
Managing State for Ajax-Driven Web Components 
 

John Ousterhout and Eric Stratmann 
Department of Computer Science 

 Stanford University 
{ouster,estrat}@cs.stanford.edu 

 
Abstract 

Ajax-driven Web applications require state to be maintained across a series of server requests related to a single Web 
page. This conflicts with the stateless approach used in most Web servers and makes it difficult to create modular com-
ponents that use Ajax. We implemented and evaluated two approaches to managing component state: one, called remind-
ers, stores the state on the browser, and another, called page properties, stores the state on the server. Both of these ap-
proaches enable modular Ajax-driven components but they both introduce overhead for managing the state; in addition 
the reminder approach creates security issues and the page property approach introduces storage reclamation problems. 
Because of the subtlety and severity of the security issues with the reminder approach, we argue that it is better to store 
Ajax state on the server. 

1 Introduction  
Ajax (shorthand for “Asynchronous Javascript And 
XML”) is a mechanism that allows Javascript code run-
ning in a Web browser to communicate with a Web 
server without replacing the page that is currently dis-
played [6].  Ajax first became available in 1999 when 
Microsoft introduced the XMLHTTP object in Internet 
Explorer version 5, and it is now supported by all Web 
browsers.  In recent years more and more Web applica-
tions have begun using Ajax because it permits incre-
mental and fine-grained updates to Web pages, result-
ing in a more interactive user experience. Notable ex-
amples of Ajax are Google Maps and the auto-
completion menus that appear in many search engines. 

Unfortunately, Ajax requests conflict with the stateless 
approach to application development that is normally 
used in Web servers.  In order to handle an Ajax re-
quest, the server often needs access to state information 
that was available when the original page was rendered 
but discarded upon completion of that request. Current 
applications and frameworks use ad hoc approaches to 
reconstruct the state during Ajax requests, resulting in 
code that is neither modular nor scalable. 

We set out to devise a systematic approach for manag-
ing Ajax state, hoping to enable simpler and more 
modular code for Ajax-driven applications. We imple-
mented and evaluated two alternative mechanisms. The 
first approach, which we call reminders, stores the state 
information on the browser with the page and returns 
the information to the server in subsequent Ajax re-
quests. The second approach, which we call page prop-
erties, stores the state information on the server as part 
of the session. Both of these approaches allow the crea-
tion of reusable components that encapsulate their Ajax 
interactions, so that Web pages can use the components 

without being aware of or participating in the Ajax in-
teractions. Although each approach has disadvantages, 
we believe that the page property mechanism is the 
better of the two because it scales better and has fewer 
security issues. 

The rest of this paper is organized as follows. Section 2 
introduces the Ajax mechanism and its benefits. Section 
3 describes our modularity goal and presents an exam-
ple component that is used in the rest of the paper. Sec-
tion 4 describes the problems with managing Ajax 
state, and how they impact the structure of applications. 
Sections 5 and 6 introduce the reminder and page prop-
erty mechanisms, and Section 7 compares them. Sec-
tion 8 presents examples of Ajax-driven components 
using these mechanisms, Section 9 describes related 
work, and Section 10 concludes. 

2 Ajax Background 
Ajax allows a Web page to communicate with its origi-
nating Web server as shown in Figure 1. An Ajax-
driven page is initially rendered using the normal 
mechanism where the browser issues an HTTP request 

Browser Server
Initial page fetch 

Ajax requests 

HTML 

HTML, JSON, Javascript, ... 

Figure 1. After the initial rendering of a Web page, Ajax 
requests can be issued to retrieve additional data from the 
server, which can be used to make incremental modifica-
tions to the page displayed in the browser. 

Appears in USENIX Conference on Web Application Development, June 23-24, 2010 



to the server and the server responds with HTML for 
the page contents. Once the page has been loaded, 
Javascript event handlers running in that page can issue 
Ajax requests.  Each Ajax request generates another 
HTTP request back to the server that rendered the origi-
nal page. The response to the Ajax request is passed to 
another Javascript event handler, which can use the 
information however it pleases. 

Ajax responses can contain information in any format, 
but in practice the response payload usually consists of 
one of three things: 
• An HTML snippet, which the Javascript event han-

dler assigns to the innerHTML property of a page 
element in order to replace its contents.  

• Structured data in a format such as JSON [4], which 
the Javascript event handler uses to update the page 
by manipulating the DOM. 

• Javascript code, which is evaluated in the browser 
(this form is general enough to emulate either of the 
other forms, since the Javascript can include literals 
containing HTML or any other kind of data). 

The power of Ajax stems from the fact that the re-
sponse is passed to a Javascript event handler rather 
than replacing the entire page. This allows Web pages 
to be updated in an incremental and fine-grained fash-
ion using new information from the server, resulting in 
a more interactive user experience. One popular exam-
ple is Google Maps, which allows a map to be dragged 
with the mouse. As the map is dragged, Ajax requests 
fetch additional images that extend the map's coverage, 
creating the illusion of a map that extends infinitely in 
all directions. Another example is an auto-completion 
menu that appears underneath the text entry for a search 
engine. As the user types a search term the auto-
completion menu updates itself using Ajax requests to 
display popular completions of the search term the user 
is typing. 

Although the term “Ajax” typically refers to a specific 
mechanism based on Javascript XMLHttpRequest ob-
jects, there are several other ways to achieve the same 
effect in modern browsers.  One alternative is to create 
a new <script> element in the document, which 
causes Javascript to be fetched and executed. Another 
approach is to post a form, using the target attribute 
to direct the results to an invisible frame; the results can 
contain Javascript code that updates the main page. In 
this paper we will use the term “Ajax” broadly to refer 
to any mechanism that allows an existing page to inter-
act with a server and update itself incrementally. 

3 Encapsulation Goal 
The basic Ajax mechanism is quite simple and flexible, 
but it is difficult to incorporate cleanly into Web appli-
cation frameworks. Our work with Ajax occurred in the 
context of Fiz [10], an experimental server-side Web 
application framework under development at Stanford 
University. The goal for Fiz is to raise the level of pro-
gramming for Web applications by encouraging a com-
ponent-based approach, where developers create appli-
cations by assembling pre-existing components. Each 
component manages a portion of the Web page, such 
as: 
• A form field that displays a calendar from which a 

user can select a particular date. 
• A general-purpose table that can be sorted based on 

the values of one or more column(s). 
• A catalog display tailored to the interests of the cur-

rent user. 
• A shopping cart. 
Ideally, a component-based approach should simplify 
development by encouraging reusability and by hiding 
inside the components many of the complexities that 
developers must manage explicitly today, such as the 
quirks of HTML, Ajax requests, and a variety of secu-
rity issues. 

For a component framework to succeed it must have 
several properties, one of the most important of which 
is encapsulation: it must be possible to use a compo-
nent without understanding the details of its implemen-
tation, and it must be possible to modify a component 
without modifying all of the applications that use the 
component. For example, consider a large Web site 
with complex pages, such as Amazon. Teams of devel-
opers manage different components that are used on 
various Web pages, such as sponsored advertisements, 
user-directed catalog listings, and search bars. Each 
team should be able to modify and improve its own 
components (e.g., by adding Ajax interactions) without 
requiring changes in the pages that use those compo-
nents. Thus, one of our goals for Fiz is that a compo-
nent should be able to use Ajax requests in its imple-
mentation without those requests being visible outside 
the component. 

In this paper we will use the TreeSection component 
from Fiz to illustrate the problems with Ajax compo-
nents and the potential solutions. TreeSection is a class 
that provides a general-purpose mechanism for brows-
ing hierarchical data as shown in Figure 2(a).  It dis-
plays hierarchically-organized data using icons and 
indentation; users can click on icons to expand or hide 
subtrees.  In order to support the display of large struc-
tures, a TreeSection does not download the entire tree 

- 2 - 



to the browser. Instead, it initially displays only the top 
level of the tree; Ajax requests are used to fill in the 
contents of subtrees incrementally when they are ex-
panded. 

The TreeSection class automatically handles a variety 
of issues, such as the tree layout, Javascript event han-
dlers to allow interactive expansion and collapsing, and 
the Ajax-based mechanism for filling in the tree struc-
ture on demand. It also provides options for customiz-
ing the display with different icons, node formats, and 
graphical effects. 

In order to maximize its range of use, the TreeSection 
does not manage the data that it displays. Instead, 
whenever it needs information about the contents of the 
tree it invokes an external data source. The data source 
is passed the name of a node and returns information 
about the children of the node. When a TreeSection is 
constructed it is provided with the name of the data 
source method (FS.filesInDir in Figure 2(b)), along 

with the name of the root node of the tree (code/Fiz 
in Figure 2(b)).  In the example of Figure 2 the data 
source reads information from the file system, but dif-
ferent data sources can be used to browse different 
structures. The TreeSection invokes the data source 
once to display the top level of the tree during the gen-
eration of the original Web page, then again during 
Ajax requests to expand nodes. 

(a) 

The challenge we will address in the rest of this paper 
is how to manage the state of components such as 
TreeSection in a way that is convenient for developers 
and preserves the encapsulation property. 

4 The Ajax State Problem 
Using Ajax today tends to result in complex, non-
modular application structures. We will illustrate this 
problem for servers based on the model-view-controller  
(MVC) pattern [11,12]. MVC is becoming increasingly 
popular because it provides a clean decomposition of 
application functionality and is supported in almost all 
Web development frameworks. Similar problems with 
Ajax state arise for Web servers not based on MVC. 

When an HTTP request arrives at a Web server based 
on MVC it is dispatched by the application framework 
to a particular method in a particular controller class, 
based on the URL in the request, as shown in Figure 
3(a). The controller method collects data for the page 
from model classes and then invokes one or more view 
classes to render the page's HTML. If the page subse-
quently makes an Ajax request, the request is dis-
patched to another method in the same controller. The 
Ajax service method invokes model classes to collect 
data and then view classes to format a response. 

new TreeSection("FS.filesInDir", 
                "code/Fiz"); 

(b) 

Figure 2. The Fiz TreeSection component displays hier-
archical information using nested indentation and allows 
the structure to be browsed by clicking on + and - icons: 
(a) the appearance of a TreeSection that displays the con-
tents of a directory; (b) Java code to construct the 
TreeSection as part of a Web page. 

Unfortunately, with this approach the controller for a 
page must be involved in every Ajax request emanating 
from the page, which breaks the application's modular-
ity. If one of the views used in a page introduces new 
Ajax requests, every controller using that view must be 
modified to mediate those requests. As a result, it is not 
possible to create reusable components that encapsulate 
Ajax, and Ajax-driven applications tend to have com-
plex and brittle structures. 

The first step in solving this problem is to bypass the 
controller when handling an Ajax request and dispatch 
directly to the class that implements the component, as 
shown in Figure 3(b). Virtually all frameworks have 
dispatchers that can be customized to implement this 
behavior. 

Dispatching directly to the component creates two addi-
tional issues. First, the controller is no longer present to 
collect data for the component, so the component must 

- 3 - 



Render Ajax 
Page Request 

invoke models itself to gather any data it needs. This is 
not difficult for the component to do, but it goes against 
the traditional structure for Web applications, where 
views receive all of their data from controllers. 

The second problem created by direct dispatching re-
lates to the state for the Ajax request. In order to handle 
the Ajax request, the component needs access to con-
figuration information that was generated during the 
original rendering of the page. In the TreeSection ex-
ample of Figure 2, the component needs the name of 
the data source method in order to fetch the contents of 
the node being expanded. This information was avail-
able at the time the component generated HTML for the 
original page, but the stateless nature of most Web 
servers causes data like this to be discarded at the end 
of each HTTP request; thus Ajax requests begin proc-
essing with a clean slate. 

One of the advantages of dispatching Ajax requests 
through the controller is that it can regenerate state such 
as the name of the data source method.  This informa-
tion is known to the controller, whose code is page-
specific, but not to the component, which must support 
many different pages with different data sources. If 
Ajax requests are dispatched directly to the component 
without passing through the controller, then there must 
be some other mechanism to provide the required state 
to the component. 

Solutions to the state management problems fall into 
two classes: those that store state on the browser and 
those that store state on the server. We implemented 
one solution from each class in Fiz and compared them.  
The next section describes our browser-based ap-
proach, which we call reminders; the server-based ap-

proach, which we call page properties, is described in 
the following section. 

5 Reminders 
Our first attempt at managing Ajax state was to store 
the state in the browser so the server can remain state-
less. When an Ajax-driven component renders its por-
tion of the initial page it can specify information called 
reminders that it will need later when processing Ajax 
requests. This information is transmitted to the browser 
along with the initial page and stored in the browser 
using Javascript objects (see Figure 4). Later, when 
Ajax requests are issued, relevant reminders are auto-
matically included with each Ajax request.  The re-
minders are unpacked on the server and made available 
to the Ajax handler. An Ajax handler can create addi-
tional reminders and/or modify existing reminders; this 

Ajax #2

Figure 4. Reminders are pieces of state that are generated 
by the server, stored in the browser, and returned in later 
Ajax requests.  Additional reminders can be generated 
while processing Ajax requests. 

Browser Server
Initial page fetch 

Ajax #1

HTML

Reminders

Controller Controller

Views

Ajax Component 

Render
Page 

Ajax 
Request 

Models Models 

(a) (b)

Figure 3. (a) The structure of a typical Web application today, where all HTTP requests for a page (including Ajax re-
quests) are mediated by the page's controller class; (b) A component-oriented implementation in which all aspects of the 
Ajax-driven element, including both its original rendering and subsequent Ajax requests, are encapsulated in a reusable 
component.  In (b) Ajax requests are dispatched directly to the component, bypassing the controller, and the component 
fetches its own data from model classes  

- 4 - 



Type of reminder; used to identify 
reminder in Ajax handler 

Figure 5. Examples of the APIs for creating and using reminders in the Fiz TreeSection. 

When rendering original page: 
Reminder r1 = new Reminder("tree", "class", "TreeSection", 
                           "edgeFamily", "treeSolid.gif", 
                           "dataSource", "FS.filesInDir"); 

Name-value pairs to 
store in reminder 

Reminder r2 = new Reminder("node", "name", "code/Fiz/app"); 
String js = Ajax.invoke("/fiz/TreeSection/ajaxExpand", 

URL for Ajax 
 request                         r1, r2) 

 
Reminders to include 
in Ajax request 

 
 
When processing Ajax request: 
Reminder sectionInfo = request.getReminder("tree"); 
Reminder nodeInfo = request.getReminder("node"); 
String name = nodeInfo.get("name"); 

information is returned to the browser along with the 
Ajax response, and will be made available in future 
Ajax requests.  Reminders are similar to the View State 
mechanism provided by Microsoft's ASP.NET frame-
work; see Section 9 for a comparison. 

Figure 5 illustrates the APIs provided by Fiz for man-
aging reminders. Each Reminder object consists of a 
type and a collection of name-value pairs. The type is 
used later by Ajax request handlers to select individual 
reminders among several that may be included with 
each request. For example, the TreeSection creates one 
reminder of type tree containing overall information 
about the tree, such as its data source and information 
needed to format HTML for the tree. It also creates one  
reminder of type node for each expandable node in the 
tree, which contains information about that particular 
node.  When the user clicks on a node to expand it, the 
resulting Ajax request includes two reminders: the 
overall tree reminder for the tree, plus the node re-
minder for the particular node that was clicked. 

Fiz automatically serializes Reminder objects as 
Javascript strings and transmits them to the browser. 
Fiz also provides a helper method Ajax.invoke, for 
use in generating Ajax requests. Ajax.invoke will 
create a Javascript statement that invokes an Ajax re-
quest for a given URL and includes the data for one or 
more reminders.  The result of Ajax.invoke can be 
incorporated into the page’s HTML; for example, 
TreeSection calls Ajax.invoke once for each expand-
able node and uses the result as the value of an on-
click attribute for the HTML element displaying the + 
icon. 

When an Ajax request arrives at the Web server, Fiz 
dispatches it directly to a method in the TreeSection 
class. Fiz automatically deserializes any reminders at-
tached to the incoming request and makes them avail-
able to the request handler via the getReminder 
method.  In the TreeSection example the request han-
dler collects information about the node being ex-
panded (by calling the data source for the tree), gener-
ates HTML to represent the node's contents, and returns 
the HTML to the browser, where it is added to the ex-
isting page. If the node's contents include expandable 
sub-nodes, an additional node reminder is created for 
each of those sub-nodes and included with the Ajax 
response. 

5.1 Evaluation of reminders 
The reminder mechanism makes it possible to encapsu-
late Ajax interactions within components, and it does so 
without storing any additional information on the 
server. Ajax interactions are not affected by server 
crashes and reboots, since their state is in the browser. 

Reminders have two disadvantages. First, they intro-
duce additional overhead for transmitting reminder data 
to the browser and returning it back to the server. In 
order to minimize this overhead we chose a granular 
approach with multiple reminders per page: each Ajax 
request includes only the reminders needed for that 
request. In our experience implementing Ajax compo-
nents we have not yet needed reminders with more than 
a few dozen bytes of data, so the overhead has not been 
a problem. 

The second disadvantage of reminders is that they in-
troduce security issues. The data stored in reminders 

- 5 - 



represents internal state of the Web server and thus may 
need to be protected from hostile clients. For example, 
the reminders for the TreeSection include the name of 
the data source method and the name of the directory 
represented by each node. If a client modifies remind-
ers it could potentially invoke any method in the server 
and/or view the contents of any directory. 

Fiz uses message authentication codes (MACs) to en-
sure the integrity of reminders. Each reminder includes 
a SHA-256 MAC computed from the contents of the 
reminder using a secret key. There is one secret key for 
each session, which is stored in the session and used for 
all reminders associated with that session. When the 
reminder is returned in an Ajax request the MAC is 
verified to ensure that the reminder has not been modi-
fied by the client. 

MACs prevent clients from modifying reminders, but 
they don't prevent clients from reading the contents of 
reminders. This could expose the server to a variety of 
attacks, depending on the content of reminders. For 
example, if passwords or secret keys were stored in 
reminders then hostile clients could extract them. It is 
unlikely that an application would need to include such 
information in reminders, but even information that is 
not obviously sensitive (such as the name of the data 
source method for the TreeSection) exposes the internal 
structure of the server, which could enable attackers to 
identify other security vulnerabilities. Unfortunately, it 
is difficult to predict the consequences of exposing in-
ternal server information. In order to guarantee the pri-
vacy of reminders they must be encrypted before com-
puting the MAC. Fiz does not currently perform this 
encryption. 

The granular nature of reminders also compromises 
security by enabling mix-and-match replay attacks. For 
example, in the TreeSection each Ajax request includes 
two separate reminders. The first reminder contains 
overall information about the tree, such as the name of 
the data source method. The second reminder contains 
information about a particular node being expanded, 
including the pathname for the node's directory. A hos-
tile client could synthesize AjaxRequests using the tree 
reminder for one tree and the node reminder for an-
other; this might allow the client to access information 
in ways that the server would not normally allow. 

One solution to the replay problem is to combine all of 
the reminders for each page into a single structure as is 
done by View State in ASP.NET.  This would prevent 
mix-and-match attacks but would increase the mecha-
nism's overhead since all of the reminders for the page 
would need to be included in every request. Another 
approach is to limit each Ajax request to a single re-

minder.  Each component would need to aggregate all 
of the information it needs into one reminder; for ex-
ample, the TreeSection would duplicate the information 
about the tree in each node reminder. This approach 
would make it difficult to manage mutable state: if, for 
example, some overall information about the tree were 
modified during an Ajax request then every node re-
minder would need to be updated.  Yet another ap-
proach is to use unique identifiers to link related re-
minders. For example, the tree reminder for each 
TreeSection might contain a unique identifier, and the 
server might require that each node reminder contains 
the same unique identifier as its tree reminder. This 
would prevent a node reminder from being used with a 
different tree reminder, but it adds to the complexity of 
the mechanism. 

As we gained more experience with reminders we be-
came concerned that it would be difficult to use them in 
a safe and efficient fashion, and that these problems 
will increase as Ajax usage becomes more pervasive 
and sophisticated.  If the framework handles all of the 
security issues automatically it will require a heavy-
weight approach such as aggregating all state into a 
single reminder that is both encrypted and MAC-
protected.  However, this would probably not provide 
acceptable performance for complex pages with many 
Ajax-driven components. On the other hand, if devel-
opers are given more granular control over the mecha-
nism they could probably achieve better performance, 
but at a high risk for security vulnerabilities. Even 
highly skilled developers are unlikely to recognize all 
of the potential loopholes, particularly when working 
under pressure to bring new features to market. For 
example, when asked to create an alternative imple-
mentation of TreeSection in Ruby on Rails for com-
parison with Fiz, a Stanford undergraduate with experi-
ence developing Web applications did not recognize 
that the node names need to be protected from tamper-
ing. The prevalence of SQL injection attacks [1] also 
indicates how difficult it is for Web developers to rec-
ognize the security implications of their actions. 

6 Page Properties 
Because of the problems with the reminder mechanism 
we decided to implement a different approach where 
component state is kept in the server instead of the 
browser. This eliminated the security and overhead 
issues with reminders but introduced a different prob-
lem related to garbage collection. 

The server-based approach is called page properties. A 
page property consists of a name-value pair that is ac-
cessible throughout the lifetime of a particular Web 

- 6 - 



Page 

page. The name must be unique within the page and the 
value may be any serializable Java object. Page proper-
ties may be created, examined, and updated at any time 
using a simple API consisting of getPageProperty 
and setPageProperty methods. For example, the 
TreeSection creates a page property for each tree when 
it renders the top level of the tree during initial page 
display. The page property contains overall information 
about the tree, such as the name of the data source 
method, plus information about each node that has been 
rendered in the tree. 

When an Ajax request arrives to expand a TreeSection 
node, it is dispatched directly to the TreeSection class 
just as in the reminder approach. The Ajax request in-
cludes an identifier for a particular tree instance (in 
case there are several trees in a single page) and an 
identifier for the node that is being expanded. The Ajax 
handler in TreeSection retrieves the page property for 
the tree instance, looks up the node identifier in the 
page property object, and uses that information to re-
trieve information about the children of the expanded 
node; this information is used to generate HTML to 
return to the browser, and also to augment the page 
property object with information about children of the 
expanded node. 

The names of page properties are only unique within a 
page, so Fiz associates a unique page identifier with 
each distinct Web page and uses it to separate the page 
properties for different pages.  A page identifier is as-
signed during the initial rendering of each page and is 
stored in the page using a Javascript variable (see Fig-
ure 6). Subsequent Ajax requests and form posts com-
ing from that page automatically include the page iden-
tifier as an argument.  Operations on page properties 
apply to the properties associated with the current page. 

Fiz stores page properties using the session mechanism: 
all of the properties for each page are collected into a 
PageState object, and each session can contain multiple 
PageState objects, indexed by their page identifiers (see 
Figure 6). Storing page properties in the session en-
sures that they are preserved across the various requests 
associated with a page, even though the individual re-
quests are implemented in a stateless fashion. Page 
properties have the same level of durability as other 
session information. 

6.1 Evaluation of page properties 
Page properties avoid the issues that concerned us with 
reminders: the only information sent to the browser is 
the page identifier, so page properties reduce the over-
head of transmitting data back and forth across the net-
work. Page properties also avoid the security issues 
associated with reminders, since state information 
never leaves the server. The use of sessions to store 
page properties ensures isolation between different us-
ers and sessions. 

However, page properties introduce new issues of their 
own. First, in order for page properties to survive 
server crashes they must be written to stable storage 
after each request along with the rest of the session 
data. If page properties contain large amounts of infor-
mation then they could still result in substantial over-
head (e.g. for a TreeSection displaying hundreds of 
expandable nodes there could be several kilobytes of 
page properties). However, the overhead for saving 
page properties on the server is likely to be less than the 
overhead for transmitting reminders back and forth 
over the Internet to browsers. 

Fiz currently stores page properties using the standard 
session facilities provided by the underlying Java serv-
lets framework.  However, it may ultimately be better 

Figure 6. Fiz stores page properties on the server as part of the session. Each Web page is assigned a unique identifier, 
which is included in the page and returned to the server as part of each Ajax request; this allows the server to locate the 
properties for the page. 

Browser Server

Initial page fetch

Ajax

HTML

id

id 

id

Sessions

id

id

State 

id

Page 
PropertiesPage 

Identifier 

- 7 - 



to implement a separate storage mechanism for page 
properties that is optimized for their access patterns. 
For example, many session implementations read and 
write the entire session monolithically; however, a 
given request will only use the page properties for its 
particular page, so it may be inefficient to read and 
write all of the properties for other pages at the same 
time.  In addition, the standard session mechanisms for 
reflecting session data across a server pool may not be 
ideal for page properties. 

A second, and more significant, problem concerns the 
garbage collection of page properties: when is it safe to 
delete old page properties? Unfortunately the lifetime 
of a Web page is not well-defined: the server is not 
notified when the user switches to a different page; 
even if it were notified, the user can return to an old 
page at any time by clicking the “Back” browser but-
ton. There is no limit on how far back a user can return. 
If the server deletes the page properties for a page and 
the user then returns to that page, Ajax requests from 
the page will not function correctly. 

To be totally safe, page properties must be retained for 
the lifetime of the session. However, this would bloat 
the size of session data and result in high overheads for 
reading and writing sessions (most frameworks read 
and write all of the data for a session monolithically, so 
all page properties for all pages will be read and written 
during each request). 

For the Fiz implementation of page properties we have 
chosen to limit the number of pages in each session for 
which properties are retained. If the number of PageS-
tate objects for a session exceeds the limit, the least 
recently used PageState for that session is discarded. If 

a user invokes an Ajax operation on a page whose 
properties have been deleted, Fiz will not find the 
PageState object corresponding to the page identifier in 
the request. Fiz then generates an Ajax response that 
displays a warning message in the browser indicating 
that the page state is stale and suggesting that the user 
refresh the page. If the user refreshes the page a fresh 
page identifier will be allocated and Ajax operations 
will work once again; however, the act of refreshing the 
page will reset the page display (in the case of the 
TreeSection the tree will revert to its original display 
showing only the top-level nodes). We call this situa-
tion a broken page. Broken pages will be annoying for 
users so it is important that they not occur very fre-
quently (of course, users will not notice that a page is 
broken unless they invoke an Ajax operation that re-
quires page properties). 

The frequency of broken pages can be reduced by re-
taining more PageState objects for each session, but 
this will increase the overhead for storing page proper-
ties.  

In order to estimate the frequency of broken pages with 
LRU replacement, we ran a trace-driven simulation 
experiment.  We wrote a Firefox add-on that records all 
operations that change the current Web page being dis-
played and transmits that information to a central server 
at regular intervals. The information logged includes 
new pages, “back” and “forward” history operations, 
redisplays, and tab switches. We used the add-on to 
collect data from about thirty people (mostly Stanford 
students and faculty) over a period of two months (ap-
proximately 200,000 page views in total). We then used 
the data to drive two simulations of the page property 

(b) (a) 

Figure 7. A trace-driven simulation of LRU lists for page properties assuming a single LRU list for each user's interac-
tion with each server host (a) and separate LRU lists for each tab (b). The top curve in each figure shows the rate of 
broken pages for the worst-case user for each LRU list size, and the bottom curve shows behavior for the median user. 
1000 page views represents roughly one week's worth of activity for a typical user. 

0.1

1

10

100

0 20 40 60 80 100
LRU list length (per-user)

B
ro

ke
n 

pa
ge

s/
10

00
 v

ie
w

s

0.1

1

10

100

0 20 40 60 80 100
LRU List Length (per-tab)

B
ro

ke
n 

pa
ge

s/
us

er
/w

ee
k

100th Percentile User 100th Percentile User
90th Percentile User 90th Percentile User
50th Percentile User 50th Percentile User

- 8 - 



mechanism.  

In the first simulation (Figure 7 (a)) we assumed one 
LRU list of page properties for each session (a particu-
lar user accessing a particular server host).  The figure 
shows the rate of broken pages as a function of LRU 
list length, both for “typical” users and for more patho-
logical users. It assumes that every page uses Ajax and 
requires page properties.  For the trace data we col-
lected, an LRU limit of 50 pages per session results in 
less than one broken page per thousand page views for 
most users. The actual frequency of broken pages today 
would be less than suggested by Figure 7, since many 
pages do not use Ajax, but if Ajax usage increases in 
the future, as we expect, then the frequency of broken 
pages could approach that of Figure 7. 

The primary reason for broken pages in the simulations 
is switches between tabs. For example, if a user opens 
an Ajax-driven page in one tab, then opens a second tab 
on the same application and visits several Ajax-driven 
pages, these pages may flush the page properties for the 
first tab, since all tabs share the same session. If the 
user switches back to the first tab its page will be bro-
ken. 

Figure 7(b) shows the frequency of broken pages if a 
separate LRU list is maintained for each tab in each 
session; in this scenario LRU lists with 10 entries 
would eliminate almost all broken pages. Per-tab LRU 
lists will result in more pages cached than per-session 
LRU lists of the same size, since there can be multiple 
tabs in a session. In our trace data there were about 2 
tabs per session on average; per-tab LRU lists used 
roughly the same memory as per-session LRU lists 2.5-
3x as long. Overall, per-tab LRU lists would result in 
fewer broken pages with less memory utilization than 
per-user LRU lists, and they also improve the worst-
case behavior. 

Unfortunately, today’s browsers do not provide any 
identifying information for the window or tab responsi-
ble for a given HTTP request: all tabs and windows 
participate indistinguishably in a single session. Such 
information would be easy for a browser to provide in a 
backwards-compatible fashion: it could consist of an 
HTTP header that uniquely identifies the window or tab 
for the request; ideally it would also include informa-
tion indicating when tabs have been closed. Win-
dow/tab information also has other uses: for example, it 
would enable applications to implement sub-sessions 
for each tab or window so that the interaction stream 
for each tab/window can be handled independently 
while still providing shared state among all of the tabs 
and windows. Without this information, some existing 
Web applications behave poorly when a single user has 

multiple tabs open on the same application, because 
interactions on the different tabs get confused.  

In the absence of tab identifiers, and assuming that 
Ajax becomes pervasive, so that virtually all Web 
pages need Ajax state, we conclude that servers would 
need to retain state for about 50 pages per session in 
order to reduce the frequency of broken pages to an 
acceptable level. In our current uses of page properties 
the amount of state per Ajax component is typically 
only a few tens of bytes (see Section 8), so storing state 
for dozens of pages would not create a large burden for 
servers. 

It would also be useful to add priorities to the page 
property mechanism; the state for higher priority pages 
would be retained in preference to that for lower prior-
ity pages. It is particularly annoying for users to lose 
partially entered form data, so a priority mechanism 
could be used to preserve the state for pages containing 
unsubmitted forms. Once the form has been submitted 
successfully, the priority of its data could be reduced to 
allow reclamation. 

7 Comparisons 
After implementing and using both page properties and 
reminders, our conclusion is that the page property ap-
proach is the better of the two.  Both mechanisms in-
troduce overhead to transmit or store state, but the 
overheads for page properties are likely to be lower, 
since the state can be stored locally on the server with-
out transmitting it over the Internet. The reminder ap-
proach has unique problems related to security, and the 
page property approach has unique problems related to 
garbage collection. However, we believe that the gar-
bage collection issues for page properties are manage-
able and that the subtle security loopholes that can oc-
cur in the reminder mechanism will cause more catas-
trophic problems. 

Ideally, the state management mechanism should scale 
up gracefully as Web applications make more intensive 
use of Ajax interactions and develop more complex 
state. We believe that page properties are likely to han-
dle such scaling better than reminders. Consider a Web 
page with a collection of related Ajax-driven compo-
nents. It is possible that multiple Ajax requests might 
be issued from different components simultaneously; 
for example, one component might be refreshing itself 
periodically based on a timer, while another component 
issues an Ajax request because of a user interaction. If 
the components are related then they may also share 
state (reminders or page properties). With the reminder 
approach each request will receive a separate copy of 
the relevant reminders and there is no obvious way for 

- 9 - 



the concurrent requests to serialize updates to their re-
minders. With the page property approach the concur-
rent requests will access the same page properties, so 
they can synchronize and serialize their updates to 
those properties using standard mechanisms for ma-
nipulating concurrent data structures. 

In both the reminder and page property mechanisms the 
state must be serializable. For reminders the state must 
be serialized so it can be transmitted to and from the 
browser; for page properties the state must be serialized 
to save it as part of the session. 

8 Component Examples in Fiz 
We have implemented three components in Fiz that 
take advantage of the page property mechanism; they 
illustrate the kinds of state that must be managed for 
Ajax requests. 

The first component is the TreeSection that has already 
been described. The state for this component divides 
into two parts.  The first part consists of overall state 
for the entire tree; it includes the name of the data 
source method that supplies data about the contents of 
the tree, the id attribute for the HTML element con-
taining the tree, and four other string values containing 
parameters that determine how tree nodes are rendered 
into HTML. The second part of the state for a TreeSec-
tion consists of information for each node that has been 
displayed so far; it includes the id attribute for the 
node's HTML element and an internal name for the 
node, which is passed to the data source in order to 
expand that node. 

The second component is an auto-complete form ele-
ment. The component renders a normal <input 
type="text"> form element in the page but attaches 
event handlers to it. As the user types text into the ele-
ment, Ajax requests are issued back to the server with 
the partial text in the form element. The server com-
putes the most likely completions based on the partial 
text and returns them back to the browser where they 
are displayed in a menu underneath the form element. 
The auto-complete component handles relevant mouse 
and keyboard events, issues Ajax requests, displays and 
undisplays the menu of possible completions, and al-
lows the user to select completions from the menu. 
However, the auto-complete component does not con-
tain code to compute the completions since this would 
restrict its reusability.  Instead, it calls out to an external 
method to compute the completions during Ajax re-
quests. The name of this method is provided as a pa-
rameter during the rendering of the original page, and it 
is saved in a page property along with the id attribute 
of the HTML form element.  The auto-complete com-

ponent is general-purpose and reusable: there can be 
multiple auto-complete form elements on the same 
page, and each auto-complete element can use a differ-
ent mechanism to compute completions. 

The third usage of page properties in Fiz is for form 
validation. When a form is initially rendered in Fiz, one 
or more validators can be associated with each field in 
the form. Information about these validators is saved in 
a page property, including the name of a method that 
will perform the validation, one or more parameters to 
pass to that method (for example, the validateRange 
method takes parameters specifying the end points of 
the valid range), and additional information used to 
customize the HTML formatting of error messages 
when validation fails. When the form is posted Fiz uses 
the information in the page property to validate the in-
formation in the form; if any validations fail then Fiz 
automatically returns error messages for display in the 
browser.  In this case the browser-server communica-
tion mechanism is a form post rather than an Ajax re-
quest, but it uses the same page property mechanism. 
The form validation mechanism also allows forms to be 
validated dynamically as the user fills them in, using 
Ajax requests to request validation. 

9 Related Work 

9.1 View State 
Most existing Web frameworks provide little or no sup-
port for managing the state of Ajax requests. One ex-
ception is Microsoft’s ASP.NET framework, which 
includes a mechanism called View State that is similar 
to the reminder mechanism in Fiz. View State is used 
extensively by components in ASP.NET [5,8]. The 
View State mechanism provides each control with a 
ViewState property in which it can store key-value 
pairs. ASP.NET automatically packages all of the 
ViewState properties for all components into a single 
string, which is sent to the browser as part of the 
HTML for a page. Any “postbacks” for that page 
(which include both Ajax requests and form posts) in-
clude the View State, which is deserialized and made 
available to all of the components that handle the post-
back. Components can modify their View State while 
handling the request, and a new version of the View 
State is returned to the browser as part of the response. 

The primary difference between View State and re-
minders is that View State is monolithic: all of the state 
for the entire page is transmitted in every interaction. In 
contrast, reminders are more granular: each request 
includes only the reminders needed for that request. 
The View State approach avoids the complexity of de-

- 10 - 



termining what information is needed for each request, 
but it results in larger data transfers: every request and 
every response contains a complete copy of the View 
State for the entire page. Many of the built-in ASP.NET 
components make heavy use of View State, so it is not 
unusual for a page to have 10’s of Kbytes of View 
State [8]. Complaints about the size of View State are 
common, and numerous techniques have been dis-
cussed for reducing its size, such as selectively dis-
abling View State for some components (which may 
impact their behavior). 

The security properties of View State are similar to 
those for reminders. View State is base-64 encoded to 
make it difficult to read, and by default a MAC is at-
tached and checked to prevent tampering. However, the 
MAC is not session-specific so applications must attach 
an additional “salt” to prevent replay attacks between 
sessions; reminders eliminate this problem by using a 
different MAC for each session. View State also sup-
ports encryption, but by default it is disabled. 

It is possible for applications to modify the View State 
mechanism so that View State is stored on local disk 
instead of being transmitted back and forth to the 
browser. This provides a solution somewhat like page 
properties. However, the approach of storing View 
State on disk does not appear to be heavily used or well 
supported.  For example, the problem of garbage col-
lecting old View State is left up to individual applica-
tions. 

9.2 Query Values 
A simpler alternative than either reminders or page 
properties is to use URL query values: if a component 
needs state information to handle an Ajax request, it 
can serialize that state when rendering the original page 
and incorporate it into the URL for the Ajax request as 
a query value; when the request is received, the com-
ponent can read the query value and deserialize its 
state. This approach works well for simple state values 
where security is not an issue, and it is probably the 
most common approach used for Ajax requests today. 
However, it leaves serialization and deserialization up 
to the application and does not handle any of the secu-
rity issues associated with Ajax state. In addition, the 
query-value approach does not easily accommodate 
changes to the state, since this would require modifying 
the URLs in the browser. The reminder mechanism 
handles all of these issues automatically.  If the Ajax 
state becomes large, then query values will have over-
head problems similar to those of reminders and View 
State. 

9.3 Alternative application architectures 
The issues in managing Ajax state arise because the 
functionality of a Web application is split between the 
server and the browser. In most of today's popular Web 
development frameworks this split must be managed 
explicitly by application developers. However, there 
exist alternative architectures for Web applications that 
change this split and the associated state management 
issues. 

One approach is to change the application structure so 
that it is driven by Javascript in the browser. In this 
approach the server does not generate HTML; its sole 
purpose is to provide data to the browser. The applica-
tion exists entirely as Javascript running in the browser. 
The initial page fetch for the application returns an 
empty HTML page, plus <script> elements to 
download Javascript. The Javascript code makes Ajax 
requests to the server to fetch any data needed for the 
page; the server returns the raw data, then Javascript 
code updates the page. As the user interacts with the 
page additional Ajax requests are made, which return 
additional data that is formatted into HTML by 
Javascript or used to modify the DOM.  Google’s 
Gmail is one example of such an application. 

In a Javascript-driven application there is no need for 
the server to maintain state between Ajax requests: all 
of the interesting state is maintained in Javascript struc-
tures in the browser. For example, if a Javascript-driven 
application contains a component like the TreeSection, 
parameters for the TreeSection such as the data source 
method and HTML formatting information are main-
tained in Javascript variables on the browser. The 
server can process each incoming request independ-
ently and there is no state carried over from one request 
to another. There are still security issues with this ap-
proach, but they are simpler and more obvious: the 
server treats each request as potentially hostile and 
validates all arguments included with the request. 

The biggest disadvantage of Javascript-driven applica-
tions is the overhead of downloading all of the 
Javascript code for the application; for complex appli-
cations the Javascript code could be quite large [9]. 
This approach also requires the entire application to be 
written in Javascript, whereas the traditional server-
oriented approach permits a broader selection of lan-
guages and frameworks. There exist a few frameworks, 
such as Google’s GWT [7], where application code can 
be written in other languages (Java in the case of GWT) 
and the framework automatically translates the code to 
Javascript. 

- 11 - 



Javascript-driven applications also have the disadvan-
tage of exposing the application's intellectual property, 
since essentially the entire application resides on the 
browser where it can be examined. To reduce this ex-
posure some applications use Javascript obfuscators 
that translate the Javascript code into a form that mini-
mizes its readability. These obfuscators can also com-
pact the code to reduce the download overheads. 

Another alternative architecture is one where the parti-
tioning of functionality between server and browser is 
handled automatically. The developer writes Web ap-
plication code without concern for where it will exe-
cute, and the framework automatically decides how to 
partition the code between server and browser. In this 
approach the framework handles all of the issues of 
state management, including the related security issues. 
Automatic partitioning has been implemented in several 
experimental systems, such as Swift [2].  Although 
developers can use these systems without worrying 
about Ajax state issues, the framework implementers 
will still have to face the issues addressed by this paper. 

9.4 Dynamic application state 
The Ajax state discussed in this paper consists of in-
formation used to manage a Web user interface, such as 
information about the source(s) of data and how to ren-
der that data in the Web page. However, Ajax is often 
used to address another state management problem, 
namely the issue of dynamic application state. If the 
state underlying an application, such as a database or a 
system being monitored, changes while a Web page is 
being displayed, Ajax can be used to reflect those 
changes immediately on the Web page. A variety of 
mechanisms have been implemented for “pushing” 
changes from Web servers to browsers, such as Comet 
[3,13]. The issue of managing dynamic application 
state is orthogonal to that of managing Ajax state: for 
example, the techniques described in this paper could 
be used in a Comet-based application to keep track of 
the data sources that are changing dynamically. 

10 Conclusion 
Managing the state of Web applications has always 
been complex because the application state is split be-
tween server and browser. The introduction of Ajax 
requests requires additional state to maintain continuity 
across requests related to a single page, yet the stateless 
nature of most servers makes it difficult to maintain this 
state. Furthermore, if Ajax-driven interactions are to be 
implemented by reusable components then even more 
state is needed to maintain the modularity of the sys-
tem. 

This paper has explored two possible approaches to 
maintaining Ajax state, one that stores the state on the 
browser (reminders) and one that stores state on the 
server (page properties). Although both approaches 
meet the basic needs of Ajax-driven components, each 
of them has significant drawbacks. The browser-based 
approach introduces overheads for shipping state be-
tween browser and server, and it creates potential secu-
rity loopholes by allowing sensitive server state to be 
stored in the browser. The server-based approach intro-
duces overheads for saving state as part of sessions, and 
it has garbage-collection issues that can result in the 
loss of state needed to handle Ajax requests if the user 
returns to old pages. Based on our experiences we be-
lieve that the disadvantages of the server-based ap-
proach are preferable to those of the browser-based 
approach. 

In the future we expect to see the use of Ajax increase, 
and we expect to see pages with more, and more com-
plex, Ajax components. As a result, the issues of man-
aging Web application state will probably become even 
more challenging in the future. 

11 Acknowledgments 
Jeff Hammerbacher and the anonymous referees made 
many useful comments that improved the presentation 
of the paper.  This work was supported in part by a 
grant from the Google Research Awards program. 

12 References 
[1] Anley, Chris, Advanced SQL Injection in SQL 

Server Applications 
(http://www.nextgenss.com/papers/advanced_sql_i
njection.pdf). 

[2] Chong, S., Liu, J., Myers, A., Qi, X., Zheng, L., 
and Zheng, X., “Secure Web Applications via 
Automatic Partitioning,” Proc. 21st ACM Sympo-
sium on Operating System Principles, October 
2007, pp. 31-44. 

[3] Cometd project home page (http://cometd.org/). 
[4] Crockford, D., The application/json Media Type 

for JavaScript Object Notation (JSON), IETF RFC 
4627, http://tools.ietf.org/html/rfc4627, July 2006. 

[5] Esposito, D., “The ASP.NET View State,” MSDN 
Magazine, February 2003,   

[6] Garrett, Jesse James, Ajax: a New Approach to 
Web Applications, http://www.adaptivepath. 
com/ideas/essays/archives/000385.php. 

[7] Google Web Toolkit home page 
(http://code.google.com/webtoolkit/). 

- 12 - 



- 13 - 

[8] Mitchell, S., Understanding ASP.NET View State, 
http://msdn.microsoft.com/en-
us/library/ms972976.aspx, May 2004. 

[9] Optimize a GWT Application 
(http://code.google.com/webtoolkit/doc/latest/Dev
GuideOptimizing.html). 

[10] Ousterhout,  J., Fiz: A Component Framework for 
Web Applications, Stanford CSD technical report, 
http://www.stanford.edu/~ouster/cgi-
bin/papers/fiz.pdf, January 2009. 

[11] Reenskaug, Trygve, Models-Views-Controllers, 
Xerox PARC technical notes, December, 1979 
(http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-
12-MVC.pdf). 

[12] Reenskaug, Trygve, Thing-Model-View-Editor, 
Xerox PARC technical note, May 1979 
(http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-
05-MVC.pdf). 

[13] Russell, Alex, Comet: Low Latency Data for the 
Browser, March 2006 
(http://alex.dojotoolkit.org/2006/03/comet-low-
latency-data-for-the-browser/). 

 


	1 Introduction 
	2 Ajax Background
	3 Encapsulation Goal
	4 The Ajax State Problem
	5 Reminders
	5.1 Evaluation of reminders

	6 Page Properties
	6.1 Evaluation of page properties

	7 Comparisons
	8 Component Examples in Fiz
	9 Related Work
	9.1 View State
	9.2 Query Values
	9.3 Alternative application architectures
	9.4 Dynamic application state

	10 Conclusion
	11 Acknowledgments
	12 References

