.178** 0.125
34 All Others.>BA -1.154** 0.127
med6.fed6
35 10,11.10,11 0.924** 0.154
36 10,11.HS 0.998** 0.152
37 10,11.Some col 1.048** 0.165
38 10,11.BA 0.853** 0.197
39 10,11.>BA 0.302 0.218
40 HS.10,11 1.067** 0.152
41 HS.HS 2.150** 0.148
42 HS.Some col 2.370** 0.158
43 HS.BA 2.595** 0.181
44 HS.>BA 2.012** 0.195
45 Some col.10,11 1.149** 0.164
46 Some col.HS 2.587** 0.157
47 Some col.Some col 3.997** 0.165
48 Some col.BA 4.419** 0.185
49 Some col.>BA 4.168** 0.198
50 BA.10,11 1.060** 0.202
51 BA.HS 3.225** 0.183
52 BA.Some col 5.027** 0.189
53 BA.BA 6.695** 0.203
54 BA.>BA 6.210** 0.216
55 >BA.10,11 0.492* 0.220
56 >BA.HS 2.830** 0.194
57 >BA.Some col 4.914** 0.198
58 >BA.BA 6.829** 0.212
59 >BA.>BA 7.477** 0.221
rendog
60 1 2.202** 0.037
blendog
61 1 4.162** 0.125
BW
62 1 -0.608** 0.067
63 BWsce 0.015 0.025
64 _cons 6.708** 0.105
lnalpha
65 _cons -3.250** 0.122
------------------------------------------------------------------------------
* p < .05
** p < .01
* And that’s the nbreg version of model 2, which again erases the significance of the BWsce term.