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Abstract

A nested bundling strategy creates menus in which more expensive bundles include

all the goods of the less expensive ones. We study when nested bundling is optimal

and determine which nested menu is optimal, when consumers differ in one dimen-

sion. We introduce a partial order on the set of bundles, defined by (i) set inclusion

and (ii) sales quantity when sold alone. We show that, under quasiconcavity assump-

tions, if the undominated bundles with respect to this partial order are nested, then

nested bundling is optimal. We provide an iterative procedure to determine the min-

imal optimal menu that consists of a subset of the undominated bundles. The proof

technique involves a new constructive monotone comparative statics theorem. We

present partial converses. Additionally, we provide distributionally robust character-

izations of nested bundling. We also show that under suitable conditions it is possible

to extend our analysis to allow multidimensional heterogeneity.
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1 Introduction

How to sell multiple products? This question, also known as optimal bundling, is of

substantial economic importance to multiproduct firms. A common bundling strategy

is to create nested menus, in which more expensive bundles include all the goods of the

less expensive ones. This strategy is widely adopted across various industries includ-

ing streaming services (e.g., Netflix), software companies (e.g., Slack), and e-commerce

platforms (e.g., Shopify).1 When is such a strategy profit-maximizing? Which items to

package in one tier versus another tier? How many tiers are optimal?

Even though these questions seem to be fundamental, relatively little is known be-

cause characterizations of optimal bundling are generally intractable. For instance, the

optimal mechanism for selling two goods with additive and independent values remains

unknown except for a few special cases (Manelli and Vincent 2006).2

In this paper, we answer these questions when consumers are ordered in one dimen-

sion where a higher type consumer has higher incremental values for larger bundles.

This dimension could represent, for instance, income levels in retail pricing or enter-

prise complexity in enterprise pricing. With that simplifying assumption, we are able

to allow the consumers to have general non-additive values (in particular, heterogeneous

preferences over different items, and complementary or substitutable preferences across

different items) and sellers to have arbitrary costs for producing different bundles. While

we assume types are one-dimensional, the problem of bundling is inherently multidi-

mensional, because screening can be done using multiple instruments.

We consider the following partial order on the set of bundles: A bundle b1 is dom-

inated (ĺ) by another bundle b2 if (i) b1 is a subset of b2 and (ii) b1 has a lower sales

quantity than b2 when both are sold alone at their respective monopoly prices. This par-

tial order can be readily determined by examining the demand curve for each bundle

separately. However, it turns out that this simple partial order, under quasiconcavity

assumptions, characterizes the optimal bundling strategy.

Our first main result (Theorem 1) shows that if the undominated bundles can be to-

tally ordered by set inclusion (the nesting condition), then nested bundling, in particular

a menu of undominated bundles, is optimal. The proof is constructive: it presents an

iterative procedure (the sieve algorithm) to find the minimal optimal menu that consists

1For instance, Netflix offers three tiers (Netflix 2023): “Standard with ads” (ads, 1080p resolution,
no downloads), “Standard” (no ads, 1080p resolution, downloads), and “Premium” (no ads, 4K+HDR,
downloads).

2With correlated values, it is known that restricting menus to any bounded size can lead to an arbi-
trarily small fraction of the optimal revenue (Hart and Nisan 2019). Even finding the optimal mechanism
computationally is intractable (Daskalakis, Deckelbaum, and Tzamos 2014).
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of a subset of the undominated bundles (Proposition 1).

In the absence of our nesting condition, even though the consumers are ordered in one

dimension, the optimal mechanism need not be a nested menu, can involve dominated

bundles, and may require randomization (see Example 1). We provide a sufficient condi-

tion (Proposition 2) for the nesting condition to hold, which simply asks the sold-alone

quantity for the union of two bundles to be above the minimum of their individual sold-

alone quantities. We also provide a partial converse (Proposition 3): If nested bundling is

optimal, then the minimal optimal menu must include the two extremal bundles under

our partial order — the grand bundle and the bundle with the highest sold-alone quantity

— and must exclude any bundle dominated by another bundle in the menu.

Our results rely on distributional assumptions such as quasiconcavity of profit func-

tions. However, we also present a robust nesting condition (Theorem 3), which deter-

mines when a nested menu is optimal for all type distributions (see Section 5.1). This

result requires no quasiconcavity assumptions but instead it requires richer information

about the demand system, e.g., pointwise elasticity comparisons of demand curves.

Our results also rely on the one-dimensional type assumption. However, it turns out

to be possible to extend our analysis to allow for multidimensional heterogeneity (see

Section 5.2). We show that if the additional dimension represents horizontal preferences

that are orthogonal to and separable from the one-dimensional vertical type, then the op-

timal mechanism collapses the multidimensional types to be one-dimensional — by not

pricing the horizontal attributes — and hence can be characterized by our results (Theo-

rem 4).3 For example, in the case of Netflix, the additional heterogeneity may represent

preferences for different content and the vertical types may represent distastes for ads.

In practice, the sold-alone quantities might not always be feasible to estimate if the

seller needs to offer a base bundle such as a “freemium” tier to all consumers. Our nest-

ing condition generalizes naturally to allow more comparisons of bundles beyond the

sold-alone quantities (see Section 6). In particular, we can compare two bundles condi-

tional on selling any base bundle included by the two bundles. This notion of conditional

dominance offers more ways to exclude bundles from consideration. We show that re-

gardless of in which order the bundles are excluded by such comparisons, as soon as the

remaining bundles become nested, they form an optimal menu (Theorem 5).

On the technical side, a key contribution of this paper is a new condition for monotone

comparative statics with partially ordered choice sets. A crucial step toward our results

3Additionally, we show that even in the fully general setting, our results are locally robust in the sense
that the menu we identify is approximately optimal when the bundle values are sufficiently positively
correlated (Proposition 7).
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is to ensure the monotonicity of the solution to a relaxed problem. Our main technical

result (Theorem 2), which we call the monotone construction theorem, states that for any

objective function on X ˆR satisfying the single-crossing property, where the choice set

X is a partially ordered set, monotone comparative statics hold if the chain-essential ele-

ments in X — the elements that cannot be removed from any chain (totally ordered sub-

set) without decreasing the objective at some parameter — form a chain themselves. Un-

like existing monotone comparative statics results, our theorem is constructive: it charac-

terizes the range of the maximizers across parameters. Besides this constructive property,

our comparative statics result generalizes Milgrom and Shannon (1994) by providing a

new condition that is agnostic to whether the choice variables exhibit complementarity

or substitutability (see Section 4.4).

Applications. Besides the direct implications on optimal bundling, we present three ap-

plications of our main results.

In the first application, we provide a sufficient condition for our nesting condition

using price elasticity — the union elasticity condition — which states that if the demand

curves for two different bundles are both elastic at a certain quantity, then the demand

curve for their union is also elastic at that quantity (see Section 7.1). With zero marginal

costs, this condition implies the nesting condition, and hence the optimality of nested

bundling. We also show how the optimal menu can be iteratively constructed by using

items with more elastic demand curves as the basic items and items with more inelastic

demand curves as the upgrade items (Proposition 9). In this case, a large bundle, if sold

alone, has a sales quantity lower than its elastic items but higher than its inelastic items.

The full characterization of optimal mechanisms enables comparative statics analysis.

We find that as the dispersion of values for one item increases, the monopolist switches

the tiers of different items and adopts a menu size that is U -shaped in the dispersion

parameter (Proposition 10). These comparative statics results differ significantly from

those in the standard quality-differentiated goods model, such as in Johnson and Myatt

(2006), as our model allows for a much richer set of preferences.

Our second application is to the quality-differentiated goods model (a la Mussa and

Rosen 1978), which is a special case of our model in which there are no heterogeneous

relative preferences (see Section 7.2). Even in this well-studied case, our results yield new

insights by providing a new characterization of the optimal menu (Proposition 11). Using

this characterization, we can hold the price elasticities of different qualities constant and

study the effects of cost structures on product line design. We show that it is always

profitable to prune the region of a product line where the average cost curve is above its
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lower increasing envelope (Proposition 12). This result generalizes a finding by Johnson

and Myatt (2003) and refines their intuition about when segmenting markets is profitable.

Our results are new even for one-dimensional screening problems, because we impose

much weaker regularity assumptions compared to the textbook treatment, owing to our

monotone construction theorem. This generality allows rich forms of bunching which is

ruled out by standard assumptions but can be characterized by our dominance order.

Our third application shows how our bundling results can provide insights into other

multidimensional screening problems. Building on a connection between bundling and

costly screening from Yang (2022), we use our main results to characterize when costly

screening is optimal for a principal who can use both price and nonprice instruments

such as waiting time (see Section 7.3). We obtain (see Proposition 13) a necessary and

sufficient condition for the optimality of costly screening when the agent has negatively

correlated preferences (higher types have higher disutilities), complementing Yang (2022),

which shows that costly screening is always suboptimal when the agent has positively

correlated preferences (higher types have lower disutilities). Our result shows that when

higher types have higher disutilities, a key metric that determines the optimality of costly

screening is the elasticity of disutility with respect to the agent’s types.

Discussion of Intuition. We now present the key intuition behind our main results (see

Section 3.4 for further discussion).

A key feature of the one-dimensional type space is that we can compute the total rev-

enue from any feasible allocation, induced by some menu, from the sold-alone marginal

revenue curves, regardless of how complex the allocation might be.4 To see this, let P pb,qq

be the demand curve for bundle b when bundle b is sold alone, and MRpb,qq be the cor-

responding sold-alone marginal revenue curve for bundle b.

Because consumers are totally ordered, we can arrange them along a single quantity

axis, with consumers positioned toward the right end having lower values for all the

bundles. For a given menu of bundles and prices, the consumers optimally choose their

favorite options, resulting in an allocation rule bpqq, describing the bundle choice for

the consumer located at quantity q. Let CSpqq be the surplus of the consumer located at

quantity q (and suppose CSp1q “ 0). The total revenue can be computed as follows:

Fact 1. Total Revenue “

ż 1

0
P pbpqq,qqdq´

ż 1

0
CSpqqdq (Value ´ Consumer Surplus)

4The use of marginal revenue curves in mechanism design has a long tradition, beginning with Bulow
and Roberts (1989) in auction settings, and has been recently applied to bundling settings in Ghili (2023).
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(a) MR curves under t1u ĺ t1,2u (b) MR curves under t1u ĺ t1,2u, t2u ⪯̸ t1,2u

Figure 1: Illustration of the marginal revenue curves

“

ż 1

0
P pbpqq,qqdq`

ż 1

0
q ¨ CS1

pqqdq (Integration by Parts)

“

ż 1

0
P pbpqq,qqdq`

ż 1

0
q ¨ Pqpbpqq,qqdq (Envelope Theorem)

“

ż 1

0
MRpbpqq,qqdq .

Now, suppose that we have two items t1,2u and that costs are zero.5 Suppose that the

sold-alone quantities for the three possible bundles are Qpt1uq ă Qpt1,2uq ă Qpt2uq. In

this case, bundle t1u is dominated by bundle t1,2u, while bundle t2u is not dominated

by bundle t1,2u. Thus, the undominated bundles are nested. Suppose that the revenue

function for selling any incremental bundle — the option to upgrade from a smaller

bundle to a larger bundle — is strictly quasiconcave.6 This implies that (i) the MR curves

cross zero once from above and (ii) the MR curve of a larger bundle also crosses the MR

curve of a smaller bundle at most once from above.

There are three key observations. First, because of the ordering Qpt1uq ă Qpt1,2uq,

these two quantities must be located in the region where the marginal revenue of upgrad-

ing consumers from bundle t1u to bundle t1,2u is positive (i.e., to the left of the vertical

dashed line in Figure 1a). This then implies that if it is profitable to sell a consumer the

5When there are positive costs, the same intuition discussed here applies by replacing the marginal
revenue curves to be the marginal profit curves.

6For the sake of this example we assume that these incremental revenue functions are globally qua-
siconcave. This quasiconcavity assumption is stronger than what we actually assume in the model (see
Section 2.1).

6



smaller bundle t1u, which happens before quantity Qpt1uq, it is even more profitable to

upgrade the consumer to the larger bundle t1,2u.

Second, because of the opposite ordering Qpt2uq ą Qpt1,2uq, these two quantities

must be located in the region where the marginal revenue of upgrading consumers from

bundle t2u to bundle t1,2u is negative (i.e., to the right of the vertical dashed line in Fig-

ure 1b). This then implies that, after a certain quantity threshold, there always exists a

region in which it is more profitable to downgrade the consumers from the larger bundle

t1,2u to the smaller bundle t2u.

Third, with the upgrade and downgrade operations, we can attain the upper envelope

of the MR curves by allocating bundles to consumers in a monotone fashion such that

a higher type consumer receives a larger bundle in the set-inclusion order (as depicted

by the bundle assignments in Figure 1b). Now, because a higher type consumer also has

higher incremental values for larger bundles, we can implement this monotone allocation

using upgrade prices as follows: set the price of bundle t2u to be its usual monopoly

price, and set the price of upgrading from bundle t2u to bundle t1,2u to be such that

the consumer located at the threshold quantity (indicated by the vertical dashed line in

Figure 1b) is indifferent between whether to upgrade.

The monotonicity of the allocation is crucial to guarantee that we can in fact “climb

up” the MR curves. When the upper envelope of the MR curves cannot be attained by a

monotone allocation rule, the optimal mechanism may require selling dominated bundles

and may even do so with randomization (see Example 1). For our running example,

this monotonicity is self-evident once we recognize that the configuration of MR curves

must resemble Figure 1b. However, in the general many-item case, it is impossible to

exhaustively list all possible configurations of the MR curves. The proof relies on the new

constructive monotone comparative statics result (Theorem 2).

1.1 Related Literature

We study nested bundling when consumers have one-dimensional heterogeneity and

non-additive preferences. Our model builds on a recent literature studying the opti-

mality of pure bundling (i.e., selling only the grand bundle) with non-additive values

(Ghili 2023, Haghpanah and Hartline 2021).7 The closest paper is Ghili (2023) who intro-

7There is a long-standing literature on the profitability of price discrimination (Stokey 1979, Deneckere
and McAfee 1996, Johnson and Myatt 2003, Anderson and Dana Jr 2009) which can be seen as studying
the optimality of pure bundling under more restrictive assumptions. There is also an extensive literature
on quality discrimination and nonlinear pricing (a la Mussa and Rosen 1978) which is a special case of our
model.
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duces the sold-alone quantities and shows that, under quasiconcavity assumptions, pure

bundling is optimal if and only if the grand bundle has the highest sold-alone quantity.

Ghili (2023)’s result motivates our partial order. Under his condition, the grand bundle

is the unique undominated bundle and hence our nesting condition is trivially satisfied

(Corollary 3). Haghpanah and Hartline (2021) provide a ratio-monotonicity condition for

the optimality of pure bundling, which motivates our robust nesting condition: under

their condition, the grand bundle is again the unique undominated bundle (Corollary 5).

There is a substantial literature on multidimensional screening and optimal bundling

(beginning with Stigler 1963, Adams and Yellen 1976, McAfee, McMillan, and Whin-

ston 1989). A general lesson is that some form of bundling is generically profitable but

characterizing optimal bundling strategies turns out to be very difficult (Armstrong 1996,

Rochet and Chone 1998, Carroll 2017). Because of this difficulty, relatively little is known

about how optimal bundling strategies depend on economic primitives such as price elas-

ticities and cost structures. This paper departs from most of the bundling literature,

which assumes additive values and multidimensional heterogeneity (McAfee and McMil-

lan 1988, Manelli and Vincent 2007, Pavlov 2011, Daskalakis, Deckelbaum, and Tzamos

2017). In particular, Bergemann et al. (2022) study nested bundling with additive values

and obtain conditions that are not directly comparable to ours.8 Compared to the lit-

erature, we propose an alternative set of assumptions that might explain the popularity

of nested bundling.9 By doing so, we are also able to connect the empirically relevant

economic primitives to the structure of optimal bundling strategies.

Our main proof technique uses a Myersonian approach by maximizing a suitably de-

fined virtual surplus function pointwise.10 The key technical contribution is to provide

conditions under which the solution to this relaxed problem is implementable. Our main

technical result, the monotone construction theorem, delivers such conditions and fur-

thermore constructs the optimal solution. The monotone construction theorem connects

to the literature on monotone comparative statics. Unlike the existing monotone com-

parative statics results (Milgrom and Shannon 1994, Athey 2002, Quah 2007, Quah and

Strulovici 2009), our theorem is constructive and does not require a lattice structure;

when the choice set is a lattice, our theorem generalizes Milgrom and Shannon (1994) by

providing a new condition that is agnostic to whether the choice variables exhibit com-

8In a different context, Gomes and Pavan (2016) obtain conditions for a two-sided monopolistic plat-
form to use a nested matching rule.

9Of course, as in the literature, our model is based on the standard theory of rational choices. Nested
bundling might also arise as firms’ responses to behavioral or boundedly rational consumers, e.g., to avoid
choice overloading (Iyengar and Lepper 2000) or to influence sales through context effects (Simonson 1989).

10For our robust nesting condition (Theorem 3), we use a different set of proof techniques introduced in
Yang (2022) that studies multidimensional screening with costly instruments.
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plementarity or substitutability.

The remainder of the paper proceeds as follows. Section 2 presents the model. Sec-

tion 3 presents the main results. Section 4 sketches the main proof. Section 5 studies the

robustness of the main results. Section 6 presents a generalization of the main results.

Section 7 presents the applications. Section 8 concludes. Appendix A provides omitted

proofs.

2 Model

A monopolist sells n different goods t1, . . . ,nu to a unit mass of consumers.

Consumers have types t P T :“ rt, ts. Types are drawn from a distribution F with a

continuous, positive density f . Type t has value vpb, tq for bundle b P B :“ 2t1,...,nu with

vp∅, tq “ 0. For any stochastic assignment a P ∆pBq, we define vpa, tq :“ Eb„arvpb, tqs.

The monopolist incurs cost Cpbq to produce bundle b with Cp∅q “ 0. We assume that it is

efficient for the highest type t to consume all the items: argmaxbtvpb, tq´Cpbqu “ b where

b :“ t1, . . . ,nu is the grand bundle.

The value function vpb, tq is (i) nondecreasing in b (in the set-inclusion order), (ii)

continuously differentiable in t, and (iii) strictly increasing in t whenever vpb, tq ą 0. In

addition, we will make the following monotonicity assumption:

A1. For any two nested bundles b1 Ă b2, the incremental value vpb2, tq´vpb1, tq is strictly

increasing in t whenever it is strictly positive. (Incremental Monotonicity)

The seller wants to maximize expected profits over all stochastic mechanisms. By the

revelation principle, it is without loss of generality to restrict attention to direct mech-

anisms. Specifically, a (stochastic, direct) mechanism is a measurable map pa,pq : T Ñ

∆pBq ˆR that satisfies the usual incentive compatibility (IC) and individual rationality

(IR) conditions:

vpaptq, tq ´ pptq ě vpapt̂q, tq ´ ppt̂q for all t, t̂ in T ;

vpaptq, tq ´ pptq ě 0 for all t in T .

Two mechanisms are equivalent if they differ on a zero-measure set of types.

A menu is a set of bundles (which we assume includes ∅).11 A menu B is optimal

if there exists an optimal mechanism pa,pq such that aptq P B for all t.12 Note that an

11To simplify notation, we omit the inclusion of ∅ in a menu whenever it is clear from the context.
12When an assignment aptq P ∆pBq is deterministic, we also let aptq denote the assigned bundle.
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optimal menu need not exist, since the optimal mechanism can be stochastic. A menu B

is minimal optimal if menu B is optimal and any menu B1 Ă B is not optimal. A menu B

is nested if the bundles in B can be totally ordered by set inclusion. We say that nested

bundling is optimal if there exists an optimal and nested menu.

For any bundle b, consider the single-bundle market in which only bundle b can be

sold. Let P pb,qq be the demand curve in this auxiliary market, i.e.,

P pb,qq :“ F´1
b p1 ´ qq ,

where Fb is the distribution of vpb, tq. Let πpb,qq be the profit function for bundle b, i.e.,

πpb,qq :“ pP pb,qq ´Cpbqqq .

We assume that πpb,qq is strictly quasiconcave in q P r0,1s with an interior maximum.13

The sold-alone quantity Qpbq is defined as the unique quantity at which the marginal

profit equals zero, i.e.,

MRpb,Qpbqq “ Cpbq , (1)

where MRpb,qq is the usual marginal revenue curve for bundle b.

Under assumption (A1), note that for any two nested bundles b1 Ă b2, the difference

P pb2,qq ´ P pb1,qq is the demand curve generated by the incremental values for bundle b2

given bundle b1. Thus, πpb2,qq´πpb1,qq is the profit function of a monopolist optimizing

the quantity of the incremental bundle b2zb1, given the plan of selling every consumer

bundle b1. We will make the following quasiconcavity assumption on this profit function:

A2. For any two nested bundles b1 Ă b2, the incremental profit πpb2,qq ´ πpb1,qq is

strictly quasiconcave in q P r0,mintQpb1q,Qpb2qus. (Local Quasiconcavity)

The interval r0,mintQpb1q,Qpb2qus is exactly the region where both individual profit

functions πpb1,qq and πpb2,qq are increasing.

2.1 Discussion of Assumptions

Incremental Monotonicity. The incremental monotonicity assumption is only imposed

on nested bundles b1 Ă b2. Restricting to a nested menu
␣

b1,b2
(

, this assumption reduces

to the standard increasing differences condition for one-dimensional screening problems.

13For expositional simplicity, whenever we impose strict quasiconcavity of a function g on rx1,x2s, we
assume in addition that ∇gp ¨ q “ 0 at x P rx1,x2s implies gpxq ě gpx1q for all x1 P rx1,x2s (i.e., we assume that
the FOC is satisfied only at the maximum).
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However, unlike one-dimensional screening problems, our model does not impose a total

order on the allocations, which allows a much richer set of preferences.

Local Quasiconcavity. We impose only a local quasiconcavity condition on the incre-

mental profit function for any two nested bundles b1 Ă b2. It states that, within the inter-

val where both πpb1,qq and πpb2,qq are increasing, the difference πpb2,qq ´πpb1,qq has at

most one peak. In other words, the condition assumes that, within this interval, the sum

of an increasing function πpb2,qq and a decreasing function ´πpb1,qq is single-peaked.

Local quasiconcavity is weaker than global quasiconcavity, which always holds if the

incremental demand curve P pb2,qq ´ P pb1,qq is log-concave (Quah and Strulovici 2012).

An even stronger condition is that the incremental value vpb2, tq ´ vpb1, tq follows a reg-

ular distribution in the sense of Myerson (1981), which implies that πpb2,qq ´πpb1,qq is

concave. In Section 5.1, we show that all quasiconcavity assumptions can be completely

removed if we strengthen our notion of comparison from the comparison of the bundles’

sold-alone quantities to be a pointwise elasticity comparison of their demand curves.

One-dimensional Types. While we assume that the bundle values are increasing in the

types, we make no restriction on how consumers’ relative preferences for any non-nested

bundles change across types. In particular, we allow different consumers to have different

ordinal rankings over items (see Example 2). Moreover, across different consumers, the

preferences for any two items can switch multiple times in arbitrary ways. The main

restriction of one-dimensional types in our model is that such horizontal preferences are

fixed for a given one-dimensional type t. Thus, our model is best suited for capturing

settings in which some vertical attribute (such as income) is a good predictor of horizontal

preferences for different items.

However, in Section 5.2.1, we show that under suitable orthogonality and separa-

bility conditions, it is possible to extend our results to settings with multidimensional

heterogeneity where the additional dimension of heterogeneity describes only horizon-

tal preferences. In that setting, the optimal mechanism collapses the multidimensional

heterogeneity to be one-dimensional and hence can be characterized by our results. In

Section 5.2.2, we also show that, even in a fully general setting with multidimensional

heterogeneity, our results are at least locally robust in the sense that holding the marginal

distributions of bundle values fixed, the menu that we identify is approximately optimal

when the bundle values are sufficiently positively correlated.

Complements and Substitutes. The assumptions made here are orthogonal to whether
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the items are complements or substitutes. To illustrate, consider a simple example where

the value for a bundle b is given by vpb, tq “ vpbq ¨ t. Note that all the above assumptions

hold if (i) types t follow a regular distribution in the sense of Myerson (1981) and (ii) vpbq

is monotone in the set-inclusion order, regardless of whether the value function vpbq or

the monopolist’s cost function Cpbq exhibit supermodularity or submodularity.

3 Main Results

Our main results characterize (i) when nested bundling is optimal and (ii) which nested

menu is optimal. In Section 3.1, we introduce a partial order that answers both questions.

In Section 3.2, we provide some partial converses. In Section 3.3, we present a parametric

example. In Section 3.4, we discuss the key intuition behind our results.

3.1 Optimality of Nested Bundling

We define a partial order on the set of bundles B as follows:

b1 ĺ b2 : b1 Ď b2 and Qpb1q ď Qpb2q . (2)

A bundle b is dominated if there exists b1 , b such that b ĺ b1 and undominated other-

wise. We say that the nesting condition holds if the undominated bundles can be totally

ordered by set inclusion: that is, for any two bundles b and b1,

both b and b1 are undominated ùñ either b Ď b1 or b1
Ď b . (Nesting Condition)

Figure 2 illustrates this condition for a three-item example using a diagram, where an

upward arrow from b1 to b2 represents b1 ĺ b2.

Our first main result shows that under the nesting condition, nested bundling, in

particular a menu of undominated bundles, is optimal.

Theorem 1. Suppose that assumptions (A1) and (A2) hold. Then, under the nesting condition,

we have:

(i) Nested bundling is optimal.

(ii) A menu of undominated bundles is optimal.

(iii) Every optimal mechanism is equivalent to nested bundling.
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Figure 2: Illustration of the nesting condition for a three-item example. An upward arrow
from b1 to b2 means b1 ĺ b2. The undominated bundles are nested: t3u Ď t2,3u Ď t1,2,3u.

The proof is in the appendix. We sketch the proof in Section 4. An immediate conse-

quence of Theorem 1 is the following result:

Corollary 1. Suppose that assumptions (A1) and (A2) hold. For any nested menu B, if:

(i) for any b1 Ă b2 P B,

Qpb1q ą Qpb2q , (3)

(ii) for any b1 < B, there exists b2 P B such that b1 Ă b2, and

Qpb1q ď Qpb2q , (4)

then menu B is optimal.

In the special case of zero marginal costs, note that the sold-alone quantity Qpbq is

simply the unit-elastic quantity, i.e., the quantity at which the demand curve P pb,qq has

price elasticity equal to ´1. In this case, Theorem 1 shows that under suitable condi-

tions, the optimality of a menu can be determined by simply comparing the unit-elastic

quantities of different bundles.

Theorem 1 is agnostic to cost structures. In fact, Theorem 1 holds even when the

socially efficient allocations require bundles that are not nested. That is, the nesting

condition implies the optimality of nested bundling regardless of whether it is efficient.

Theorem 1 also implies that the optimal mechanism is deterministic. This need not be

true when the nesting condition is not satisfied (see Example 1 below).

Theorem 1 is also agnostic to whether the items are complements or substitutes. To

illustrate, consider two items and zero costs. Suppose that vpt1,2u, tq “ κ ¨
`

vpt1u, tq `

vpt2u, tq
˘

where κ is a positive constant. Depending on the value of κ, the two items can

13



be complements (κ ą 1), substitutes (κ ă 1), or additive (κ “ 1). However, one can verify

that the nesting condition always holds in this case, regardless of the value of κ.

The undominated bundles in Theorem 1 always exist and must include the two ex-

tremal bundles under our partial order, the bundle with the highest sold-alone quantity

(the best-selling bundle b‹) and the bundle with the largest size (the grand bundle b). If

these two bundles coincide, then there is a unique undominated bundle, which by The-

orem 1 implies that pure bundling is optimal (this recovers a result of Ghili 2023; see

Corollary 3). If these two bundles do not coincide but there are no other undominated

bundles, then the minimal optimal menu is a two-tier menu.

However, in general, a menu of undominated bundles need not be minimal opti-

mal. Nevertheless, the proof of Theorem 1 provides an iterative procedure to deter-

mine the minimal optimal menu (and its associate prices). To describe the procedure,

for any b1 Ă b2, let Qpb2 | b1q denote the incremental quantity, i.e., the quantity at which

the incremental profit function πpb2,qq ´ πpb1,qq reaches its maximum in the interval

r0,maxtQpb1q,Qpb2qus.14

Proposition 1 (Minimal optimal menu). Suppose that assumptions (A1) and (A2) hold. For

any optimal and nested menu B “ tb1, . . . , bmu where b1 Ă ¨¨ ¨ Ă bm, let

D :“
!

bj P B : Qpbj`1 | bjq ě Qpbj | bj´1q

)

. (5)

Then menu rB :“ BzD is also an optimal menu. If D “ ∅ and Qpbm | bm´1q ą 0, then menu B

is minimal optimal.

Under the nesting condition, Theorem 1 and Proposition 1 together then describe

the following algorithm, which we call the sieve algorithm, to determine the minimal

optimal menu:

Step 1. Remove all dominated bundles.

Step 2. Remove all bundles satisfying condition (5).

Step 3. Repeat Step 2 until no such bundle exists.

In Section 6, we generalize both the nesting condition and the sieve algorithm to provide

a more general procedure to find the minimal optimal menu.

14Strict quasiconcavity of πpb2,qq ´ πpb1,qq on r0,mintQpb1q,Qpb2qus implies that it is strictly quasi-
concave on r0,maxtQpb1q,Qpb2qus, and hence Qpb2 | b1q is well-defined. Simply defining Qpb2 | b1q in the
interval r0,mintQpb1q,Qpb2qus would not work for our purposes. If πpb2,qq ´πpb1,qq is globally quasicon-
cave, then Qpb2 | b1q can also be defined as the quantity maximizing the incremental profit globally.
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Sufficient Condition for Nesting. The nesting condition does not require a larger bundle

to have a higher or lower sold-alone quantity. For instance, for the nesting condition

to hold, it is sufficient for the union of two bundles to have a sold-alone quantity in

between their individual sold-alone quantities. More generally, we say that the union

quantity condition holds if the union of any two bundles has a sold-alone quantity above

the minimum of their individual sold-alone quantities:

For all b1 and b2, Qpb1 Y b2q ě min
␣

Qpb1q,Qpb2q
(

. (Union Quantity Condition)

The following observation is instructive:

Proposition 2. The union quantity condition implies the nesting condition.

The proof is in the appendix. In light of Proposition 2, under zero marginal costs,

Theorem 1 can be interpreted as that nested bundling is optimal if bundling results in

a demand curve that is relatively elastic in the sense that the size of its elastic region is

larger than at least one of the individual demand curves.

Dominated Bundle Can be Optimal. When the nesting condition is not satisfied, how-

ever, the optimal mechanism need not be a nested menu, can involve dominated bundles,

and may even require randomization. That is, if the undominated bundles cannot be to-

tally ordered by set inclusion, the optimal mechanism may involve selling a dominated

bundle to a positive mass of consumers, and may even do so with randomization. We

provide such an example below. For simplicity, this counterexample is discrete, but it can

be made continuous by approximation.

Example 1 (Without nesting condition). Suppose that there are three items t1,2,3u and

three types of consumers tt1, t2, t3u with mass 1{3 each. Suppose that we restrict attention

to bundles t1u, t1,2u, and t2,3u (i.e., the costs for other bundles are prohibitively high).15

The costs for these bundles are 0. The values are given by Table 1. One may verify that the

sold-alone quantities are Qpt1uq “ 1 (price 1), Qpt1,2uq “ 1 (price 4), and Qpt2,3uq “ 2{3

(price 8). Thus, bundle t1,2u dominates bundle t1u. Moreover, one may verify that it

is indeed the case that menu
␣

t1u,t1,2u
(

does not increase the profit beyond the single-

bundle menu
␣

t1,2u
(

.

However, if the other non-nested, undominated bundle t2,3u is allowed to be sold,

then the dominated bundle t1u becomes profitable to include. To see it, note that menu

15The example can be extended to allow the grand bundle to be efficient for the highest type or to allow
all the other bundles.
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t1 t2 t3
t2,3u 4 8 9
t1,2u 4 5 7
t1u 1 1 1

Table 1: Bundle values by types for Example 1. The nesting condition fails here since both
bundles t1,2u and t2,3u are undominated. In this example, bundle t1u is dominated by
bundle t1,2u but must be included in the optimal mechanism.

␣

t1,2u,t2,3u
(

cannot increase the profit beyond the single-bundle menu
␣

t2,3u
(

. In par-

ticular, pricing t1,2u at 4 and t2,3u at 7 such that t2 buyer is indifferent will not increase

profit because t3 buyer will choose t1,2u instead of t2,3u. This is because preferences

for t1,2u and t2,3u do not satisfy any single-crossing property. Now, note that the menu
␣

t1u,t2,3u
(

yields a strictly higher profit than menu
␣

t2,3u
(

:

1
3

ˆ 1 `
2
3

ˆ 8 “
17
3

ą
16
3

.

Hence, the dominated bundle t1u is profitable to include. In fact, the optimal mechanism

is stochastic:

• price 5{2 for the uniform lottery of getting either t1u or t1,2u

• price 15{2 for t2,3u

which yields a profit
1
3

ˆ
5
2

`
2
3

ˆ
15
2

“
35
6

ą
17
3

.

3.2 Partial Converse

We provide a partial converse to Theorem 1. Recall that the best-selling bundle b‹ is the

bundle with the highest sold-alone quantity, i.e.,

Qpb‹
q ě Qpbq for all b ,

which, for simplicity, is assumed to be unique.

Proposition 3 (Partial converse). Suppose that assumptions (A1) and (A2) hold. For every

minimal optimal and nested menu B :“ tb1, . . . , bmu where b1 Ă ¨¨ ¨ Ă bm, we have:

(i) b1 “ b‹ and bm “ b

(ii) Qpbiq ą Qpbjq for all bi Ă bj P B
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The proof is in the appendix. Proposition 3 states that if nested bundling is optimal,

then the minimal optimal menu must (i) include the two extremal bundles under our

partial order, the bundle with the highest quantity b‹ and the bundle with the largest size

b, and (ii) exclude any bundle dominated by some bundle in the menu. An immediate

consequence of Proposition 3 is the following result:

Corollary 2. Suppose that assumptions (A1) and (A2) hold. Every minimal optimal and

nested menu B includes:

(i) the best-selling bundle (if sold alone) b‹ as the smallest bundle in the menu.

(ii) the grand bundle b as the least-selling bundle (if sold alone) in the menu.

When the menu B consists only of the grand bundle b, Corollary 2 says that for pure

bundling to be optimal, the grand bundle b and the best-selling bundle b‹ must coin-

cide. Conversely, if these two bundles coincide, then the grand bundle is the unique un-

dominated bundle, and hence the nesting condition trivially holds. Thus, an immediate

consequence of Theorem 1 and Proposition 3 is the following characterization:

Corollary 3 (Ghili 2023). Suppose that assumptions (A1) and (A2) hold. Pure bundling is

optimal if and only if Qpbq ě Qpbq for all bundles b.

Proposition 3 can also be used to provide sufficient conditions for nested bundling to

be suboptimal. For example, a consequence of Proposition 3 is the following result:

Corollary 4 (Suboptimality of nested bundling). Suppose that assumptions (A1) and (A2)

hold. Suppose that there are two items and that the best-selling bundle b‹ “ t2u. If the optimal

profit under menu
␣

t2u,t1,2u
(

is strictly less than the optimal profit under menu
␣

t1u,t1,2u
(

,

then nested bundling is suboptimal.

For an illustration of this corollary, see Example 3 in Appendix B.

3.3 Parametric Example

Example 2. Suppose that there are two items t1,2u and zero costs. The valuations for

each bundle are given by:

vpt1u, tq “ t, vpt2u, tq “ tβ , vpt1,2u, tq “ t ` tβ `
?
t .

Types t follow a uniform distribution on r0,2s.16 We vary parameter β from 0 to 2.

16Note that types t ă 1 and types t ą 1 have different ordinal rankings for items 1 and 2 whenever β , 1.
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(a) Optimal mechanisms vs. β (b) Sold-alone quantities Qpbq vs. β

Figure 3: Optimal mechanisms and sold-alone quantities Qpbq for Example 2

Figure 3a plots the numerically computed optimal mechanism in terms of prices, as

parameter β varies in 0.1 increments. As Figure 3a shows, the optimal mechanism takes

different forms as parameter β varies. Specifically, the optimal menu is given by:

•
␣

t2u,t1,2u
(

when β P r0,0.74q ;

•
␣

t1,2u
(

when β P r0.74,1.5s ;

•
␣

t1u,t1,2u
(

when β P p1.5,2s .

The critical parameter values β “ 0.74 and β “ 1.5 are highlighted by the two vertical

dashed lines in Figure 3a. These transitions are characterized by Theorem 1. Figure 3b

plots the sold-alone quantities Qpbq for the three bundles as parameter β varies. As Fig-

ure 3b shows, the nesting condition holds for all values of parameter β: the undominated

bundles are always nested. Specifically, the plot can be partitioned into three regions

r0,0.74q, r0.74,1.5s, and p1.5,2s. The menu of undominated bundles is
␣

t2u,t1,2u
(

in the

first region,
␣

t1,2u
(

in the second region, and
␣

t1u,t1,2u
(

in the third region, coinciding

with the optimal menu.

3.4 Discussion of Intuition for Nested Bundling

3.4.1 Intuition Based on Marginal Revenue Curves

The basic intuition behind our results is discussed in the Introduction using the sold-

alone MR curves. In this section, based on the MR curves, we further discuss the intuition

behind (i) when nested bundling is suboptimal and (ii) why our nesting condition is

sufficient when there are more than two items. As in the Introduction, we present the
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(a) MR curves under t1u ⪯̸ t1,2u, t2u ⪯̸ t1,2u (b) MR curves under t1u ĺ t1,2u, t2u ⪯̸ t1,2u

Figure 4: Further illustration of the marginal revenue curves

intuition under zero marginal costs, but positive costs can be immediately incorporated

by redefining the marginal revenue curves to be the marginal profit curves.

Suboptimality of Nested Bundling. We first consider a case where nested bundling is

suboptimal with two items (see Corollary 4). By the arguments in the Introduction, this

must be the case where all three bundles are undominated. Without loss of generality,

suppose that Qpt1,2uq ă Qpt1uq ă Qpt2uq. Suppose further that the revenue under menu
␣

t2u,t1,2u
(

is less than the revenue under menu
␣

t1u,t1,2u
(

. Figure 4a illustrates the

MR curves under this case. In contrast to the case discussed in the Introduction (see Fig-

ure 4b), the upper envelope of the MR curves cannot be attained by a nested menu, so we

cannot use the argument of “climbing up” the MR curves to find the optimal mechanism.

There are two opposing forces in this case. On the one hand, it is more profitable to

attract the “medium-type” consumers than attract the “low-type” consumers since the

marginal revenue of selling bundle t1u to the “medium-type” consumers is high enough.

On the other hand, it is always possible to attract a small fraction of the “low-type” con-

sumers using bundle t2u which can bring in a positive marginal revenue. It turns out

that the second force always wins if the monopolist can ration and sell bundle t2u with a

small probability ε. This is because, roughly speaking, the gain from expanding the mar-

ket this way is on the order of Opεq, whereas the loss from the consumers who no longer

purchase bundle t1u is on the order of Opε2q. Intuitively, the reason why the loss is on the

higher order is that before introducing bundle t2u, the monopolist would have already

optimized the prices for the menu
␣

t1u,t1,2u
(

, and hence suffers only a second-order loss

for a small perturbation. Thus, nested bundling is suboptimal in this case.
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(a) (b)

(c) (d)

Figure 5: Illustration of the improvement argument for a three-item example

Nested Bundling beyond Two-item Cases. We now explain the key insight that helps

understand our results beyond the two-item cases. The intuition as discussed in the In-

troduction still holds when there are more than two items, but we may run into issues

with both the upgrade and downgrade improvements, because these improvements may

not be implementable in the price space.

To illustrate, suppose that there are three items and that bundle t1u is dominated

by bundle t1,2u. Suppose that we are given an initial allocation rule in the quantity

space as depicted in Figure 5a. By the discussion in the Introduction, we know that

if we can upgrade the consumers who are currently consuming bundle t1u to bundle

t1,2u, then we would achieve an improvement (see Figure 4b). However, this upgrade

may not be feasible, because there may not be prices that can support this change in

allocations, given that there are higher types who are currently purchasing bundle t2,3u,

as depicted in Figure 5b (highlighted by the double-headed arrow). This is because our

model makes no restriction on how the consumers’ relative preferences for any two non-

nested bundles change across different types, which leads to a key difference between

our bundling problem and the standard one-dimensional screening problem — the set of

implementable allocation rules is both much richer and much more complex.17

The key insight that resolves this problem is the following: Such a potential conflict

can only arise for non-nested bundles b and b1, but then the nesting condition implies

that at least one of them must be dominated (recall that the nesting condition requires the

undominated bundles to be nested). In our example, this means that either bundle t1,2u

17Implementability in multidimensional settings is characterized by cyclic monotonicity (see Rochet
1987) which is much more complex than standard monotonicity conditions.
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or bundle t2,3u must be dominated. This gives us a way out because we can apply this

argument again by going one layer up and further upgrading the consumers from either

bundle b or bundle b1 to the bundle that dominates one of them. Repeating this process

would always result in a pair of nested bundles.

For our running example, suppose that bundle t1,2u is dominated by bundle t1,2,3u

and bundle t2,3u is undominated, as depicted in Figure 5c; so the process in this example

terminates in one iteration. Of course, the resulting pair of bundles can be in the “wrong”

order in the sense that the higher types are assigned the smaller bundle, which we know

cannot be implemented by prices. However, when that happens, since the smaller bundle

is undominated, we know that if it is ever profitable to downgrade from the larger bun-

dle to the smaller bundle at some quantity then it is always profitable to downgrade after

that quantity. For our running example, suppose that we can further profitably down-

grade bundle t1,2,3u to bundle t2,3u, as depicted in Figure 5d. The allocation rule is

now monotone and hence implementable. Moreover, it is more profitable than the initial

allocation rule by construction. The proof shows that these arguments can be applied

to any initial allocation rule, and hence the upper envelope of the MR curves, under the

nesting condition, must be attained by an implementable allocation rule.

Remark 1. As the above discussion shows, our nesting condition is essential in two ways:

(i) it facilitates the comparison of marginal revenues, and (ii) it provides a way out from

complex implementability constraints by guiding us toward an even more profitable al-

location rule that we know is implementable. The actual proof follows these intuitions.

In addition, the proof considers stochastic mechanisms and shows that, under the nesting

condition, randomization cannot increase profit. Our key technical result, the monotone

construction theorem, provides a weakening of the nesting condition that is both neces-

sary and sufficient for these improvement arguments to yield a monotone allocation rule.

3.4.2 Alternative Intuition Based on Price Elasticities

In this section, we provide an alternative, price-theoretical intuition for nested bundling

based on price elasticities. Let ηpb,qq be the usual price elasticity for bundle b evaluated

at quantity q.18 Suppose that there are two items and zero costs, and that ηpt2u,qq ă

ηpt1,2u,qq ă ηpt1u,qq for all quantities q. That is, bundle t2u has a pointwise more elastic

demand curve than bundle t1,2u, which in turn has a pointwise more elastic demand

curve than bundle t1u. This assumption implies that Qpt2uq ą Qpt1,2uq ą Qpt1uq, but it

is much stronger than our nesting condition.

18That is, ηpb,qq :“
”

dlogP pb,qq

dlogq

ı´1
.
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Let ηpt1,2u,q | t1uq be the price elasticity of the demand curve for the incremental

values for bundle t1,2u given bundle t1u. We can write

ηpt1,2u,qq “
P pt1,2u,qq

q ¨ d
dqP pt1,2u,qq

“

`

P pt1,2u,qq ´ P pt1u,qq
˘

` P pt1u,qq

q ¨ d
dq

`

P pt1,2u,qq ´ P pt1u,qq
˘

` q ¨ d
dqP pt1u,qq

.

By the mediant inequality,19 this implies that

ηpt1,2u,q | t1uq ă ηpt1,2u,qq ă ηpt1u,qq .

That is, the demand curve for upgrading from bundle t1u to bundle t1,2u is even more

elastic. In particular, it is profitable to charge a low enough price to sell the upgrade

option to all consumers in the elastic region of the demand curve for bundle t1u. Thus,

it is profitable to exclude bundle t1u, which is a dominated bundle, as an option from the

menu. Symmetrically, for bundle t2u, we have

ηpt1,2u,q | t2uq ą ηpt1,2u,qq ą ηpt2u,qq .

That is, the demand curve for upgrading from bundle t2u to bundle t1,2u is even more

inelastic. In particular, it is profitable to charge a high enough price that leaves at least

some consumers unserved in terms of the upgrade option. Thus, it is profitable to include

bundle t2u, which is an undominated bundle, as an option in the menu.

Remark 2. Note however that, even in this two-item case, these price-theoretical argu-

ments are incomplete. This is because they do not take into account the presence of the

other item in the market when pricing the upgrade from one item to the bundle. In addi-

tion, the arguments assume that the elasticities can be pointwise ranked, which is much

stronger than our nesting condition. The actual joint pricing problem is much more com-

plex and cannot be simply reduced to two separate pricing problems. We emphasize that

it is a consequence of our results that, under the nesting condition, one can pairwise com-

pare the bundles. As explained in the Introduction and Section 3.4.1, the proof deals with

the joint pricing problem by working in the quantity space rather than in the price space.

19That is, for any a
c ă b

d such that c ¨ d ą 0, we have a
c ă a`b

c`d ă b
d .
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4 Proof Sketch for the Main Results

In this section, we sketch the joint proof of Theorem 1 and Proposition 1. For simplicity,

we assume in this section that the incremental profit function is globally quasiconcave for

any two nested bundles b1 Ă b2. In the appendix, we complete the proof by weakening

global quasiconcavity to local quasiconcavity, i.e., assumption (A2).

Following Myerson (1981), let

φpb, tq :“ vpb, tq ´Cpbq ´
1 ´Fptq
f ptq

vtpb, tq (6)

be the virtual surplus function. Following Bulow and Roberts (1989), we note that this

function can be equivalently interpreted as the sold-alone marginal profit for bundle b

evaluated at the quantity such that the marginal consumer is of type t:

φpb, tq “ MRpb,qq |q“1´Fptq ´Cpbq . (7)

A key difference between our problem and one-dimensional mechanism design prob-

lems is that we do not have access to a simple characterization of implementable alloca-

tion rules. However, as shown in the Introduction, we can compute the total profit from

any implementable allocation rule using the sold-alone marginal profit functions:

Lemma 1. Consider any mechanism pa,pq that gives the lowest type t zero payoff. Then, the

seller’s expected profit under the mechanism pa,pq is given by

E

«∑
bPB

abptqφpb, tq

ff

. (8)

We solve a relaxed problem by maximizing (8) over all measurable maps a : T Ñ ∆pBq,

and then show that the solution to this relaxed problem is implementable. Note that by

linearity, we have

max
a:TÑ∆pBq

E

«∑
bPB

abptqφpb, tq

ff

“ max
a:TÑB

E

«∑
bPB

abptqφpb, tq

ff

“ E

«

max
bPB

φpb, tq

ff

. (9)

We will show that there exists a pointwise solution bptq that satisfies

• bptq P argmaxbPBφpb, tq for all t ;

• bptq is monotone in t in the set-inclusion order ;
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• bptq is an undominated bundle for all t .

If we can show the above, then we obtain Theorem 1 (parts (i) and (ii)) as follows.

By assumption (A1) (incremental monotonicity), we know that vpb, tq has the increasing

differences property when restricted to a nested menu. By the standard argument (see

Lemma 7 in the appendix), the monotone allocation rule bptq solving the relaxed prob-

lem would then be implementable, and hence optimal. Therefore, nested bundling, in

particular a menu of undominated bundles, is optimal. In fact, the proof will explicitly

construct this solution bptq and show that the set of assigned bundles tbptqutPT coincides

with the menu given by our sieve algorithm (see Proposition 1).

4.1 Monotone Construction Theorem

To establish the existence of such an allocation rule bptq, our key technical result is an

abstract monotone comparative statics theorem. To state it, let pX ,ďq be a finite partially

ordered set and g : X ˆ r0,1s ÑR be a function satisfying the strict single-crossing prop-

erty, i.e., for any x1 ă x2 and t ă t1, gpx1, tq ď gpx2, tq ùñ gpx1, t
1q ă gpx2, t

1q. For any

x1 ă x2, let tpx2 | x1q be the unique crossing point of gpx1, tq and gpx2, tq:

tpx2 | x1q :“ inf
!

t P r0,1s : gpx2, tq ą gpx1, tq
)

.

Put tpx2 | x1q “ 1 if the above set is empty. An element x P X is called chain essential for

the function g if for all x1,x2 P X such that x1 ă x ă x2, we have

tpx | x1q ă tpx2 | xq , (10)

where, in the above requirement, we also put tpx2 | xq “ 1 if no x2 ą x exists, and tpx |

x1q “ 0 if no x1 ă x exists. Figure 6 illustrates this definition.

A chain-essential element x maximizes the objective over all possible chains (totally

ordered subsets) that contain x, for at least some parameter. The following result asserts

that if the chain-essential elements form a chain themselves (the chain condition), then

each chain-essential element maximizes the objective over the entire choice set for at least

some parameter, and does so monotonically.

Theorem 2 (Monotone Construction Theorem). Let pX ,ďq be a finite partially ordered set.

Suppose that g : Xˆr0,1s ÑR is continuous in t and satisfies the strict single-crossing property

in px, tq. Let Y Ď X be the set of chain-essential elements for g. If Y is totally ordered, then

there exists xptq such that
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Figure 6: Illustration of the definition of a chain-essential element

(i) xptq P argmaxxPX gpx, tq for all t, and xptq is the unique maximizer for almost all t ;

(ii) xptq is monotone in t ;

(iii)
␣

xptq
(

tPr0,1s
“ Y .

The proof of Theorem 2 is constructive. Note that by definition Y must be non-empty.

If Y has only one element, let xpsq be that element for all s P r0,1s. Otherwise, because Y
is totally ordered, we can let the elements in Y be x1 ă x2 ă ¨¨ ¨ ă xn. Since the elements

in Y are chain essential, by (10), we must have

0 ă tpx2 | x1q ă ¨ ¨ ¨ ă tpxn | xn´1q ă 1 . (11)

For any s P r0,1s, let

xpsq “ xj if s P
“

tpxj | xj´1q, tpxj`1 | xjq
˘

, (12)

and let xpsq “ x1 if s ă tpx2 | x1q and xpsq “ xn if s ě tpxn | xn´1q. Note that by construction,

xp ¨ q is well-defined, and satisfies properties (ii) and (iii) in Theorem 2. We now show that

xptq maximizes gpx, tq for all t and uniquely so for almost all t.

Step 1. First, we claim that for all s P r0,1s, we have

max
xPX

gpx,sq “ max
xPY

gpx,sq . (13)

Because X is finite, note that by continuity of g in s, it suffices to show the above holds for

almost all s P r0,1s. We claim that (13) holds for all s < ttpx2 | x1qux1ăx2 (which is a finite

set). Suppose for contradiction that there exists some s < ttpx2 | x1qux1ăx2 such that (13)

does not hold. Then, there must exist some x < Y that maximizes gp ¨ , sq over X .
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First, suppose that there is either (i) no x1 ă x or (ii) no x2 ą x. Because x < Y , in

case (i), there exists some x2 ą x such that s ą tpx2 | xq “ 0 and hence gpx2, sq ą gpx,sq

by the definition of tpx2 | xq. Similarly, in case (ii), there exists some x1 ă x such that

s ă tpx | x1q “ 1 and hence gpx1, sq ą gpx,sq by the definition of tpx | x1q.

Now, suppose otherwise. Then, because x < Y , there exist some x1 ă x ă x2 such that

tpx | x1
q ě tpx2

| xq .

There are again two cases. Case (iii): If s ą tpx | x1q, then we have s ą tpx2 | xq, and hence

gpx2, sq ą gpx,sq

by the definition of tpx2 | xq. Case (iv): If s ă tpx | x1q, then we have

gpx1, sq ą gpx,sq

by the definition of tpx | x1q.

In all of the four cases, the element x cannot maximize gp ¨ , sq over X . Contradiction.

Step 2. Second, we claim that for all s P r0,1s, we have

gpxpsq, sq “ max
x1PY

gpx1, sq , (14)

where xp ¨ q is constructed in (12). Fix any s P r0,1s. Let xj “ xpsq. By construction, we have

0 ă tpx2 | x1q ă ¨ ¨ ¨ ă tpxj | xj´1q ď s ă tpxj`1 | xjq ă ¨ ¨ ¨ ă tpxn | xn´1q ă 1

which by the definition of tp¨ | ¨q implies that

gpxj , sq ě gpxj´1, sq and gpxj , sq ě gpxj`1, sq

gpxj´1, sq ě gpxj´2, sq and gpxj`1, sq ě gpxj`2, sq

... and
...

gpx2, sq ě gpx1, sq and gpxn´1, sq ě gpxn, sq ,

and hence gpxj , sq ě gpx1, sq for all x1 P Y . (The same reasoning works for the edge cases

of j “ 1 and j “ n as well.) Moreover, note that for all s < ttpx2 | x1qux1ăx2 , the above

inequalities are all strict, and hence gpxj , sq ą gpx1, sq for all x1 , xj P Y .
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Figure 7: Illustration of the switching lemma. We hold gpx1, tq, gpx2, tq fixed and vary
gpx, tq. Under the single-crossing property of g, note that comparing the horizontal posi-
tions of ■ and ▲ is equivalent to comparing the horizontal positions of ■ and  .

Now, combining Step 1 and Step 2, we immediately have that property (i) of Theo-

rem 2 must hold for our construction xptq.

4.2 Switching Lemma

Our proof of Theorem 1 will also make use of the following lemma:

Lemma 2 (Switching Lemma). Let pX ,ďq be a finite partially ordered set. Suppose that g :

X ˆ r0,1s Ñ R is continuous in t and satisfies the strict single-crossing property in px, tq. For

any x1 ă x ă x2 where tpx2 | x1q ą 0, we have

tpx | x1q ă tpx2 | xq ðñ tpx | x1q ă tpx2 | x1q . (15)

The proof is in the appendix. Lemma 2 allows us to switch tpx2 | xq in the definition

of a chain-essential element to be tpx2 | x1q. Figure 7 illustrates.

4.3 Completion of the Proof Sketch

We apply Theorem 2 to the partially ordered set pB,Ďq and the virtual surplus function

φpb, tq : BˆT ÑR. Note that, by (7), the strict global quasiconcavity of πpb2,qq ´πpb1,qq

for any two nested bundles b1 Ă b2 implies that φpb, tq has the strict single-crossing prop-

erty in pb, tq. For any b1 Ă b2, let tpb2 | b1q be the unique crossing point of φpb1, tq and

φpb2, tq. In particular, tpb | ∅q is the crossing point of φp∅, tq ” 0 and φpb, tq. By the

assumption Qpbq P p0,1q, we have that tpb | ∅q is strictly between t and t.

To apply Theorem 2, we need to show that the chain-essential elements in B form a
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chain; that is, we need to show that

Y :“
!

b P B : tpb | b1
q ă tpb2

| bq for all b1
Ă b Ă b2

)

is totally ordered by set inclusion. Taking b1 “ ∅, by Lemma 2, we have that any bundle

b P Y must satisfy that for ∅ Ă b Ă b2,

tpb | ∅q ă tpb2
| ∅q

which implies that

Qpbq ą Qpb2
q

where Qp ¨ q is the sold-alone quantity. Hence, every b P Y is an undominated bundle.

But, by the nesting condition, the set of undominated bundles is totally ordered by set

inclusion, and hence Y is totally ordered by set inclusion. Thus, Theorem 2 applies and

yields an allocation rule bptq that satisfies:

• bptq P argmaxbPBφpb, tq for all t , and bptq is the unique maximizer for almost all t ;

• bptq is monotone in t in the set-inclusion order ;

• bptq P Y is an undominated bundle for all t .

Parts (i) and (ii) of Theorem 1 thus follow immediately by the argument provided at the

beginning of this section. Part (iii) of Theorem 1 also follows because bptq is the unique

maximizer for φpb, tq for almost all t (see the appendix for details).

Finally, to see how Proposition 1 (minimal optimal menu) follows, note that for any

optimal, nested menu B, we can apply Theorem 2 to the totally ordered set pB,Ďq and the

virtual surplus function φpb, tq. Now, the set of chain-essential elements YB Ď B is always

totally ordered, and hence YB must be the minimal optimal menu by the construction

given in Theorem 2. If condition (5) in Proposition 1 holds for some ∅ , D Ď B, then any

bundle b P D cannot be in YB and hence can be removed. Otherwise, it can be shown that

YB “ B, and hence menu B is a minimal optimal menu.

4.4 Discussion

Undominance and Chain Essential. As the proof shows, the chain-essential elements in

pB,Ďq for the objective function φpb, tq is always a subset of the undominated bundles.

Thus, the nesting condition is a sufficient condition for the chain-essential elements to
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form a chain. However, it is not necessary. We can further generalize Theorem 1 using

Theorem 2. This is developed with the notion of conditional dominance (see Theorem 5).

Connection to Monotone Comparative Statics. Unlike existing monotone comparative

statics results, the monotone construction theorem does not require a lattice structure.

However, when X is a lattice, the theorem generalizes the canonical result of Milgrom

and Shannon (1994): under the single-crossing property, our chain condition is implied

by their quasisupermodularity condition. Recall that a function g : X ÑR is quasisuper-

modular if for all x and x1 P X ,

gpxq ě pąqgpx^ x1
q ùñ gpx_ x1

q ě pąqgpx1
q .

The following observation is instructive:

Proposition 4. Let pX ,ďq be a finite lattice and g : X ˆ r0,1s ÑR be a function satisfying the

strict single-crossing property in px, tq. If gp ¨ , tq is quasisupermodular in x for all t, then the

chain-essential elements for g are totally ordered.

The proof is in the appendix. To see that the chain condition is strictly weaker than

quasisupmodularity, let X :“ tx,x1,x_ x1,x^ x1u be a four-element lattice. Suppose that

gpx_ x1, tq “ κ ¨
`

gpx, tq ` gpx1, tq
˘

, gpx^ x1, tq “ 0 .

Note that quasisupermodularity of gp ¨ , tq requires that κ ě 1. However, provided that g

has the strict single-crossing property in px, tq, we have

tpx_ x1
| x^ x1

q ď max
!

tpx | x^ x1
q, tpx1

| x^ x1
q

)

,

and hence the chain-essential elements always form a chain, regardless of the value of κ.

Equivalence to Improvement Path. The chain condition is not only sufficient for mono-

tone comparative statics but also necessary if one requires that the maximizer at each

parameter can be found using only comparisons of the objective with ordered pairs (i.e.,

the pairs that satisfy the single-crossing property). That is, the iterative improvement

arguments provided in Section 3.4.1 succeed if and only if the chain-essential elements

are totally ordered.

29



Proposition 5. Let pX ,ďq be a finite partially ordered set and g : X ˆ r0,1s ÑR be a function

that is continuous in t and satisfies the strict single-crossing property in px, tq. The chain-

essential elements for g are totally ordered if and only if:

(i) There exists a monotone selection xp ¨ q such that xptq P argmaxxPX gpx, tq for all t.

(ii) For all t and x0, there exists a sequence px0, . . . ,xnq such that gpxi , tq ď gpxi`1, tq for all i,

xn “ xptq, and each pair pxi ,xi`1q satisfies either xi ą xi`1 or xi ă xi`1.

The proof is in the appendix. The power of the monotone construction theorem is

exactly that we require only the comparisons of ordered pairs by the definition of chain-

essential elements, and yet the global solution can be constructed at all parameter values.

As Proposition 5 shows, one cannot weaken our condition for this property to hold.

Weakening Single-Crossing Property. In the appendix, we show that our monotone

construction theorem holds even with a local single-crossing property (Theorem 6), which

enables us to weaken the global quasiconcavity of incremental profit functions to our lo-

cal quasiconcavity condition, assumption (A2), in the proof of Theorem 1. When X is to-

tally ordered, Milgrom and Shannon (1994) show that the single-crossing property holds

if and only if monotone comparative statics hold for all X 1 Ď X . In comparison, when

X is totally ordered, our local single-crossing property holds if and only if monotone

comparative statics hold for all X 1 Ď X that include the minimum element mintX u.20

5 Robustness of Nested Bundling

In this section, we study the robustness of our main results under alternative assump-

tions. In Section 5.1, we provide a robust nesting condition that ensures a given nested

menu is optimal for all type distributions. In Section 5.2, we show that under suitable

conditions it is possible to extend our analysis to allow multidimensional heterogeneity.

5.1 Distributional Robustness

Theorem 1 relies on the local quasiconcavity assumption (A2). However, we now show

that we can fully remove this assumption if we strengthen our notion of comparisons

and focus on deterministic mechanisms. In fact, the following result provides a robust

nesting condition that ensures a given nested menu is optimal for all type distributions.
20Our local single-crossing property neither implies nor is implied by the interval dominance order of

Quah and Strulovici (2009), which is equivalent to that monotone comparative statics hold for all intervals
X 1 Ď X (when X is totally ordered).
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Theorem 3 (Robust Nesting). Under zero costs, for any nested menu B, if:

(i) for any b1 Ă b2 P B
d
dt

logvpb1, tq ă
d
dt

logvpb2, tq for all t (16)

(ii) for any b1 < B, there exists b2 P B such that b1 Ă b2, and

d
dt

logvpb1, tq ě
d
dt

logvpb2, tq for all t (17)

then menu B is optimal among deterministic mechanisms for all type distributions F.

The proof is in the appendix. Before sketching the proof, we make a few remarks.

Theorem 3 does not even require any single-bundle profit function πpb,qq to be quasi-

concave. Instead, Theorem 3 requires a pointwise elasticity comparison of the demand

curves, as the following observation shows:

Proposition 6. Let ηpb,qq be the price elasticity for bundle b at quantity q.21 For any b and

b1, d
dt logvpb, tq ď d

dt logvpb1, tq for all t P T if and only if ηpb,qq ď ηpb1,qq for all q P r0,1s.

The proof is in the appendix. In light of Proposition 6, the conditions in Theorem 3

can be seen as a global analog of the conditions in Corollary 1, by strengthening the

comparison of unit-elastic quantities to a pointwise elasticity comparison.

In the special case where the menu B “
␣

b
(

consists only of the grand bundle, an

immediate consequence of Theorem 3 is the following pure bundling result:

Corollary 5 (Haghpanah and Hartline 2021). If vpb, tq{vpb, tq is nondecreasing in t for all

bundles b, then pure bundling is optimal among deterministic mechanisms.

In the special case where the menu B “
␣

b1,b
(

consists of two bundles, Theorem 3

also immediately yields the following characterization:

Corollary 6 (Two-tier Menu). If vpb1, tq{vpb, tq is strictly decreasing in t for some b1, and

vpb, tq{vpb, tq is nondecreasing in t for all bundles b , b1, then menu
␣

b1,b
(

is optimal among

deterministic mechanisms.

Proof Sketch for Theorem 3. The proof of Theorem 3 uses a strategy different from our

main proof. Without quasiconcavity assumptions, the solution to the relaxed problem in

Section 4 would not be implementable. Thus, instead of using the Myersonian approach,

21That is, ηpb,qq :“
”

dlogP pb,qq

dlogq

ı´1
.
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we use a different proof approach introduced in Yang (2022). First, for any determin-

istic mechanism M, the proof reconstructs a stochastic mechanism ĂM that improves on

the original one and uses only bundles in the nested menu B, but satisfies only a subset

of the IC constraints — the downward IC constraints. Second, it applies the downward

sufficiency theorem in Yang (2022) to argue that there exists another weakly improving,

fully incentive compatible stochastic mechanism xM. Third, it shows that the stochastic

mechanism xM, which uses lotteries that are totally ordered by stochastic dominance, can

be further improved by a deterministic mechanism that uses only bundles in menu B.

5.2 Multidimensional Types

5.2.1 Collapsing Multidimensional Types

Our main model requires the bundle values to be monotone in the vertical type t. In prac-

tice, consumers may have additional heterogeneity in horizontal preferences that cannot

be captured by the one-dimensional types such as preferences for different colors, genres

of music, or types of movies.

We incorporate this additional dimension of horizontal preferences into our main

model as follows. Each allocation now consists of a pair pb,zq where bundle b P B is a

subset of items and z P Z is a horizontal attribute. The set Z is an arbitrary finite set.

Horizontal attributes do not affect production costs. For any assignment pb,zq, the pro-

duction cost is given by Cpbq. A type now consists of pt,ξq P T ˆΞ where T is a compact

interval on the real line and Ξ is an arbitrary measurable space.

A type pt,ξq consumer’s payoff is given by

vpb, tq ¨upz,ξq ´ p

where v is the bundle value function as in the main model and u : B ˆ Ξ Ñ r0,1s is a

horizontal utility function. In addition to the multiplicative form, we also impose the

following separability property: for all ξ P Ξ

max
zPZ

upz,ξq “ 1 . (Separability)

This property assumes that for every type pt,ξq, there exists a favorite horizontal attribute

such that when assigned, the consumer’s preferences over bundles of vertical attributes

can be fully described by t. For example, in the context of streaming services, the vertical

attribute could be whether the content is ad-free, and the horizontal attribute could be
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whether the content is a documentary or a comedy. Vertical types t represent consumers’

distastes for ads and horizontal types ξ represent consumers’ relative tastes for different

genres. The separability condition holds if when viewing their favorite genres, all type t

consumers are affected by ads in the same way regardless of the genres and their relative

tastes ξ.

We will also assume that the vertical type t and horizontal type ξ are statistically

independent:

t KK ξ . (Orthogonality)

In the example of streaming services, this means that knowing a consumer’s relative taste

for different content reveals no information about the consumer’s distaste for ads.

A mechanism in this extended model is defined as

pa,pq : T ˆΞ Ñ ∆
`

BˆZ
˘

ˆR

that satisfies the usual IC and IR constraints as in the main model. Let M be the set

of all mechanisms. A mechanism pa,pq involves no horizontal distortion if for all t

and ξ, the assignment of the horizontal attribute is deterministic and efficient (i.e., in

argmaxzupz,ξq). Let ĂM be the set of all mechanisms involving no horizontal distortion.

Theorem 4 (Multidimensional Types). Suppose that the separability and orthogonality con-

ditions hold. Then:

(i) The optimal profit under ĂM equals to the optimal profit underM.

(ii) If assumptions (A1), (A2), and the nesting condition hold for
␣

vpb, tq,Cpbq,Fptq
(

, then

the optimal mechanism can be implemented by offering a nested menu of undominated

bundles with consumers freely choosing their favorite horizontal attributes.

Theorem 4 shows that under suitable separability and orthogonality conditions, the

optimal mechanism collapses multidimensional type space T ˆΞ to the one-dimensional

type space T — by not distorting the consumers’ horizontal choices — and hence can be

characterized by our results. In the running example of streaming services, this means

that the company may find it optimal to offer a two-tier menu that prices whether the

content is ad-free but allows the consumers to freely choose their favorite content.

Proof Sketch for Theorem 4. The proof of Theorem 4 is in the appendix. The basic in-

tuition behind Theorem 4 can be understood as follows. Consider a relaxed problem in
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which the seller can observe the consumers’ horizontal type ξ. Now, for every pt,ξq, be-

cause of the separability condition, if the seller assigns a non-favorite horizontal attribute

z and some bundle b, then it can be replicated by assigning the favorite attribute and a

lottery over bundles t∅,bu. Because of the orthogonality condition, observing ξ reveals

no information about t, and hence there exists a single optimal solution to the relaxed

problem, for all observed horizontal types ξ, that involves no horizontal distortion. But

then it must be optimal in the original problem when the seller cannot observe ξ. Part (ii)

of Theorem 4 follows immediately from this argument and Theorem 1 because Theorem 1

shows the optimality of nested bundling even within all stochastic mechanisms.

5.2.2 Local Robustness to Multidimensional Types

Section 5.2.1 imposes a specific structure on the consumers’ preferences to separate the

allocations into vertical and horizontal attributes. Now, we describe a fully general model

and show that our results are at least locally robust to multidimensional heterogeneity in

this fully general setting.

Each consumer has a type v P R2n
` describing the private value vb for bundle b, with

v∅ “ 0. A mechanism pa,pq in this setting is defined as

pa,pq :R2n
` Ñ ∆pBq ˆR

that satisfies the usual IC and IR constraints. The seller has cost Cpbq for producing bun-

dle b. The type distribution is given by γ P ∆pR2n
` q. Suppose that γ has bounded, continu-

ous marginal distributions. For every joint distribution γ , there exists a unique comono-

tonic distribution γmon P ∆pR2n
` q that shares the same marginal distributions with γ but

is maximally positively correlated (i.e., the Fréchet-Hoeffding copula).

To describe the sense in which our results are locally robust, we apply the misspeci-

fication framework of Madarász and Prat (2017). For two distributions γ1,γ2 P ∆pR2n
` q,

γ1 and γ2 are said to be δ-close if R2n
` can be partitioned into disjoint measurable sets

S1, . . . ,Sk such that ||v ´ v1||sup ă δ for any v,v1 in the same cell Sj and γ1pSjq “ γ2pSjq for

each Sj (Madarász and Prat 2017). We say that a distribution γ is δ-positively-correlated

if it is δ-close to the comonotonic distribution γmon.

Our main model can be viewed as studying the optimal bundling problem for the

comonotonic distribution γmon. Our conditions can be viewed as using only the informa-

tion about the marginal distributions. In particular, under comonotonicity of the bundle

values, assumption (A1) can be equivalently stated as:
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A1’. P pb2,qq´P pb1,qq is strictly decreasing in q for all b1 Ă b2, where P pb,qq is the single-

bundle demand curve for bundle b.

Moreover, assumption (A2) and our nesting condition also depend only on the marginal

distributions.

Proposition 7. Suppose that assumptions (A1’), (A2), and the nesting condition hold for a

collection of continuous marginal distributions tµbub. Then, for any ε ą 0, there exists δ ą 0

such that, for any δ-positively-correlated distribution γ with marginals given by tµbub, the

menu of undominated bundles yields a profit that is at most ε away from the optimal profit.

The proof is in the appendix. Proposition 7 follows from Theorem 1 and the main

result of Madarász and Prat (2017). In particular, Madarász and Prat (2017) provide a

method of discounting the prices in a menu (without changing the bundles in the menu)

to make the menu robust to local misspecifications of the type space.

6 General Procedure to Find the Optimal Menu

In practice, it might not be feasible to estimate the sold-alone quantities for all bundles

when the seller must offer some base bundle (e.g., a “freemium” tier) to all consumers. In

this section, we generalize our nesting condition to allow more ways to exclude bundles

from consideration when finding the optimal menu.

For three bundles b0 Ă b1 Ă b2, we say that b1 is dominated by b2 conditional on b0 if

Qpb1 | b0q ď Qpb2 | b0q ,

where for any b Ă b1, recall that Qpb1 | bq denotes the incremental quantity of b1 given

b, i.e., the quantity at which the incremental profit function πpb1,qq ´ πpb,qq reaches its

maximum in the interval r0,maxtQpb1q,Qpbqus.

A bundle b is strongly undominated if for all b1,b2 such that b1 Ă b Ă b2, we have

Qpb | b1
q ą Qpb2

| b1
q .

Clearly, a strongly undominated bundle must be an undominated bundle.

Theorem 5 (General Nesting). Suppose that assumptions (A1) and (A2) hold. If the menu of

strongly undominated bundles is nested, then it is a minimal optimal menu.

Theorem 5 provides the following conditional sieve algorithm:

35



Step 1. Pick any three bundles b0 Ă b1 Ă b2.

Step 2. Remove b1 from consideration if Qpb1 | b0q ď Qpb2 | b0q.

Step 3. Repeat Steps 1-2 until the remaining bundles are nested.

Theorem 5 implies that when Step 3 stops, the remaining bundles always form an op-

timal menu regardless of how the bundles are chosen in Step 1. One can further apply

Proposition 1 to the remaining bundles to find the minimal optimal menu.

Proof Sketch for Theorem 5. The proof of Theorem 5 is in the appendix. Theorem 5 gen-

eralizes Theorem 1 by allowing the removal of more bundles when checking the nesting

condition. The proof again relies on Theorem 2 (monotone construction theorem) and

Lemma 2 (switching lemma). In fact, the strongly undominated bundles are exactly the

chain-essential elements in Theorem 2, when the partially ordered choice set is pB,Ďq,

and the objective function is the virtual surplus function.

7 Applications

In this section, we present three applications. In Section 7.1, we further connect optimal

bundling strategies to demand structures. In Section 7.2, we apply our results to quality

discrimination models and study how product line design depends on cost structures. In

the last application, in Section 7.3, we connect costly screening to optimal bundling.

7.1 Bundling and Elasticity

We introduce a sufficient condition for the nesting condition in Theorem 1 in terms of

price elasticities. Let

ηpb,qq :“
”dlogP pb,qq

dlogq

ı´1

be the usual price elasticity for bundle b evaluated at quantity q. We say that the union

elasticity condition holds if for any bundles b1 and b2, we have

ηpb1,qq ă ´1 and ηpb2,qq ă ´1 ùñ ηpb1 Y b2,qq ă ´1 . (Union Elasticity Condition)

That is, if the demand curves for two bundles are both elastic at a certain quantity q, then

the demand curve for their union is also elastic at quantity q.

Proposition 8. Under zero costs, the union elasticity condition implies the nesting condition.
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Proposition 8 follows immediately from Proposition 2 by noting that under zero costs,

the union elasticity condition implies the union quantity condition that we introduced in

Section 3.1. Note that when costs are present, we can modify the price elasticity ηpb,qq to

be η̃pb,qq :“
“dlogpP pb,qq´Cpbqq

dlogq

‰´1 to incorporate costs into the elasticity measure.

Applying our main results, we can fully characterize the optimal menu under the

union elasticity condition. To state the characterization, we first arrange the bundles

according to their sold-alone quantities Qpbq, and define b‹
i as the i-th best-selling bundle,

with ties broken arbitrarily. Then, we have the following result:

Proposition 9. Suppose that assumptions (A1) and (A2) hold. Under the union elasticity

condition and zero costs, the following nested menu is optimal:

!

b‹
1, b

‹
1 Y b‹

2, b
‹
1 Y b‹

2 Y b‹
3, . . . , b

)

.

The proof is in the appendix. Under the union elasticity condition, Proposition 9

provides a simple recipe for constructing the optimal menu: (i) arrange all bundles in

descending order based on their sold-alone quantities, and (ii) successively merge them,

excluding duplicates.22 Proposition 9 shows that the optimal mechanism iteratively cre-

ates nests such that items with a more elastic demand curve become the basic items and

items with a more inelastic demand curve become the upgrade items, with both mea-

sured by the size of their elastic regions (i.e., unit-elastic quantities). Note also that this

mechanism sorts the bundles, rather than the items, by their sold-alone quantities. This

construction fully accounts for the complementarity or substitutability patterns across

different items.

7.1.1 Comparative Statics of Optimal Menu for Demand Rotations

Price elasticities can be affected by advertising and marketing, which can act as demand

rotation in the sense of Johnson and Myatt (2006). Using Proposition 9, we can ana-

lyze the comparative statics of optimal bundling given a sequence of demand rotations.

Suppose that there are two items and zero costs. Consider a family of demand systems

indexed by parameter s P R, with ηpb,q;sq denoting the price elasticities and Qpb;sq de-

noting the sales volumes. We use the following notion of demand rotations: There is a

sequence of (clockwise, sales-ordered) demand rotations for item i if for all s ă s1

Qptiu;s1
q ď Qptiu;sq, Qptju;s1

q “ Qptju;sq, Qpt1,2u;s1
q ď Qpt1,2u;sq,

22Moreover, starting from this optimal menu in Proposition 9, we can always determine the minimal
optimal menu by applying Proposition 1.
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and

Qptiu;sq ď Qpt1,2u;sq ùñ Qptiu;s1
q ď Qpt1,2u;s1

q .

That is, as parameter s increases, the demand curve for item i and the demand curve

for bundle t1,2u become more inelastic in the sense of a smaller elastic region.23 The

last condition ensures that the indirect change in the demand curve for bundle t1,2u is

smaller than the direct change in the demand curve for item i. To state our result, we

define the tier of item i in a nested menu B :“ tb1, . . . , bmu, where b1 Ă ¨¨ ¨ Ă bm, as the

index of the smallest bundle in B that includes item i, denoted by ripBq.

Proposition 10. Suppose that assumptions (A1) and (A2) hold. Suppose that there are two

items and zero costs and that the union elasticity condition holds for all s. Let BOPT psq be the

minimal optimal menu. Then, in a sequence of demand rotations for item i, we have that:

(i) the tier of item i in the optimal menu ripB
OPT psqq is nondecreasing in s ;

(ii) the tier of item j , i in the optimal menu rjpB
OPT psqq is nonincreasing in s ;

(iii) the size of the optimal menu |BOPT psq| is quasiconvex in s .

The proof is in the appendix. Proposition 10 says that if there is a sequence of demand

rotations for item i, i.e., an increase in the dispersion of consumers’ values for item i,

then the item gets promoted to be the upgrade item while the other item gets demoted

to be the basic item and the optimal menu first gets coarser and then gets finer. This

result complements Johnson and Myatt (2006) who study the effect of value dispersion

on a monopolist’s quality design. They show that demand rotation always leads to an

expansion of the product line. In contrast, our bundling setting involves the monopolist

switching the tiers of different items and adopting a menu size that is U -shaped in the

dispersion parameter. For example, consider Example 2 in Section 3.3. As parameter β

increases, there is a sequence of demand rotations for item 2. The optimal menu changes

in a way that is consistent with Proposition 10 — it shifts from
␣

t2u,t1,2u
(

to
␣

t1,2u
(

,

and then to
␣

t1u,t1,2u
(

, as parameter β increases.

7.2 Quality Discrimination

A special case of our model is the quality discrimination model a la Mussa and Rosen

(1978). Our results provide new insights even in this well-studied setting. Let X :“

23A sufficient (but far from necessary) condition is that, as parameter s increases, the demand curves
become pointwise more inelastic.
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t0,x1, . . . ,xnu Ă R` be a set of qualities, with 0 ă x1 ă ¨¨ ¨ ă xn. In this model, a type-

t consumer has value vpx, tq for a good of quality x; the monopolist incurs cost Cpxq to

supply a good of quality x. This can be viewed as a special case of our model, where we

define the values and costs for the bundles as follows: For all k “ 1, . . . ,n, let

vpt1, . . . , ku, tq :“ vpxk , tq , Cpt1, . . . , kuq :“ Cpxkq .

Let vpb, tq “ 0, Cpbq “ 0 for all bundles b that are not of the form t1, . . . , ku. In this case, the

nesting condition is always satisfied. Assumption (A1) reduces to the standard increasing

differences condition, and assumption (A2) reduces to a local regularity condition that is

much weaker than the standard regularity conditions.24

Let Qpxq be the sold-alone quantity of the good of quality x; thus, Q : X Ñ r0,1s. For

simplicity of exposition, assume that Qpxq P p0,1q for all x P X . Our next result provides

a new characterization of optimal quality discrimination:

Proposition 11. Suppose that assumptions (A1) and (A2) hold. Let pQ be the the upper de-

creasing envelope of Q : X Ñ r0,1s, i.e.,

pQpxq :“ inf
!

gpxq : g is nonincreasing and g ě Q
)

.

Let

X‹ :“
!

x : pQpxq “ Qpxq

)

.

Then X‹ is an optimal menu.

The proof is in the appendix. It applies Theorem 1 to this special case. Proposition 11

offers a simple way of pruning the product line using only the sold-alone quantities. To

prune the product line to a minimal optimal menu, we can further apply Proposition 1

to this special case using the incremental quantities.

7.2.1 Product Line Design and Cost Structures

Applying Proposition 11, we can also characterize how cost structures affect the product

line design under multiplicative utility functions:

Proposition 12. Suppose that vpx, tq “ x¨t and type distribution F is regular.25 Let Cavgpxq :“

24For standard regularity conditions, see e.g., pp. 262–268 of Fudenberg and Tirole (1991).
25That is, φptq “ t ´

1´Fptq
f ptq

is strictly increasing.
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(a) Qpxq and pQpxq (b) Cavgpxq and qCavgpxq

Figure 8: Illustration of pQp ¨ q and qCavgp ¨ q

Cpxq
L

x be the average cost function. Let qCavg be the lower increasing envelope of Cavg , i.e.,

qCavgpxq :“ sup
!

gpxq : g is nondecreasing and g ď Cavg

)

.

Let

X‹ :“
!

x : qCavgpxq “ Cavgpxq

)

.

Then X‹ is an optima menu.

This result generalizes Proposition 1 of Johnson and Myatt (2003), where the average

cost curve is assumed to be U -shaped.26 They conclude that “It is optimal to segment the

market with multiple products exactly in the region where average cost and marginal cost

are increasing” (Johnson and Myatt 2003). However, Proposition 12 shows that this con-

clusion is incomplete when the cost structure is more complex.27 The optimal mechanism

need not segment the market even when average cost and marginal cost are increasing.

Figure 8 illustrates. Specifically, the marginal and average costs can both increase within

the blue region highlighted in Figure 8b, yet the optimal mechanism does not segment the

market using these qualities. Instead, as illustrated in Figure 8a, optimal quality choices

are characterized by our notion of dominance.

At first glance, Proposition 11 and Proposition 12 may seem related to the ironing pro-

cedures in Mussa and Rosen (1978) and Myerson (1981). However, this connection is su-

26They define a cost structure to be U -shaped if there exists some quality threshold xk below which the
average cost is decreasing and above which the marginal and average costs are increasing. In this case,
the menu of undominated qualities X‹ coincides with the region of increasing marginal and average costs
txk , . . . ,xnu. Moreover, by Proposition 1, menu X‹ in this case is the minimal optimal menu.

27Average costs are not U -shaped whenever there are kinks in the cost function due to a mix of produc-
tion technologies, e.g., Cpxq “ min

␣

k1 ` xα1 , k2 ` xα2
(

where k1 ă k2 and α1 ą α2.
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perficial. Even though Proposition 11 and Proposition 12 characterize various bunching

regions, they operate in a setting where ironing is not needed. In the standard textbook

treatment of one-dimensional screening, the regularity assumptions that rule out ironing

also rule out the possibility of bunching (see pp. 262–268 of Fudenberg and Tirole 1991).

Our assumptions are much weaker, allowing for rich forms of bunching. This generality

relies on our new constructive monotone comparative statics result (Theorem 2).

7.3 Costly Screening

Consider a monopolist selling a set of quality-differentiated goods, as described in Sec-

tion 7.2. In addition to setting prices for these goods, the monopolist can also use non-

price instruments by requiring customers to perform certain costly actions, such as wait-

ing in line or collecting coupons, in order to qualify for certain offers. When is such costly

screening optimal?

We consider a special case of the model introduced in Yang (2022). A consumer’s

payoff is given by

upx, tq ´ cpy, tq ´ p

where x P t0,x1, . . . ,xnu “: X Ă R` denotes the quality and y P t0, y1, . . . , ymu “: Y Ă R`

denotes the costly action, with the normalization up0, tq “ cp0, tq “ 0. The seller’s payoff
is given by ´Cpxq`p, where Cp ¨ q is the production cost. From Yang (2022), we know that

if cpy, tq is nonincreasing in t, then the optimal deterministic mechanism does not use the

costly instruments (i.e., yptq “ 0 for all types t).

In this section, we consider the opposite case where cpy, tq is strictly increasing in t (for

all y ą 0). We also restrict attention to deterministic mechanisms px,y,pq : T Ñ XˆYˆR.

We say that costly screening is optimal if every optimal mechanism requires a positive

mass of consumers to perform some costly action y ą 0, and suboptimal otherwise.

Let πpx,qq be the profit function of selling quality x alone and Qpxq the corresponding

sold-alone quantity as in Section 7.2. For any costly action y, it is helpful to consider an

auxiliary problem of selling the pass to avoid action y (e.g., a pass to skip the waiting

line). Let πpy,qq be the profit function for this problem:

πpy,qq :“ c
`

y,F´1
p1 ´ qq

˘

¨ q .

If upx, tq ´ cpy, tq is increasing in t, then πpx,qq ´ πpy,qq is exactly the profit function of

selling quality x when requiring action y. Suppose that πpy,qq is strictly quasiconcave in

q. Let Qpyq be the sold-alone quantity that maximizes πpy,qq.
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The sold-alone quantity Qpyq can be thought of as an elasticity index since the faster

the cost of action y increases with types on the log scale, the lower Qpyq would be:

d
dt

logcpy1, tq ď
d
dt

logcpy2, tq for all t ùñ Qpy1q ě Qpy2q .

Our next result shows that, under quasiconcavity assumptions, costly screening is opti-

mal if and only if there exists a costly action with sufficiently high elasticity of disutility

when measured by this index:

Proposition 13. Suppose that assumptions (A1) and (A2) hold for tupx, tq,Cpxq,Fptqu. Sup-

pose that for all x,y ą 0, upx, tq´cpy, tq is strictly increasing in t and πpx,qq´πpy,qq is strictly

quasiconcave in q. Then costly screening is optimal if and only if

min
yą0

Qpyq ă max
xą0

Qpxq .

The proof is in the appendix. The intuition behind this characterization can be under-

stood as follows. In the absence of costly screening, as discussed in Section 7.2, a menu

of different qualities can be viewed as a nested menu. Moreover, we can view that requir-

ing a costly action y to purchase quality x as a damaged bundle px,yq that is a subset of

the undamaged bundle x. Therefore, the question of whether costly screening is optimal

reduces to the question of whether selling a specific nested menu is optimal.

Let x‹ :“ maxtargmaxxQpxqu be the best-selling quality (if sold alone). In the absence

of costly screening, by Proposition 11, we know that the best-selling quality x‹ would be

optimally offered as the base quality level in the menu. If there exists a costly action y

such that Qpyq ă Qpx‹q, then the damaged bundle px‹, yq has an even higher sold-alone

quantity. Intuitively, this is because the costly action y compresses the distribution of

values for the damaged bundle. Thus, px‹, yq can be profitably included in the menu to

expand the market by Proposition 3.

On the other hand, if Qpyq ě Qpx‹q, then we have Qpyq ě Qpx‹q ě Qpxq for all qualities

x, since quality x‹ is the best-selling quality. This implies that any damaged bundle px,yq

has a lower sold-alone quantity than the undamaged bundle x. Intuitively, this is because

the costly action y now makes the distribution of values for the damaged bundle more

dispersed. But then bundle px,yq is dominated by bundle x. Removing all such domi-

nated bundles leaves a nested menu that consists of only different qualities. Therefore,

by Theorem 1, the remaining menu is an optimal menu, and hence costly screening is

suboptimal.

42



8 Conclusion

This paper studies when nested bundling is optimal and determines which nested menu

is optimal, when consumers differ in one dimension. We introduce a partial order on the

set of bundles defined by (i) set inclusion and (ii) sold-alone quantity. We show that if

the set of undominated bundles is nested, then nested bundling, in particular a menu of

undominated bundles, is optimal. We provide an iterative procedure to determine the

minimal optimal menu that consists of a subset of the undominated bundles. The proof

technique involves a new monotone comparative statics result that is constructive and

requires no lattice structure.

We also provide necessary conditions for a given nested menu to be optimal. Ad-

ditionally, we provide distributionally robust characterizations of nested bundling. We

further show that under suitable conditions it is possible to extend our analysis to allow

multidimensional heterogeneity. We apply our results to connect empirically relevant

economic primitives to optimal menu design.
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A Proofs

A.1 Proof of Lemma 1

The claim follows by the same proof of Fact 1 in the Introduction (see Myerson 1981 and

Bulow and Roberts 1989).

A.2 Proof of Lemma 2

For the p ðù q direction, fix any x1 ă x ă x2 and suppose that tpx | x1q ă tpx2 | x1q. Then,

since tpx2 | x1q ą 0, we have

gpx2, tpx2 | x1qq ď gpx1, tpx2 | x1qq ă gpx, tpx2 | x1qq

and hence tpx2 | x1q ď tpx2 | xq. Thus, tpx | x1q ă tpx2 | x1q ď tpx2 | xq.

For the p ùñ q direction, fix any x1 ă x ă x2 and suppose that tpx | x1q ă tpx2 | xq. Since

tpx2 | x1q ą 0, if tpx | x1q “ 0, then we are done. Otherwise, we have tpx | x1q ą 0, and

hence

gpx2, tpx | x1qq ă gpx, tpx | x1qq ď gpx1, tpx | x1qq

and hence tpx | x1q ă tpx2 | x1q.

A.3 Proof of Theorem 1

Section 4 proves parts (i) and (ii) of Theorem 1 under a stronger assumption that the

incremental profit functions are globally quasiconcave. We complete the proof by weak-

ening global quasiconcavity to local quasiconcavity, i.e., assumption (A2). We will also

show part (iii) of Theorem 1 in the end.

The proof strategy is the same as in Section 4, except that we generalize both Theo-

rem 2 and Lemma 2 to hold for functions g that only has a local single-crossing property.

A.3.1 Monotone Construction Theorem with Local Single-Crossing Property

Let X be a finite partially ordered set. Suppose that X has a minimum x0, i.e., x0 ă x for

all x , x0. A function g : X ˆ r0,1s Ñ R has strict local single-crossing property if for all

x0 ď x ă x1 and all t ă t1,

gpx1, tq ě maxtgpx, tq, gpx0, tqu ùñ gpx1, t1
q ą maxtgpx, t1

q, gpx0, t
1
qu .
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Let

tpx1
| xq :“ inf

!

t P r0,1s : gpx1, tq ą maxtgpx, tq, gpx0, tqu

)

,

where we put tpx1 | xq :“ 1 if the above set is empty. Write tpxq as a shorthand for tpx | x0q.

The definition of strict local single-crossing property imposes that (i) for any x ą x0,

gpx, ¨ q single-crosses gpx0, ¨ q from below and (ii) for any x1 ą x ą x0, gpx1, ¨ q single-crosses

maxtgpx, ¨ q, gpx0, ¨ qu from below. The following lemma provides two equivalent charac-

terizations of the strict local single-crossing property that will be helpful later.

Lemma 3. Let X be a finite partially ordered set with a minimum element x0. Suppose that

gpx, ¨ q is continuous for all x and that gpx,sq ě gpx0, sq ùñ gpx,s1q ą gpx0.s
1q for all x ą x0

and all s1 ą s. For any x1 ą x ą x0, the following three statements are equivalent:

(i) gpx1, sq ě maxtgpx,sq, gpx0, squ ùñ gpx1, s1q ą maxtgpx,s1q, gpx0, s
1qu for all s1 ą s ;

(ii) gpx1, sq ě gpx,sq ùñ gpx1, s1q ą gpx,s1q for all s1 ą s ě minttpxq, tpx1qu ;

(iii) gpx1, sq ě gpx,sq ùñ gpx1, s1q ą gpx,s1q for all s1 ą s ě maxttpxq, tpx1qu .

Moreover, if any of the above three conditions holds, then we also have

tpx1
| xq “ inf

!

s P rminttpxq, tpx1
qu,1s : gpx1, sq ą gpx,sq

)

.

Proof. We show that (i) ùñ (ii) ùñ (iii) ùñ (i).

(i) ùñ (ii): Suppose that condition (i) holds and that gpx1, sq ě gpx,sq for some s such

that 1 ą s ě minttpxq, tpx1qu. Fix any s1 ą s. If s ě tpxq, then gpx1, sq ě gpx,sq ě gpx0, sq

which by condition (i) implies that gpx1, s1q ą gpx,s1q. Now suppose s ă tpxq. Then we

must have tpx1q ď s ă tpxq. Hence, gpx1, sq ě gpx0, sq ě gpx,sq which by condition (i) also

implies that gpx1, s1q ą gpx,s1q.

(ii) ùñ (iii): This is immediate from the definition.

(iii) ùñ (i): Suppose that condition (iii) holds. Fix any s1 ą s and suppose that

gpx1, sq ě maxtgpx,sq, gpx0, squ. Then, we have s ě tpx1q. Hence, we have gpx1, s1q ą gpx0, s
1q.

Thus, it suffices to show that gpx1, s1q ą gpx,s1q. If s ě tpxq, then by condition (iii), we have

gpx1, s1q ą gpx,s1q. Now suppose s ă tpxq. Then we must have tpx1q ď s ă tpxq. There are

two cases: if s1 ď tpxq, then we have gpx,s1q ď gpx0, s
1q ă gpx1, s1q; otherwise, if s1 ą tpxq,

then note that since tpx1q ă tpxq, we have

gpx, tpxqq ď gpx0, tpxqq ă gpx1, tpxqq ,

which by condition (iii) implies that gpx1, s1q ą gpx,s1q.
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Finally, we show that

tpx1
| xq “ inf

!

s P rminttpxq, tpx1
qu,1s : gpx1, sq ą gpx,sq

)

.

First, note that by definition, we must have tpx1 | xq ě tpx1q ě minttpxq, tpx1qu. Second,

note that for any s ą tpx1 | xq, we have gpx1, sq ą maxtgpx,sq, gpx0, squ ě gpx,sq. Now, fix any

s such that minttpxq, tpx1qu ď s ă tpx1 | xq. We claim that gpx1, sq ă gpx,sq. To see it, note

that since s ă tpx1 | xq, we have

gpx1, sq ă maxtgpx,sq, gpx0, squ .

Since s ě minttpxq, tpx1qu, we also have either that gpx,sq ě gpx0, sq or that gpx1, sq ě gpx0, sq.

In either case, we must then have gpx1, sq ă gpx,sq. Then, it follows that

tpx1
| xq “ inf

!

s P rminttpxq, tpx1
qu,1s : gpx1, sq ą gpx,sq

)

,

proving the result.

As in Section 4, an element x is chain essential for g if for all x1 ă x ă x2

tpx | x1q ă tpx2 | xq

where, in the above requirement, we also put tpx2 | xq “ 1 if no x2 ą x exists, and tpx |

x1q “ 0 if no x1 ă x exists.

The next two lemmas show that this definition of chain-essential elements extends the

key properties of our earlier definition in Section 4 (when g has the global single-crossing

property). In particular, the chain-essential elements are exactly the ones that cannot be

removed from any chain without decreasing the objective value at some parameter.

Lemma 4. Let X be a finite partially ordered set with a minimum element x0. Suppose that g

is continuous in t and has the strict local single-crossing property. For any x1 ă x ă x2 such

that

tpx | x1q ě tpx2 | xq

we have

gpx,sq ď max
␣

gpx1, sq, gpx2, sq, gpx0, sq
(

,

for all s and strictly so for all s < ttpxq, tpx1q, tpx | x1q, tpx2 | xqu.

Proof. Fix any s < ttpxq, tpx1q, tpx | x1q, tpx2 | xqu. If s ą tpx | x1q, then we have s ą tpx2 | xq,
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and hence

gpx,sq ă gpx2, sq ď maxtgpx1, sq, gpx2, sq, gpx0, squ .

If s ă tpx | x1q, then we have that

gpx,sq ă maxtgpx1, sq, gpx0, squ ď maxtgpx1, sq, gpx2, sq, gpx0, squ .

Thus, the required strict inequality holds for s. The weak inequality holds for all s P r0,1s

by the continuity of g.

Lemma 5. Let X be a finite partially ordered set with a minimum element x0. Suppose that

g is continuous in t and has the strict local single-crossing property. For any x1 ă x ă x2 and

any s such that

tpx | x1q ă s ă tpx2 | xq

we have

gpx,sq ą max
␣

gpx1, sq , gpx2, sq , gpx0, sq
(

.

Proof. Fix any s such that tpx | x1q ă s ă tpx2 | xq. By the definition of tpx | x1q, we have

gpx,sq ą maxtgpx1, sq, gpx0, squ .

Moreover, by the definition of tpx2 | xq, we then have

gpx2, sq ă maxtgpx,sq, gpx0, squ “ gpx,sq .

Therefore, we have

gpx,sq ą maxtgpx1, sq, gpx2, sq, gpx0, squ ,

proving the claim.

Theorem 6 (Monotone Construction with Local Single Crossing). Let pX ,ďq be a finite

partially ordered set with a minimum element x0. Suppose that g : Xˆr0,1s ÑR is continuous

in t and satisfies the strict local single-crossing property in px, tq. Let Y Ď X be the set of chain-

essential elements for g. If Y is totally ordered, then there exists xptq such that

(i) xptq P argmaxxPX gpx, tq for all t, and xptq is the unique maximizer for almost all t ;

(ii) xptq is monotone in t ;

(iii)
␣

xptq
(

tPr0,1s
“ Y .
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Proof. We use the same construction and the same proof strategy as in Section 4. By

definition Y must be non-empty. If Y has only one element, let xpsq be that element for

all s P r0,1s. Otherwise, because Y is totally ordered, we can let the elements in Y be

x1 ă x2 ă ¨¨ ¨ ă xn. Since the elements in Y are chain essential, by definition, we must

have

0 ă tpx2 | x1q ă ¨ ¨ ¨ ă tpxn | xn´1q ă 1 .

For any s P r0,1s, let

xpsq “ xj if s P
“

tpxj | xj´1q, tpxj`1 | xjq
˘

,

and let xpsq “ x1 if s ă tpx2 | x1q and xpsq “ xn if s ě tpxn | xn´1q. Note that by construction,

xp ¨ q is well-defined, and satisfies properties (ii) and (iii) in Theorem 6. We now show that

xptq maximizes gpx, tq for all t and uniquely so for almost all t.

Step 1. First, we claim that for all s P r0,1s, we have

max
xPX

gpx,sq “ max
xPY

gpx,sq .

Because X is finite, note that by continuity of g in s, it suffices to show the above holds for

almost all s P r0,1s. We claim that the above holds for all s < ttpx2 | x1qux1ăx2 . Suppose for

contradiction that there exists some s < ttpx2 | x1qux1ăx2 such that it does not hold. Then,

there must exist some x < Y that maximizes gp ¨ , sq over X .

First, suppose that there is either (i) no x1 ă x or (ii) no x2 ą x. Because x < Y , in

case (i), there exists some x2 ą x such that s ą tpx2 | xq “ 0 and hence gpx2, sq ą gpx,sq

by the definition of tpx2 | xq. Similarly, in case (ii), there exists some x1 ă x such that

s ă tpx | x1q “ 1 and hence maxtgpx1, sq, gpx0, squ ą gpx,sq by the definition of tpx | x1q.

Now, suppose otherwise. Then, in this case, because x < Y , there exist some x1 ă x ă x2

such that

tpx | x1
q ě tpx2

| xq .

But then by Lemma 4, we have

gpx,sq ă max
␣

gpx1, sq, gpx2, sq, gpx0, sq
(

In all of these cases, the element x cannot maximize gp ¨ , sq over X . Contradiction.
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Step 2. Second, we claim that for all s P r0,1s, we have

gpxpsq, sq “ max
x1PY

gpx1, sq .

This holds trivially if |Y | “ 1. Hence, suppose |Y | ą 1. Fix any s P r0,1s. Let xj “ xpsq. By

construction, we have

0 ă tpx2 | x1q ă ¨ ¨ ¨ ă tpxj | xj´1q ď s ă tpxj`1 | xjq ă ¨ ¨ ¨ ă tpxn | xn´1q ă 1

which by the proof of Lemma 5 implies that

gpxj , sq ě maxtgpxj´1, sq, gpx0, squ and maxtgpxj , sq, gpx0, squ ě gpxj`1, sq

gpxj´1, sq ě maxtgpxj´2, sq, gpx0, squ and maxtgpxj`1, sq, gpx0, squ ě gpxj`2, sq

... and
...

gpx2, sq ě maxtgpx1, sq, gpx0, squ and maxtgpxn´1, sq, gpx0, squ ě gpxn, sq .

There are two cases.

Case (i): j ě 2. Note that the left column above implies that

gpxj , sq ě gpxi , sq

for all i ă j, and that gpxj , sq ě gpx0, sq. But by the right column above, we also have

maxtgpxj , sq, gpx0, squ ě gpxk , sq

for all k ą j. Thus, gpxj , sq ě gpxk , sq for all k ą j. Therefore, gpxj , sq ě gpx1, sq for all x1 P Y .

Moreover, for all s < ttpx2 | x1qux1ăx2 , the same argument implies that gpxj , sq ą gpx1, sq for

all x1 , xj P Y .

Case (ii): j “ 1. In this case, we have 0 ď s ă tpx2 | x1q. By the same reasoning as in the

previous case, we have

maxtgpx1, sq, gpx0, squ ą gpxk , sq

for all k ą 1. Now, note that we must have gpx1, sq ě gpx0, sq. Because otherwise, by the

above, we immediately have

gpx0, sq ą gpx1, sq and gpx0, sq ą gpxk , sq
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for all k ą 1, and hence

gpx0, sq ą max
xPY

gpx,sq ,

which is impossible by Step 1. Thus, we have gpx1, sq ě gpx0, sq, and hence

gpx1, sq “ maxtgpx1, sq, gpx0, squ ą gpxk , sq

for all k ą 1. Therefore, gpx1, sq ą gpx1, sq for all x1 , x1 P Y .

Combining these two cases, we have that for all s P r0,1s, gpxpsq, sq “ maxx1PY gpx1, sq,

and moreover, for all s < ttpx2 | x1qux1ăx2 , xpsq is the unique maximizer in Y .

Now, combining Step 1 and Step 2, we immediately have that property (i) of Theo-

rem 6 must hold for our construction xptq, proving the result.

A.3.2 Switching Lemma with Local Single-Crossing Property

Lemma 6 (Switching Lemma with Local Single Crossing). Let pX ,ďq be a finite partially

ordered set with a minimum element x0. Suppose that g : X ˆ r0,1s Ñ R is continuous in

t and satisfies the strict local single-crossing property in px, tq. For any x1 ă x ă x2 where

tpx2 | x1q ą 0, we have

tpx | x1q ă tpx2 | xq ðñ tpx | x1q ă tpx2 | x1q .

Proof. For the p ðù q direction, fix any x1 ă x ă x2 and suppose that tpx | x1q ă tpx2 | x1q.

Suppose for contradiction that tpx | x1q ě tpx2 | xq. Then by Lemma 4, we have

gpx,sq ď max
␣

gpx1, sq, gpx2, sq, gpx0, sq
(

,

for all s P r0,1s. Note that there exists s such that

tpx | x1q ă s ă tpx2 | x1q .

For such s, we have

gpx,sq ą maxtgpx1, sq, gpx0, squ, maxtgpx1, sq, gpx0, squ ą gpx2, sq .

Therefore, we have

gpx,sq ą max
␣

gpx1, sq, gpx2, sq, gpx0, sq
(

.

Contradiction.
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For the p ùñ q direction, fix any x1 ă x ă x2 and suppose that tpx | x1q ă tpx2 | xq.

Suppose for contradiction that tpx | x1q ě tpx2 | x1q. Then

0 ă tpx2 | x1q ď tpx | x1q ă tpx2 | xq ď 1 .

Let s “ tpx | x1q. Since

tpx2 | x1q ď s ă tpx2 | xq ,

we have

gpx2, sq ě maxtgpx1, sq, gpx0, squ “ maxtgpx,sq, gpx0, squ ,

where the last equality is due to 0 ă s “ tpx | x1q ă 1. But then, since s ă tpx2 | xq, we have

maxtgpx,sq, gpx0, squ ą gpx2, sq .

Contradiction.

A.3.3 Completion of the Proof

Parts (i) and (ii). Parts (i) and (ii) of Theorem 1 follow by the same proof as in Section 4,

with Theorem 6 replacing Theorem 2 and Lemma 6 replacing Lemma 2.

Specifically, we apply Theorem 6 to the partially ordered set pB,Ďq and the virtual

surplus function φpb, tq : B ˆ T Ñ R. By (7) in Section 4, the assumption that πpb,qq is

strictly quasiconcave implies that φpb, ¨ q single-crosses φp∅, ¨ q ” 0 from below. Let tpbq

denote the unique crossing point. Moreover, for any ∅ , b1 Ă b2, under the strict local

quasiconcavity of πpb2,qq ´πpb1,qq, i.e. assumption (A2), we have

φpb2, sq ě φpb1, sq ùñ φpb2, s
1
q ą φpb1, s

1
q

for all s1 ą s ě maxttpb1q, tpb2qu. But then by Lemma 3, the function φpb, tq must satisfy

the strict local single-crossing property. Let tpb2 | b1q denote the unique crossing point of

φpb2, ¨ q and maxtφpb1, ¨ q,φp∅, ¨ qu.

Now, to apply Theorem 6, it remains to verify that the chain-essential elements in B
form a chain; that is, we want to show that

Y :“
!

b P B : tpb | b1
q ă tpb2

| bq for all b1
Ă b Ă b2

)

is totally ordered by set inclusion. Taking b1 “ ∅, by Lemma 6, we have that any bundle
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b P Y must satisfy that for ∅ Ă b Ă b2,

tpb | ∅q ă tpb2
| ∅q

which implies that

Qpbq ą Qpb2
q

where Qp ¨ q is the sold-alone quantity. Hence, every b P Y is an undominated bundle.

But, by the nesting condition, the set of undominated bundles is totally ordered by set

inclusion, and hence Y is totally ordered by set inclusion.

The rest of the proof is identical to that in Section 4. For completeness, we also prove

the following lemma about implementability which is used in Section 4.

Lemma 7. Suppose that assumption (A1) holds. Then, for any deterministic, monotone alloca-

tion rule bptq, there exists a payment rule pptq such that pb,pq satisfies all IC and IR constraints

and that the lowest type t receives zero payoff under pb,pq.

Proof. Let B “ tbptqutPT which is a nested menu. Without loss of generality, let B “

t∅,b1, . . . , bmu where b1 Ă ¨¨ ¨ Ă bm. For all i “ 1, . . . ,m, let

spbiq :“ inf
␣

t P T : bptq Ě bi
(

.

We construct the bundle prices tp:pbqubPB by the following difference equation: for all

i “ 1, . . . ,m,

p:
pbiq ´ p:

pbi´1q :“ vpbi , spbiqq ´ vpbi´1, spbiqq ,

where we put b0 “ ∅ and p:pb0q “ vpb0, tq “ 0. To prove the result, it suffices to show that

for all t P T , we have

bptq P argmax
b1PB

␣

vpb1, tq ´ p:
pb1

q
(

.

By assumption (A1), note that

Upb, tq :“ vpb, tq ´ p:
pbq

has increasing differences, and hence single-crossing property, in pb, tq. Moreover, by

construction, spbiq is a crossing point of Upbi , tq and Upbi´1, tq. Since bp ¨ q is monotone,

we also have

spb1q ď spb2q ď ¨ ¨ ¨ ď spbmq .

Now fix any i “ 0, . . . ,m and any t P pspbiq, spbi`1qq. For the edge cases, put spb0q “ t and
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spbm`1q “ t. Now, observe that we have

Upbptq, tq “ Upbi , tq ě Upbi`1, tq ě Upbi`2, tq ě ¨ ¨ ¨ ě Upbm, tq ,

and

Upbptq, tq “ Upbi , tq ě Upbi´1, tq ě Upbi´2, tq ě ¨ ¨ ¨ ě Upb0, tq .

Hence, for any such t, we have

Upbptq, tq “ max
b1PB

tUpb1, tqu .

Now, if t “ spbiq for some i “ 1, . . . ,m` 1, then by definition, we have that (i) bptq “ bi or

bptq “ bi´1, and (ii) Upbi , tq “ Upbi´1, tq. Hence, the above argument also implies that

Upbptq, tq “ max
b1PB

tUpb1, tqu .

Finally, suppose t “ spb0q. If spb0q ă spb1q, then the above argument holds for t. If spb0q “

spb1q, then the above argument also holds for t when applying to i “ 1.

Thus, for all t P T , we have Upbptq, tq “ maxb1PBtUpb1, tqu. Then, the payment rule

defined by pptq :“ p:pbptqq implements the allocation rule bptq, proving the result.

Part (iii). We now prove part (iii) of Theorem 1. First, note that if b P B satisfies

φpb, tq ą max
b1PBzb

φpb1, tq

then by the linearity of probabilities and the finiteness of B, we have

φpb, tq ą max
aP∆pBqzδb

Eb1„arφpb1, tqs ,

where δb denotes the Dirac measure centered on b.

Let bp ¨ q denote the constructed allocation rule given by Theorem 6. Now, fix any

implementable, potentially stochastic allocation rule ap ¨ q. Since

bptq P argmax
b1PB

φpb1, tq ,

we have that for all t,

Eb1„aptqrφpb1, tqs ď φpbptq, tq .
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Moreover, let

T 1 :“
␣

t P T : aptq , δbptq

(

.

Recall that bptq is the unique maximizer of the problem maxb1PBφpb1, tq for almost all t

(see Theorem 6). Therefore, by the above argument, for almost all t P T 1, we have

Eb1„aptqrφpb1, tqs ă φpbptq, tq .

If ap ¨ q attains the optimal profit for the seller, then by Lemma 1, we must have

E
”

Eb1„aptqrφpb1, tqs

ı

“ E
”

φpbptq, tq
ı

,

which implies that T 1 has measure 0. Therefore, ap ¨ q is equivalent to δbp ¨q almost every-

where. By the envelope theorem, we also have that the payment rules implementing ap ¨ q

and δbp ¨q must coincide almost everywhere. Thus, any optimal mechanism is equivalent

to the nested bundling mechanism that we constructed.

A.4 Proof of Proposition 1

The proof strategy is the same as in Section 4. Let B “ tb1, . . . , bmu, where b1 Ă ¨¨ ¨ Ă bm,

be any optimal and nested menu. We apply Theorem 6 to the totally ordered set pB,Ďq

with the objective function being φpb, tq (and the minimum element being ∅). The set

of chain-essential elements YB Ď B is always totally ordered, and hence YB must be a

minimal optimal menu by Theorem 6 and the proof of Theorem 1.

First, suppose that condition (5) in Proposition 1 holds for some non-empty D Ď B.

We claim that any bundle b P D cannot be chain essential and hence can be removed. To

see this, recall that for any ∅ Ă b1 Ă b2,

Qpb2 | b1q :“ argmax
qPr0,maxtQpb1q,Qpb2qus

πpb2,qq ´πpb1,qq .

By (7) in Section 4, we can write

Qpb2 | b1q “ 1 ´Fpt̃pb2 | b1qq

where t̃pb2 | b1q is defined as

t̃pb2 | b1q :“ inf
␣

s P rminttpb1q, tpb2qu, ts : φpb2, sq ą φpb1.sq
(

,
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where tpbq denotes the unique crossing point of φpb, ¨ q and φp∅, ¨ q ” 0. But by Lemma 3,

we also know that

t̃pb2 | b1q “ tpb2 | b1q

where tpb2 | b1q is defined as the unique crossing point of φpb2, ¨ q and maxtφpb1, ¨ q,φp∅, ¨ qu.

Therefore, for any bundle bj P B such that

Qpbj`1 | bjq ě Qpbj | bj´1q

we have

tpbj | bj´1q ě tpbj`1 | bjq

and hence bj cannot be chain essential for φpb, tq by definition.

Now, suppose that D “ ∅ and Qpbm | bm´1q ą 0. Then we must have

1 ą Qpb1q ą Qpb2 | b1q ą ¨ ¨ ¨ ą Qpbm | bm´1q ą 0 ,

which, by the above argument, implies that

t ă tpb1q ă tpb2 | b1q ă ¨ ¨ ¨ ă tpbm | bm´1q ă t .

To show that menu B is minimal optimal, it suffices to show that YB “ B; that is, we want

to show that all b P B are chain essential. This follows by the proof of Theorem 6. Suppose

for contradiction that there exists some non-empty b P B that is not a chain-essential

element. Then, by the definition of chain-essential elements and Lemma 4, there exist

b1 , b,b2 , b P B such that for all t,

φpb, tq ď max
␣

φpb1, tq,φpb2, tq,φp∅, tq
(

.

At the same time, by Step 2 in the proof of Theorem 6, for any b P B, there exists some s

such that

φpb,sq ą max
b̂PBztbu

φpb̂, sq .

Contradiction.
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A.5 Proof of Proposition 2

Suppose for contradiction that there exist undominated bundles b1 and b2 that are not

nested. Then b1 Ă b1 Y b2 and b2 Ă b1 Y b2. Because b1 and b2 are undominated, we have

Qpb1q ą Qpb1 Y b2q, Qpb2q ą Qpb1 Y b2q ,

and hence

min
␣

Qpb1q,Qpb2q
(

ą Qpb1 Y b2q ,

contradicting to the union quantity condition.

A.6 Proof of Proposition 3

Part (ii) of Proposition 3 follows from the monotone construction theorem. Specifically,

we apply Theorem 6 to the virtual surplus function φpb, tq and the totally ordered set

pB,Ďq where B is the minimal optimal and nested menu. Since B is minimal optimal, we

must have that B is the set of chain-essential elements, but that implies that any bundle in

B cannot be dominated by another bundle in B, and hence Qpbiq ą Qpbjq for all bi Ă bj P B.

Now, suppose for contradiction that the grand bundle b is not in the menu B. We

apply the monotone construction theorem, Theorem 6, to φpb, tq and pB Y b,Ďq. Since B

is a nested menu, B Y b must also be a nested menu. We claim that b is always a chain-

essential element. To see it, note that because for all b Ă b, we have

φpb, tq “ vpb, tq ´Cpbq ą vpb, tq ´Cpbq “ φpb, tq ,

where the strict inequality is due to our assumption that the grand bundle is the unique

surplus-maximizing bundle for the highest type t. This implies that tpb | bq ă t for all b Ă

b, where tpb2 | b1q denotes the unique crossing point of φpb2, ¨ q and maxtφpb1, ¨ q,φp∅, ¨ qu

for any b1 Ă b2 (see the proof of Theorem 1). Therefore, b must be chain essential. Thus,

by Theorem 6 and the proof of Theorem 1, we have that menu B yields a strictly lower

profit than menu BY b. But menu B is an optimal menu. Contradiction.

Because of part (ii) of Proposition 3, if menu B includes the best-selling bundle b‹,

then b‹ must be the smallest bundle in menu B. Thus, it suffices to show that b‹ P B. To

prove this claim, we need a different proof strategy, because Proposition 3 asserts that b‹ P

B regardless of whether the solution to the relaxed problem in Section 4 is implementable.

We prove this claim using a perturbation argument.
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Figure 9: Illustration of the perturbation argument

A.6.1 Sketch of the Perturbation Argument

Suppose for contradiction that b‹ < B. Consider adding the following option to the orig-

inal menu B: a lottery of getting bundle b‹ with a small probability ε, at the price of ε

multiplied by the monopoly price of b‹. By Lemma 1, the net profit change to the mo-

nopolist after adding this new option can be computed as

E
”∑

b

a1
bptqφpb, tq

ı

´E
”∑

b

abptqφpb, tq
ı

where a is the original allocation rule under menu B, and a1 is the induced allocation rule

after the consumers readjust their optimal choices given the new option.

Note that by the proof of Theorem 1, the allocation rule a must be equivalent to our

construction given in Section 4. For any bundle b, let tpbq be the unique crossing point of

φpb, tq and 0. Let b1 be the smallest non-empty bundle in B. Then, upon the new option

offered, we have:

(i) all types t P rt, tpb‹qq will not take this option ;

(ii) all types t P rtpb‹q, tpb1qq will switch from ∅ to this option ;

(iii) all types t P rtpb1q, tεq will switch from b1 to this option, for some threshold tε.

The monopolist makes a gain from the types t P rtpb‹q, tpb1qq and suffers a loss from

the types t P rtpb1q, tεq. It is crucial to compute the gain and the loss in terms of the virtual

surplus. Denote them by Gainpεq and Losspεq. The key observation is that for ε ą 0 small

enough, we have

Gainpεq ą Losspεq .
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Figure 9 illustrates with an example where B “ tb1,b2u. The total gain from the types in

rtpb‹q, tpb1qq forms a rectangle whose area varies in ε linearly (i.e., Opεq gain). The total

loss from the types in rtpb1q, tεq forms a triangle whose area varies in ε quadratically (i.e.,

Opε2q loss). But then menu B cannot be optimal. Contradiction.

A.6.2 Details of the Perturbation Argument

First, we provide a lower bound on the gain in the virtual surplus. Because types in

rtpb‹q, tpb1qq will take this new option, the gain in the virtual surplus is at least

Gainpεq :“ εˆ

ż tpb1q

tpb‹q

φpb‹, tqdFptq
looooooooooomooooooooooon

“:K

“ εK ą 0 ,

where the inequality K ą 0 uses the single-crossing property of φpb‹, tq.

Now, we provide an upper bound on the loss in the virtual surplus. Note that any type

t who takes this option obtains a payoff that is at most

hpεq :“ εˆ
`

vpb‹, tq ´ vpb‹, tpb‹
qq
˘

looooooooooooomooooooooooooon

“:Z

“ εZ .

Let b2 be the second smallest non-empty bundle in B (if it does not exist, put tpb2q “ 1 in

what follows). Note that tpb‹q ă tpb1q ă tpb2q (see Figure 9). By the construction of pa,pq,

for any δ P r0, tpb2q ´ tpb1qs, we have

Uptpb1q ` δq “ vpb1, tpb1q ` δq ´ vpb1, tpb1qq ,

where U denotes the indirect utility function under pa,pq.

Let gpδq :“ Uptpb1q ` δq. Note that vpb1, tpb1qq ą 0 and hence vtpb1, tpb1qq ą 0 by

assumption. Thus, B`gp0q ą 0. Since g 1 is continuous on r0, tpb2q ´ tpb1qs, there exist

some constants δ P p0, tpb2q ´ tpb1qq and M ą 0 such that g 1pδq ě M for all δ P r0,δs. Let

ε :“ gpδq ą 0. Note that for all ε P p0, εq, we have

g´1
pεq “

ż ε

0
pg´1

q
1
psqds “

ż ε

0

1
g 1pg´1psqq

ds ď
1
M

ε.

Note also that any type t P rtpb1q, ts switches to this new option only if

Uptq ď hpεq .
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Let

δpεq :“ g´1
phpεqq .

Then, observe that for all ε P p0, 1
Z εq, the loss in the virtual surplus is at most

Losspεq :“
ż tpb1q`δpεq

tpb1q

φpb1, tqf ptqdt

ď δpεq ˆ max
tPrtpb1q,tpb1q`δpεqs

!

f ptqφpb1, tq
)

looooooooooooooooooomooooooooooooooooooon

“:Φpεq

“ δpεq ˆΦpεq ď
Z
M

εˆΦpεq .

Observe that (i) Φp ¨ q is a continuous function by Berge’s theorem, and (ii) Φp0q “ 0 since

φpb1, tpb1qq “ 0 .

Therefore, there exists ε1
ą 0 such that for all ε P p0, ε1

q, we have

Φpεq ă
MK
Z

.

Now, pick any ε P
`

0, mint 1
Z ε, ε

1
u
˘

. We must have

Losspεq ď
Z
M

εΦpεq ă εK “ Gainpεq .

So menu B is suboptimal. Contradiction.

A.7 Proof of Proposition 4

Suppose for contradiction that there are two elements x1 and x2 that are both chain es-

sential but cannot be ordered. Then, we have

x1 ^ x2 ă x1, x2 ă x1 _ x2 .

Since x1,x2 are chain essential, we have

tpx1 | x1 ^ x2q ă tpx1 _ x2 | x1q ,

tpx2 | x1 ^ x2q ă tpx1 _ x2 | x2q .
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Suppose without loss of generality that

tpx1 | x1 ^ x2q ď tpx2 | x1 ^ x2q .

Fix any s such that

tpx2 | x1 ^ x2q ă s ă tpx1 _ x2 | x2q.

Then we have

tpx1 | x1 ^ x2q ď tpx2 | x1 ^ x2q ă s ă tpx1 _ x2 | x2q ,

which implies that

gpx1, sq ě gpx1 ^ x2, sq

and

gpx1 _ x2, sq ă gpx2, sq ,

contradicting that gp ¨ , sq is quasisupermodular in x.

A.8 Proof of Proposition 5

( ùñ ) Suppose that the chain-essential elements are totally ordered. By Theorem 2, the

existence of a monotone selection xp ¨ q is immediate. We now show that for every t P r0,1s

and every x0 P X , there exists an improvement sequence px0, . . . ,xnq such that (i)

gpx0, tq ď gpx1, tq ď ¨ ¨ ¨ ď gpxn, tq

where xn “ xptq and that (ii) every pair pxi ,xi`1q satisfies either xi ă xi`1 or xi ą xi`1.

We first prove this claim for all s < ttpx2 | x1qux1ăx2 . Fix any such s. Let Y denote the

set of chain-essential elements. Recall that Y is non-empty by definition. By Step 2 in

the proof of Theorem 2, we know that if x0 P Y , then there exists such an improvement

sequence (moreover, the objective value is strictly increasing along the sequence). Now

suppose x0 < Y . By Step 1 in the proof of Theorem 2, there exists x1 P X such that (i)

gpx0, tq ă gpx1, tq .

and that (ii) either x1 ą x0 or x1 ă x0.

If x1 is in Y , then we have found an improvement sequence by concatenating px0,x1q

with an improvement sequence that starts with x1 (which always exists since x1 P Y ).

If x1 is not in Y , then by Step 1 in the proof of Theorem 2 again, there exists x2 P X
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such that (i)

gpx1, tq ă gpx2, tq .

and that (ii) either x2 ą x1 or x2 ă x1.

Because X is a finite set, this process can be repeated at most |X | number of times

until we find a sequence px0,x1, . . . ,xnq such that (i)

gpx0, tq ă gpx1, tq ă ¨ ¨ ¨ ă gpxn, tq .

and that (ii) every pair pxi ,xi`1q satisfies either xi ă xi`1 or xi ą xi`1, and that (iii) xn P Y .

But then we may concatenate this improvement sequence with an improvement sequence

that starts with xn (which always exists since xn P Y ). Moreover, the improvement se-

quence that starts with xn always ends with xptq by Step 2 in the proof of Theorem 2.

Hence, our claim holds for all s < ttpx2 | x1qux1ăx2 .

To show that this claim holds for all s P r0,1s, we use a convergence argument as

follows. Let N “ |X | which is a finite number. Each improvement sequence can be viewed

as a point in the finite-dimensional space t1, . . . ,NuN which is a compact subset of RN .

Fix any s P r0,1s and any x0 P X . First, there exists a sequence sk converging to s

where sk < ttpx2 | x1qux1ăx2 (since ttpx2 | x1qux1ăx2 has measure 0 in r0,1s). For each sk,

there exists an improvement sequence Zk P t1, . . . ,NuN by our previous step. Now, by the

Bolzano-Weierstrass theorem, we know that there exists a converging subsequence Zkj

such that Zkj Ñ Z P t1, . . . ,NuN as j Ñ 8, where the convergence is with respect to the

usual distance metric of RN . This implies that there exists some J such that for all j ě J ,

Zkj “ Z. Therefore, for all j ě J , each skj has the same improvement sequence Z. Denote

the improvement sequence by px0,x1, . . . ,xnq. Then, for all j ě J , we have

gpx0, skj q ď gpx1, skj q ď ¨ ¨ ¨ ď gpxn, skj q

and xn “ xpskj q. By continuity of g in t, we have

gpx0, sq ď gpx1, sq ď ¨ ¨ ¨ ď gpxn, sq .

To ensure that xn “ xpsq, note that xp ¨ q by construction is right-continuous at all t P r0,1q

and left-continuous at t “ 1. Hence, we may choose the approximating sequence sk to

approximate s from the right if s ă 1 and to approximate s from the left if s “ 1. Then,

we have xn “ xpsq, and hence px0,x1, . . . ,xnq is a desired improvement sequence.

( ðù ) Suppose for contradiction that the chain-essential elements cannot be totally
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ordered. Let

W :“
␣

xptq
(

tPr0,1s

which is totally ordered since xp ¨ q is monotone. This implies that there must exist some

chain-essential element x: that is not inW . By the definition of chain-essential elements,

we have

max
x1:x1ăx:

tpx:
| x1

q ă min
x2:x2ąx:

tpx2
| x:

q ,

where we put the left-hand side to be 0 if no x1 ă x: exists and the right-hand side to be 1

if no x2 ą x: exists. Therefore, there exists some s P r0,1s such that for all x1 ă x:, we have

gpx:, sq ą gpx1, sq

and for all x2 ą x:, we have

gpx:, sq ą gpx2, sq .

However, for such s and x0 “ x:, we also know that there exists an improvement sequence.

In particular, there exists some x1 such that (i) either x1 ą x: or x1 ă x: and that (ii)

gpx:, sq ď gpx1, sq .

But that is a contradiction.

A.9 Proof of Theorem 3

The proof follows the sketch provided in Section 5.1. It builds on the techniques intro-

duced in Yang (2022). We divide the proof into five steps. Appendix A.9.1 derives some

preliminary inequalities. Appendix A.9.2 reconstructs an alternative, weakly improv-

ing mechanism that satisfies only downward IC constraints. Appendix A.9.3 applies the

downward sufficiency theorem from Yang (2022) to modify the downward-IC mechanism

to be fully IC. Appendix A.9.4 further modifies the fully IC, stochastic mechanism to be

deterministic. Appendix A.9.5 completes the proof.

Throughout the proof, let B “ tb1, . . . , bmu, where b1 Ă ¨¨ ¨ Ă bm, denote the nested

menu that satisfies the condition in Theorem 3 (the robust nesting condition).
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A.9.1 Preliminary Inequalities

Lemma 8. Let B “ tb1, . . . , bmu, where b1 Ă ¨¨ ¨ Ă bm, satisfy the robust nesting condition. For

any bundle b < B, let bk P B be any bundle such that

d
dt

logvpb, tq ě
d
dt

logvpbk , tq for all t.

Then, for all i ă j ď k, we have

d
dt

logpvpb, tq ´ vpbi , tqq ą
d
dt

logpvpbj , tq ´ vpbi , tqq

for all

t P T 1 :“
␣

s : vpbj , sq ą vpb,sq ą vpbi , sq
(

.

Moreover, if T 1 , ∅, then it must be an interval.

Proof. Since B satisfies the robust nesting condition, for all i ă j ď k, we have

d
dt

logpvpb, tqq ě
d
dt

logpvpbk , tqq ě
d
dt

logpvpbj , tqq ą
d
dt

logpvpbi , tqq for all t .

By the mediant inequality, this implies the following two inequalities: (i) for all i ă j ď k,

d
dt

logpvpbj , tq ´ vpbi , tqq ą
d
dt

logpvpbj , tqq ą
d
dt

logpvpbi , tqq ě 0 for all t.

and (ii) for all i ă j ď k,

d
dt

logpvpb, tqq ě
d
dt

logpvpbj , tqq ě
d
dt

logpvpbj , tq ´ vpb, tqq for all t s.t. vpbj , tq ą vpb, tq.

Combining these two inequalities gives (iii) for all i ă j ď k

d
dt

logpvpbj , tq´vpbi , tqq ą
d
dt

logpvpbj , tqq ě
d
dt

logpvpbj , tq´vpb, tqq for all t s.t. vpbj , tq ą vpb, tq.

Finally, by combining the mediant inequality and inequality (iii), we have

d
dt

logpvpb, tq ´ vpbi , tqq ą
d
dt

logpvpbj , tq ´ vpbi , tqq ą
d
dt

logpvpbj , tq ´ vpb, tqq

for all

t P T 1
“
␣

s : vpbj , sq ą vpb,sq ą vpbi , sq
(

,
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proving the inequality. Now, note that

d
dt

logpvpb, tqq ě
d
dt

logpvpbj , tqq for all t

implies that for all t ă t1,

vpb, tq ě vpbj , tq ùñ vpb, t1
q ě vpbj , t

1
q .

Therefore, the set ts : vpbj , sq ą vpb,squ is of the form rt, t1q or rt, ts. Similarly, the set

ts : vpb,sq ą vpbi , squ is of the form pt2, ts or rt, ts. Therefore, if T 1 , ∅, then T 1 must be an

interval.

A.9.2 Reconstruction

Fix any deterministic mechanism denoted by pb,pq. We now reconstruct an alternative

stochastic mechanism that uses only bundles in the nested menu B and satisfies down-

ward IC constraints.

For all t, let

b`
ptq :“ inf

!

b1
P B : vpb1, tq ě vpbptq, tq

)

, b´
ptq :“ sup

!

b1
P B : vpb1, tq ă vpbptq, tq

)

.

By construction, if bptq P B, then b`ptq “ bptq. Moreover, for all t, we have

vpb`
ptq, tq ě vpbptq, tq ą vpb´

ptq, tq .

Now, for all t, let

αptq :“
vpbptq, tq ´ vpb´ptq, tq
vpb`ptq, tq ´ vpb´ptq, tq

P p0,1s .

The pB,b,pq-reconstruction pa,pq is defined by:

• assigning each reported type t a lottery over tb`ptq,b´ptqu with probability αptq to

bundle b`ptq and probability 1 ´αptq to bundle b´ptq ;

• keeping the payment pptq for each reported type t unchanged.

Lemma 9. Let B “ tb1, . . . , bmu, where b1 Ă ¨¨ ¨ Ă bm, satisfy the robust nesting condition. Let

pb,pq be any deterministic mechanism. Let pa,pq be the pB,b,pq-reconstruction. Then pa,pq

satisfies all downward IC constraints, i.e., for all t̂ ă t P T , we have

vpaptq, tq ´ pptq ě vpapt̂q, tq ´ ppt̂q .

67



Proof. Note that by construction, for all t, we have

vpaptq, tq “
vpbptq, tq ´ vpb´ptq, tq
vpb`ptq, tq ´ vpb´ptq, tq

¨ vpb`
ptq, tq `

”

1 ´
vpbptq, tq ´ vpb´ptq, tq
vpb`ptq, tq ´ vpb´ptq, tq

ı

¨ vpb´
ptq, tq

“ vpbptq, tq .

Thus, vpaptq, tq ´ pptq “ vpbptq, tq ´ pptq. Hence, if type t reports truthfully, then its payoff
is unchanged in the reconstruction compared to that in pb,pq. Because the mechanism

pb,pq satisfies the downward IC constraints, to show that pa,pq satisfies the downward IC

constraints, it suffices to show that the deviating payoff of type t misreporting to be t̂ ă t

is weakly lower under pa,pq compared to the deviating payoff under pb,pq.

Since the payment rule is unchanged, it suffices to show that for t̂ ă t,

vpapt̂q, tq “ αpt̂qvpb`
pt̂q, tq ` p1 ´αpt̂qqvpb´

pt̂q, tq ď vpbpt̂q, tq . (A.1)

To ease notation, fix t̂ ă t and write b̂, b̂`, and b̂´ for bpt̂q, b`pt̂q, and b´pt̂q respectively.

By construction, b̂´ Ă b̂`. We can write the deviating payoff as

αpt̂qvpb`
pt̂q, tq ` p1 ´αpt̂qqvpb´

pt̂q, tq “ αpt̂q
`

vpb̂`, tq ´ vpb̂´, tq
˘

` vpb̂´, tq

“
vpb̂, t̂q ´ vpb̂´, t̂q

vpb̂`, t̂q ´ vpb̂´, t̂q

`

vpb̂`, tq ´ vpb̂´, tq
˘

` vpb̂´, tq .

Note that if b̂ P B, then b̂ “ b̂` and hence (A.1) clearly holds. From now on, suppose

b̂ < B. Then, since menu B satisfies the robust nesting condition, by the definition of b̂`,

we must have b̂` Ď bk P B for some bk Ą b̂ such that

d
ds

logvpb̂, sq ě
d
ds

logvpbk , sq ě
d
ds

logvpb̂`, sq ą
d
ds

logvpb̂´, sq for all s .

This implies that for all s ă s1,

vpb̂, sq ě vpb̂`, sq ùñ vpb̂, s1
q ě vpb̂`, s1

q . (A.2)

Note that if vpb̂, tq ě vpb̂`, tq, then (A.1) clearly holds as

αpt̂q
`

vpb̂`, tq ´ vpb̂´, tq
˘

` vpb̂´, tq ď vpb̂`, tq ď vpb̂, tq .

Henceforth, suppose vpb̂, tq ă vpb̂`, tq. Then, by (A.2), we have vpb̂, t̂q ă vpb̂`, t̂q. By defi-
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nition of b̂´, we have vpb̂´, t̂q ă vpb̂, t̂q ă vpb̂`, t̂q. But for any s ă s1 we also have

vpb̂, sq ą vpb̂´, sq ùñ vpb̂, s1
q ą vpb̂´, s1

q . (A.3)

Thus, we have vpb̂´, tq ă vpb̂, tq ă vpb̂`, tq. Therefore, we have

tt̂, tu Ď T 1 :“
␣

s P T : vpb̂´, sq ă vpb̂, sq ă vpb̂`, sq
(

.

Since T 1 , ∅, by Lemma 8, T 1 must be an interval. Moreover, by Lemma 8, we have

d
ds

logpvpb̂, sq ´ vpb̂´, sqq ą
d
ds

logpvpb̂`, sq ´ vpb̂´, sqq

for all s P T 1, which implies that

d
ds

log

«

vpb̂, sq ´ vpb̂´, sq

vpb̂`, sq ´ vpb̂´, sq

ff

ą 0

for all s P T 1. Thus, we have

gpsq :“
vpb̂, sq ´ vpb̂´, sq

vpb̂`, sq ´ vpb̂´, sq

is strictly increasing on the interval T 1. But then since t̂ ă t P T 1, we have

αpt̂qvpb`
pt̂q, tq ` p1 ´αpt̂qqvpb´

pt̂q, tq “
vpb̂, t̂q ´ vpb̂´, t̂q

vpb̂`, t̂q ´ vpb̂´, t̂q

`

vpb̂`, tq ´ vpb̂´, tq
˘

` vpb̂´, tq .

ď
vpb̂, tq ´ vpb̂´, tq

vpb̂`, tq ´ vpb̂´, tq

`

vpb̂`, tq ´ vpb̂´, tq
˘

` vpb̂´, tq .

“ vpb̂, tq ´ vpb̂´, tq ` vpb̂´, tq “ vpb̂, tq ,

which proves (A.1). The claim follows.

A.9.3 Downward Sufficiency Theorem

The pB,b,pq-reconstruction pa,pq has the property that aptq assigns a lottery only over

tb´ptq,b`ptqu which by construction are two adjacent bundles in the chain b1 Ă ¨¨ ¨ Ă bm
(which we also include the empty set).

Let

A :“
!

a P ∆pBq : a P ∆ptbj´1,bjuq for some bj P B
)

69



Then, note that on the set A, the usual stochastic dominance order ĺst is a total order. In

fact, A can be identified as a compact subset of R (with ĺst being identified as the usual

order ď on R). For any a ăst a
1, note that

vtpa, tq “ Eb„arvtpb, tqs ă Eb„a1rvtpb, tqs “ vtpa
1, tq

since for any bi Ă bj , we have

vtpbi , tq “
vtpbi , tq
vpbi , tq

¨ vpbi , tq ă
vtpbj , tq

vpbj , tq
¨ vpbj , tq “ vtpbj , tq ,

where the strict inequality is due to that menu B satisfies the robust nesting condition

and that 0 ă vpbi , tq ď vpbj , tq. Therefore, the preferences satisfy the strict increasing

differences property: for all a ăst a
1 and all t ă t1,

vpa, t1
q ´ vpa, tq ă vpa1, t1

q ´ vpa1, tq .

Then, by Yang (2022), when the allocation space is given by the totally ordered set A
and the agent’s utility function is given by vpa, tq ´ p, the downward IC constraints are

sufficient for optimality. Specifically, we use the following theorem:

Theorem 7 (Downward Sufficiency Theorem, Yang 2022). Suppose that vpa, tq is continu-

ous and has strict increasing differences on Aˆ T , where A and T are two compact subsets

of R. Then, for any pa,pq : T Ñ AˆR that satisfies the IR constraints and the downward IC

constraints, there exists pa1,p1q : T ÑAˆR such that

(i) pa1,p1q satisfies the IR constraints ;

(ii) pa1,p1q satisfies both the upward and downward IC constraints ;

(iii) pa1,p1q yields a weakly higher profit than pa,pq.

A.9.4 Purification Lemma

Now, we reduce the fully IC but stochastic mechanism given in Theorem 7 to a determin-

istic mechanism. This step relies on a new purification lemma:

Lemma 10 (Purification Lemma). Let B be any nested menu. Consider any mechanism pa,pq :

T Ñ ∆pBq ˆR such that the allocation rule is stochastically monotone, i.e., for all t ă t1,

aptq ĺst apt1
q .
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Then there exists a deterministic mechanism pb,p1q : T Ñ BˆR such that pb,p1q yields a weakly

higher profit than pa,pq.

Proof. Since ap ¨ q is stochastically monotone, by Strassen (1965) (see Lemma 7 in Yang

2022), there exists some random variable ε P E that is independent of t, where E is some

measurable space, and some function b: : T ˆ E Ñ B such that (i) b:p ¨ , εq is monotone in

the set-inclusion order for all ε, and (ii) for every t P T , we have

b:
pt,εq

d
“ baptq ,

where ba denotes the B-valued random variable sampled from lottery a P ∆pBq.

Then, by Lemma 1, under the mechanism pa,pq the seller’s profit is bounded from the

above by

Et

”

φpaptq, tq
ı

“ Et

”

Eb„aptqrφpb, tqs

ı

“ Et

”

Eε

“

φpb:
pt,εq, tq

‰

ı

“ Eε

”

Et

“

φpb:
pt,εq, tq

‰

ı

ď sup
εPE

Et

”

φpb:
pt,εq, tq

ı

Let K :“ supεPEEt

”

φpb:pt,εq, tq
ı

, and Kε :“ Et

”

φpb:pt,εq, tq
ı

. There exists a sequence εj
such that as j Ñ 8, we have

Kεj Ñ K .

Now, consider the sequence b:p ¨ , εjq. This is a sequence of monotone functions. By Helly’s

selection theorem for monotone functions on linearly ordered sets (Fuchino and Plewik

1999, Theorem 7), there exists a subsequence tb:p ¨ , εjkquk that converge pointwise. For all

t, let

bptq :“ lim
kÑ8

b:
pt,εjkq .

Clearly, we have that bp ¨ q is monotone. Moreover, we have

Et

”

φpbptq, tq
ı

“ Et

”

lim
kÑ8

φpb:
pt,εjkq, tq

ı

“ lim
kÑ8

Kεjk
“ sup

εPE
Et

”

φpb:
pt,εq, tq

ı

ě Et

”

φpaptq, tq
ı

.

Since bp ¨ q is monotone, by Lemma 1 and Lemma 7, there exists some payment rule p1p ¨ q

such that pb,p1q is a mechanism and yields the seller a profit of Et

”

φpbptq, tq
ı

. The result

follows.
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A.9.5 Completion of the Proof

We complete the proof of Theorem 3. Let B “ tb1, . . . , bmu where b1 Ă ¨¨ ¨ Ă bm be the

nested menu that satisfies the robust nesting condition. Let

A :“
!

a P ∆pBq : a P ∆ptbj´1,bjuq for some bj P B
)

.

LetMD be the space of deterministic mechanisms. LetMB be the space of determin-

istic mechanisms pb,pq such that bptq P B for all t. Let MA be the space of stochastic

mechanisms pa,pq such that aptq P A for all t. Let xMA be the space of measurable maps

pa,pq : T ÑAˆR such that pa,pq satisfy all IR constraints and all downward IC constraints.

Then we have

sup
pb,pqPMD

Erpptqs ď sup
pa,pqP xMA

Erpptqs (Lemma 9)

ď sup
pa,pqPMA

Erpptqs (Theorem 7)

ď sup
pb,pqPMB

Erpptqs , (Lemma 10)

where the last inequality also uses the fact that when the allocation space is constrained

to be the totally ordered set A, any fully IC mechanism must have an allocation rule that

is monotone in the stochastic dominance order ĺst. By Lemma 6 of Yang (2022), there

exists a solution to the problem suppb,pqPMB
Erpptqs. Therefore, menu B is optimal among

all deterministic mechanisms.

A.10 Proof of Proposition 6

Note that ηpb,qq ď ηpb1,qq for all q P r0,1s holds if and only if

”dlogP pb,qq

dlogq

ı´1
ď

”dlogP pb1,qq

dlogq

ı´1
for all q P r0,1s

which holds if and only if

dlogP pb,qq

dlogq
ě

dlogP pb1,qq

dlogq
for all q P r0,1s
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which holds if and only if

dlogP pb,qq

dq
ě

dlogP pb1,qq

dq
for all q P r0,1s

which holds if and only if

Pqpb,qq

P pb,qq
ě

Pqpb,qq

P pb,qq
for all q P r0,1s

which holds if and only if

vtpb,F
´1p1 ´ qqq

vpb,F´1p1 ´ qqq
¨

´1
f pF´1p1 ´ qqq

ě
vtpb

1,F´1p1 ´ qqq

vpb1,F´1p1 ´ qqq
¨

´1
f pF´1p1 ´ qqq

for all q P r0,1s

which holds if and only if

vtpb, tq
vpb, tq

ď
vtpb

1, tq
vpb1, tq

for all t P rt, ts ,

where the last step follows by a change of variable t “ F´1p1 ´ qq. The claim follows.

A.11 Proof of Theorem 4

Recall thatM is the set of all mechanisms, and ĂM is the set of all mechanisms involving

no horizontal distortion. We show that under the separability and orthogonality condi-

tions, the optimal profit underM equals that under ĂM.

Let xM be the set of measurable maps:

pa,pq : T ˆΞ Ñ ∆pBˆZq ˆR ,

such that (i) it satisfies all IR constraints, (ii) it involves no horizontal distortion (i.e., the

assignment of the horizontal attribute is deterministic and efficient), (iii) no type pt,ξq

wants to misreport to be pt̂,ξq for all t̂, t,ξ (i.e., satisfies all IC constraints of the form

pt,ξq Ñ pt̂,ξq).

We show that

sup
pa,pqPM

E
”

ppt,ξq´Cpapt,ξqq

ı (i)
ď sup

pa,pqP xM
E
”

ppt,ξq´Cpapt,ξqq

ı (ii)
ď sup

pa,pqP ĂM
E
”

ppt,ξq´Cpapt,ξqq

ı

,

(A.4)

where Cpaq denotesEpb,zq„arCpbqs. This immediately implies the result since by definition
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we also have

sup
pa,pqPM

E
”

ppt,ξq ´Cpapt,ξqq

ı

ě sup
pa,pqP ĂM

E
”

ppt,ξq ´Cpapt,ξqq

ı

.

We divide the proof into two steps, which respectively prove inequalities (i) and (ii).

A.11.1 Reconstruction

First, to show

sup
pa,pqPM

E
”

ppt,ξq ´Cpapt,ξqq

ı

ď sup
pa,pqP xM

E
”

ppt,ξq ´Cpapt,ξqq

ı

, (A.5)

note that it suffices to show that for every pa,pq P M, we can find a weakly improving

pa1,p1q P xM.

Fix any pa,pq PM. Let I :“ |B| and J :“ |Z|. We may write the mechanism pa,pq as

assigning probabilities αij and payment p to each type pt,ξq, where

I∑
i“1

J∑
j“1

αijpt,ξq “ 1 .

For each ξ and i, define

βipt,ξq :“
∑
j

αijpt,ξqupzj ,ξq P r0,1s ,

where we have used that for all z and ξ,

0 ď upz,ξq ď 1 .

Note that ∑
i

βipt,ξq “

∑
i

∑
j

αijpt,ξqupzj ,ξq ď 1 .

Let

β0pt,ξq :“ 1 ´

∑
i

βipt,ξq P r0,1s .

Without loss of generality, let b1 “ ∅. Consider the following pa1,p1q: for each type pt,ξq,

• assign deterministically z P argmaxZ upz,ξq
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• assign bundle bi , ∅ with probability βipt,ξq

• assign bundle ∅ with probability β0pt,ξq ` β1pt,ξq

• keep payments unchanged.

By construction, the assignments are well-defined. We now argue that the map pa1,p1q

satisfies all IC constraints that involve only misreporting along the t dimension, i.e.,∑
i,j

α1
ijpt,ξqvpbi , tqupzj ,ξq ´ ppt,ξq ě

∑
i,j

α1
ijpt̂,ξqvpbi , tqupzj ,ξq ´ ppt̂,ξq for all t, t̂ . (A.6)

Note that by construction, we have for all t, t̂ P T ,∑
i,j

α1
ijpt̂,ξqvpbi , tqupzj ,ξq “

∑
i,1

βipt̂,ξqvpbi , tq `

´

β0pt̂,ξq ` β1pt̂,ξq

¯

vp∅, tq

“

∑
i,1

´∑
j

αijpt̂,ξqupzj ,ξq

¯

vpbi , tq

“

∑
i,j

αijpt̂,ξqvpbi , tqupzj ,ξq ,

which immediately implies that (A.6) since the original mechanism pa,pq satisfies all IC

constraints. Moreover, note that

E
”

p1
pt,ξq ´Cpa1

pt,ξqq

ı

“ E
”

ppt,ξq ´Cpa1
pt,ξqq

ı

ě E
”

ppt,ξq ´Cpapt,ξqq

ı

,

where the inequality is due to that for all t,ξ

Cpa1
pt,ξqq “

∑
i

βipt,ξqCpbiq “

∑
i

∑
j

αijpt,ξqupzj ,ξqCpbiq

ď

∑
i

∑
j

αijpt,ξqCpbiq “ Cpapt,ξqq ,

where we have used Cpbq ě 0 with Cp∅q “ 0, and upz,ξq P r0,1s.

Therefore, (A.5) must hold.

A.11.2 Decomposition

We now show that

sup
pa,pqP xM

E
”

ppt,ξq ´Cpapt,ξqq

ı

ď sup
pa,pqP ĂM

E
”

ppt,ξq ´Cpapt,ξqq

ı

. (A.7)
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Note that because ξ is independent of t, we have

sup
pa,pqP xM

E
”

ppt,ξq ´Cpapt,ξqq

ı

ď Eξ

«

sup
pa,pqP xM

Et

”

ppt,ξq ´Cpapt,ξqq

ı

ff

.

Now, fix any realized ξ 1. Note that the problem

sup
pa,pqP xM

Et

”

ppt,ξ 1
q ´Cpapt,ξ 1

qq

ı

is equivalent to

sup
pa,pq:T ˆtξ1uÑ∆pBˆZqˆR

Et

”

ppt,ξ 1
q ´Cpapt,ξ 1

qq

ı

(A.8)

subject to that (i) for all t, t̂∑
i,j

αijpt,ξ
1
qvpbi , tq ´ ppt,ξ 1

q ě

∑
i,j

αijpt̂,ξ
1
qvpbi , tq ´ ppt̂,ξ 1

q ,

and that (ii) for all t ∑
i,j

αijpt,ξ
1
qvpbi , tq ´ ppt,ξ 1

q ě 0 .

This is because any pa,pq P xM satisfies the no horizontal distortion condition, all IR con-

straints, and the IC constraints of the form pt,ξq Ñ pt̂,ξq.

However, note that problem (A.8) is identical for every ξ 1 up to relabeling. Therefore,

for every ξ 1, we must have that (A.8) is equivalent to

sup
pa,pq:TÑ∆pBˆZqˆR

Et

”

pptq ´Cpaptqq

ı

(A.9)

subject to that (i) for all t, t̂∑
i

´∑
j

αijptq
¯

vpbi , tq ´ pptq ě

∑
i

´∑
j

αijpt̂q
¯

vpbi , tq ´ ppt̂q ,

and that (ii) for all t ∑
i

´∑
j

αijptq
¯

vpbi , tq ´ pptq ě 0 .
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But then we may let βiptq “
∑

j αijptq, which reduces (A.9) to

sup
pβ,pq:TÑ∆pBqˆR

Et

”

pptq ´Cpβptqq

ı

(A.10)

subject to that (i) for all t, t̂

vpβptq, tq ´ pptq ě vpβpt̂q, tq ´ ppt̂q ,

and that (ii) for all t

vpβptq, tq ´ pptq ě 0 .

Note that any feasible solution to (A.10) can be implemented as posting a menu of lot-

teries over bundles with consumers freely choosing their favorite horizontal attributes.

Therefore,

sup
pβ,pq:TÑ∆pBqˆR

Et

”

pptq ´Cpβptqq

ı

ď sup
pa,pqP ĂM

Et,ξ

”

ppt,ξq ´Cpapt,ξqq

ı

.

But then

sup
pa,pqP xM

E
”

ppt,ξq ´Cpapt,ξqq

ı

ď Eξ

«

sup
pa,pqP xM

Et

”

ppt,ξq ´Cpapt,ξqq

ı

ff

ď sup
pa,pqP ĂM

E
”

ppt,ξq ´Cpapt,ξqq

ı

,

proving (A.7).

A.11.3 Completion of the Proof

By (A.5) and (A.7), we have that (A.4) must hold. This proves part (i) of Theorem 4.

By the proof of part (i), if there exists an optimal solution pβ,pq to (A.10), then we have

found an optimal mechanism, by posting a menu of lotteries over the bundles described

by pβ,pq with consumers freely choosing their favorite horizontal attributes.

By Theorem 1, under the conditions in part (ii) of Theorem 4, there exists an optimal,

deterministic solution to (A.10). In particular, the optimal solution is given by a menu of

undominated bundles. The result follows.
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A.12 Proof of Proposition 7

Fix the collection of continuous marginal distributions tµbub. Let γ: denote the unique

comonotonic distribution with such marginals. For every joint distribution γ that is δ-

positively-correlated and has marginals given by tµbub, we have that γ: and γ are δ-close.

Let T “ r0,1s and Fptq be the uniform distribution. For every bundle b, let

vpb, tq :“ P pb,1 ´ tq ,

where P pb,qq is the single-bundle demand curve generated by marginal distribution µb.

Note that vpb, tq „ µb for all b. This implies that

´

vpb1, tq, . . . , vpb2n , tq
¯

„ γ: ,

since the comonotonic distribution is unique. Note that assumptions (A1’) imply that for

all b1 Ă b2, vpb2, tq ´ vpb1, tq is strictly increasing in t. Thus, we have that assumptions

(A1), (A2), and the nesting condition hold for tvpb, tq,Fptq,Cpbqu.

Therefore, by Theorem 1, the optimal mechanism for the joint distribution γ: is given

by a menu of undominated bundles. Let pa,pq be the optimal mechanism when the joint

distribution is γ:. In particular, we know that pa,pq is deterministic and tapvquv Ď B

where B is the menu of undominated bundles.

Now, we make use of the following result:

Lemma 11 (Madarász and Prat 2017, Carroll 2017). For any ε ą 0, there exists δ ą 0 such

that for any mechanism pa,pq, there exists another mechanism pã, p̃q such that (i) for any two

δ-close distributions γ,γ 1,

Eγ 1rp̃pvq ´Cpãpvqqs ą Eγ rppvq ´Cpapvqqs ´ ε ,

and that (ii)

tãpvquv Ď Closureptapvquvq .

Fix ε1 “ ε
2 and let δ ą 0 and pã, p̃q be given by Lemma 11 against ε1. Note that by

Lemma 11, pã, p̃q is also deterministic and assigns every type an undominated bundle.

Now, fix any γ that is δ-close to γ:. By Lemma 11 and the construction of pa,pq, we

have

Eγ

”

p̃pvq´Cpãpvqq

ı

ą Eγ:

”

ppvq´Cpapvqq

ı

´
ε
2

“ sup
pa1,p1qPM

Eγ:

”

p1
pvq´Cpa1

pvqq

ı

´
ε
2
. (A.11)
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Fix any mechanism pa2,p2q. We apply Lemma 11 again to get pã2, p̃2q such that

Eγ:

”

p̃2
pvq ´Cpã2

pvqq

ı

ą Eγ

”

p2
pvq ´Cpa2

pvqq

ı

´
ε
2
.

Since this holds for all pa2,p2q, we have

sup
pa1,p1qPM

Eγ:

”

p1
pvq ´Cpa1

pvqq

ı

ě sup
pa2,p2qPM

Eγ

”

p2
pvq ´Cpa2

pvqq

ı

´
ε
2
. (A.12)

But then combining (A.11) and (A.12), we have

Eγ

”

p̃pvq´Cpãpvqq

ı

ą sup
pa1,p1qPM

Eγ:

”

p1
pvq´Cpa1

pvqq

ı

´
ε
2

ě sup
pa2,p2qPM

Eγ

”

p2
pvq´Cpa2

pvqq

ı

´ε .

Since the above holds for any joint distribution γ that is δ-close to γ:, the result follows.

A.13 Proof of Theorem 5

We follow the same proof strategy as in Theorem 1 and Proposition 1. In particular,

we apply the monotone construction theorem (with the local single-crossing property),

Theorem 6, to the partially ordered set pB,Ďq and virtual surplus function φpb, tq.

The result follows if we show that the strongly undominated bundles are exactly the

chain-essential elements in Theorem 6 (see the proof of Theorem 1 and Proposition 1).

We follow the notation as in the proof of Theorem 1. Because by assumption Qpbq P p0,1q,

we have that tpbq P pt, tq for all b , ∅. Therefore, for any ∅ Ă b1 Ă b2, by Lemma 3, we

have

tpb2 | b1q ě minttpb1q, tpb2qu ą 0 .

Thus, for any b1 Ă b2, we have tpb2 | b1q ą 0.

Fix any strongly undominated bundle b. We show that b is chain essential. If b “ ∅

or b “ b, then we have that b is a chain-essential element because (i) t ă tpb1q for all

b1 Ą ∅ and (ii) tpb | b1q ă t for all b1 Ă b (see the proof of Proposition 3). Thus, suppose

that ∅ Ă b Ă b. Suppose for contradiction that b is not chain essential. Then there exists

b1 Ă b Ă b2 such that

tpb | b1q ě tpb2 | bq .

Since tpb2 | b1q ą 0, by Lemma 6, this implies

tpb | b1q ě tpb2 | b1q .
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Now, by Lemma 3 and the proof of Proposition 1, we have

Qpb | b1q ď Qpb2 | b1q ,

contradicting to that b is strongly undominated.

Now, fix any chain-essential element b. We show that b is strongly undominated. Note

that, for all b1 Ă b Ă b2, by the definition of chain-essential elements, we have

tpb | b1q ă tpb2 | bq .

Since tpb2 | b1q ą 0, by Lemma 6, this implies that

tpb | b1q ă tpb2 | b1q .

Then, by Lemma 3 and the proof of Proposition 1, we have

Qpb | b1q ą Qpb2 | b1q .

Since this holds for all b1 Ă b Ă b2, we have that b is strongly undominated.

A.14 Proof of Proposition 8

Since costs are zero, the price elasticity for any bundle b at quantity Qpbq must satisfy

ηpb,Qpbqq “ ´1 .

Recall that

MRpb,qq “ P pb,qq
“

1 `
1

ηpb,qq

‰

.

This implies that the elasticity curve ηpb, ¨ q single-crosses ´1 from below because the MR

curve MRpb, ¨ q single-crosses 0 from above.

We claim that, under zero costs, the union elasticity condition implies the union quan-

tity condition. Indeed, under zero costs and the union elasticity condition, for any b1,b2,

because

η
`

b1 Y b2,Qpb1 Y b2q
˘

“ ´1 ,

we have

η
`

b1,Qpb1 Y b2q
˘

ě ´1 or η
`

b2,Qpb1 Y b2q
˘

ě ´1 ,
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and hence

Qpb1 Y b2q ě min
␣

Qpb1q,Qpb2q
(

.

Thus, the union quantity condition holds. Thus, the nesting condition holds by Proposi-

tion 2.

A.15 Proof of Proposition 9

Let B be the proposed menu. By Proposition 8, the nesting condition holds. Hence, by

Theorem 1, it suffices to show that any (non-empty) bundle b < B is dominated. We start

by showing that for all i, we have

Qpb‹
1 Y ¨¨ ¨ Y b‹

i q ě Qpb‹
i q .

We prove this by induction on i. The base case i “ 1 is trivial. For the inductive step,

suppose that the claim holds for i ´ 1. Now, observe that

Qpb‹
1 Y ¨¨ ¨ Y b‹

i q ě min
!

Qpb‹
1 Y ¨¨ ¨ Y b‹

i´1q, Qpb‹
i q

)

ě min
!

Qpb‹
i´1q, Qpb‹

i q

)

“ Qpb‹
i q ,

where (i) the first inequality follows from that the union elasticity condition implies the

union quantity condition (as shown in the proof of Proposition 8), (ii) the second in-

equality follows from the inductive hypothesis, and (iii) the last equality follows from

the definition of b‹
i and b‹

i´1. This proves the inductive step.

Now, fix any b < B. There exists some index j such that b “ b‹
j . Since b < B, we have

b “ b‹
j Ă b‹

1 Y ¨¨ ¨ Y b‹
j .

But, by the previous step, we also have

Qpbq “ Qpb‹
j q ď Qpb‹

1 Y ¨¨ ¨ Y b‹
j q .

Thus, bundle b is dominated, completing the proof.

A.16 Proof of Proposition 10

Without loss of generality, suppose that there is a sequence of demand rotations for item

2. By Proposition 9, nested bundling is always optimal at any parameter s. By Propo-

sition 1, the minimal optimal menu BOPT psq equals the set of undominated bundles.
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To prove claim (i), observe that it suffices to show that if BOPT psq “
␣

t1u,t1,2u
(

, then

BOPT ps1q must be
␣

t1u,t1,2u
(

for any s ă s1. Suppose not. Then, for some s ă s1, we have

Qpt1,2u;s1
q ě Qpt1u;s1

q “ Qpt1u;sq ą Qpt1,2u;sq ,

which is impossible by our notion of demand rotations.

To prove claim (ii), observe that it suffices to show that if BOPT ps1q “
␣

t2u,t1,2u
(

, then

BOPT psq must be
␣

t2u,t1,2u
(

for any s ă s1. Suppose not. Then, for some s ă s1, we have

Qpt2u;sq ď Qpt1,2u;sq , Qpt2u;s1
q ą Qpt1,2u;s1

q ,

which is impossible by our notion of demand rotations.

To prove claim (iii), observe that it suffices to show that it cannot be |BOPT psq| “

1, |BOPT ps1q| “ 2, |BOPT ps2q| “ 1 for any s ă s1 ă s2. To see why this is impossible, note

that: if BOPT ps1q “
␣

t1u,t1,2u
(

, then r2pBOPT p ¨ qq cannot be nondecreasing, contradicting

claim (i); if BOPT ps1q “
␣

t2u,t1,2u
(

, then r1pBOPT p ¨ qq cannot be nonincreasing, contra-

dicting claim (ii).

A.17 Proof of Proposition 11

By Theorem 1, it suffices to show that if x: < X‹, then x: is dominated by another quality

level x , x:. Fix any x: < X‹. Then pQpx:q ą Qpx:q. Suppose, for contradiction, that there

does not exist any x ą x: such that Qpxq ě Qpx:q. Then, we have

max
xąx:

␣

pQpxq
(

“ max
xąx:

␣

Qpxq
(

ă Qpx:
q .

Let

rQpxq :“

$

&

%

pQpxq if x , x: ;

Qpxq otherwise .

Then note that rQpxq is also nonincreasing and everywhere above Qpxq. Moreover, rQpxq is

everywhere below pQpxq with rQpx:q ă pQpx:q. Contradiction.

A.18 Proof of Proposition 12

Note that since Qpxq P p0,1q, we must have

MRpQpxqq ¨ x´Cpxq “ 0 ,
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where the quality-adjusted marginal revenue curve MRpqq :“ d
dq pF´1p1´qq¨qq is a strictly

decreasing, continuous function. Therefore, we have

Qpxq “ MR´1
´

Cavgpxq

¯

.

Now, observe that for any function h : X Ñ R and any strictly decreasing function Φ :

RÑR, we have

U´
“

Φ ˝ h
‰

“ Φ ˝ L`
“

h
‰

,

where U´r ¨ s denotes the upper decreasing envelope operator and L`r ¨ s denotes the lower

increasing envelope operator. Thus, we have

pQpxq “ MR´1
´

qCavgpxq

¯

because MR´1p ¨ q is strictly decreasing. The claim follows from Proposition 11.

A.19 Proof of Proposition 13

We map this problem into a bundling problem as follows. Consider a bundling problem

with n`m many items, where the first n items represent quality upgrades exactly as in

Section 7.2, and the remaining m items represent the passes to avoid each of the m costly

activities. Specifically, for any pxi , yjq, we define

v
´

␣

1, . . . , i
(

Y tn` 1, . . . ,n`m
(

z
␣

n` j
(

, t
¯

:“ upxi , tq ´ cpyj , tq ,

with v
`␣

1, . . . , i
(

Y tn` 1, . . . ,n`m
(

, t
˘

:“ upxi , tq being the value of quality xi without any

costly action. We can map the production costs accordingly and let vpb, tq “ Cpbq “ 0 for

bundles b that are not of the above form. With a slight abuse of notation, we also write

px,yq as the bundle of quality x and costly action y, and write Qpx,yq as the corresponding

sold-alone quantity for this damaged bundle, i.e., the unique quantity maximizing the

profit function πpx,qq ´πpy,qq.

p ðù q Suppose that minyą0Qpyq ă maxxą0Qpxq. Suppose for contradiction that there

exists an optimal deterministic mechanism that does not use any costly instruments.

Then, by Proposition 11, there exists an optimal menu B such that

x‹ :“ max
!

argmax
xą0

Qpxq

)

is the base-tier quality in menu B. Let y‹ :“ min
␣

argminyą0Qpyq
(

. By assumption,
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Qpy‹q ă Qpx‹q. Because πpx‹,qq, πpy‹,qq, and πpx‹,qq ´πpy‹,qq are strictly quasiconcave,

we have

Qpy‹
q ă Qpx‹

q ùñ Qpy‹
q ă Qpx‹

q ă Qpx‹, y‹
q .

But this implies that

tpx‹, y‹
q ă tpx‹

q ,

where, as in the proof of Theorem 1, tp ¨ q denotes the type at which the associated virtual

surplus function crosses zero.28 By Proposition 11 and the construction of Theorem 1, all

types below tpx‹q consumes ∅ under the optimal mechanism. However, consider the per-

turbation of assigning the types s P rtpx‹, y‹q, tpx‹qq the damaged bundle px‹, y‹q. Because

upx‹, tq ´ pupx‹, tq ´ cpy‹, tqq “ cpy‹, tq

is strictly increasing in t, there exist prices to implement this change of the allocation.

This change must increase the total profit by Lemma 1 since the virtual surplus function

associated with bundle px‹, y‹q is strictly positive for all types s ą tpx‹, y‹q. Contradiction.

p ùñ q Suppose that minyą0Qpyq ě maxxą0Qpxq. We show that there exists an optimal

mechanism that does not use any costly instruments. Note that for all x1 ą 0 and y1 ą 0,

Qpy1
q ě min

yą0
Qpyq ě max

xą0
Qpxq ě Qpx1

q .

Because πpx1,qq, πpy1,qq, and πpx1,qq ´πpy1,qq are strictly quasiconcave, this implies that

Qpy1
q ě Qpx1

q ě Qpx1, y1
q .

Therefore, each damaged bundle px1, y1q is dominated by the undamaged version x1. Now,

note that, by the quasiconcavity assumptions, (i) the virtual surplus function φpx1, tq

single-crosses φpx1, tq ´φpy1, tq from below, (ii) both virtual surplus functions φpx1, tq and

φpx1, tq ´ φpy1, tq single-crosses 0 from below. Therefore, by the proof of Theorem 1, we

have that φpx1, tq ´φpy1, tq ď maxtφpx1, tq,0u for all t P T .

Then, by Lemma 1, the optimal value of this screening problem is bounded from

above by

E
”

max
xPX

φpx, tq
ı

.

Since assumptions (A1) and (A2) hold for tupx, tq,Cpxq,Fptqu, by the proof of Theorem 1,

28For any bundle px,yq, the associated virtual function is given by upx, tq´Cpxq´cpy, tq´
1´Fptq
f ptq

`

utpx, tq´

ctpy, tq
˘

“ φpx, tq ´φpy, tq where φpx, tq :“ d
dqπpx,qq |q“1´Fptq and φpy, tq :“ d

dqπpy,qq |q“1´Fptq.
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t1 t2 t3

t1,2u 4 12 25

t1u 2 6 8
t2u 3 3 6

(a) Nesting condition fails

t1 t2 t3

t1,2u 4 12 20

t1u 2 6 8
t2u 3 3 6

(b) Nesting condition holds

Table 2: Bundle values by types for Example 3. Circled are sold-alone monopoly prices.
In case (a), the nesting condition fails and the optimal mechanism is stochastic. In case
(b), the nesting condition holds, and the optimal mechanism is deterministic and given
by the menu of undominated bundles.

the seller can attain the above profit by selling a deterministic menu of different qualities.

Thus, costly screening is suboptimal.

B Additional Example

We provide an additional example that shows totally ordered types are not sufficient for

the optimality of nested bundling. This example further illustrates our nesting condition.

For simplicity, the example is discrete, but it can be made continuous by approximation.

Example 3. Suppose that there are two items t1,2u and three types of consumers tt1, t2, t3u

with mass 1{3 each. Suppose that the costs are zero. We consider two cases.

Case (a). The values are given by Table 2a. One can verify that the sold-alone quanti-

ties are given by Qpt1,2uq “ 1{3, Qpt1uq “ 2{3, and Qpt2uq “ 1 (the sold-alone prices are

circled in Table 2a). Thus, none of the bundles are dominated. So the nesting condition

fails. Note that the nested menu
␣

t1u,t1,2u
(

yields a profit 29{3 (by pricing t1,2u at 23,

and t1u at 6), and the nested menu
␣

t2u,t1,2u
(

yields a profit 28{3 (by pricing t1,2u at

22, and t2u at 3). The optimal deterministic menu in this case is not nested: it prices the

bundle t1,2u at 22, t1u at 6, and t2u at 3, which results in a profit

1
3

ˆ
`

22 ` 6 ` 3
˘

“
31
3

ą
29
3

.

Moreover, the fully optimal mechanism is stochastic:

• price 22 for bundle t1,2u

• price 72{11 for a lottery that puts probability 10{11 on bundle t1u and probability

1{11 on bundle t1,2u
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• price 3 for bundle t2u

which yields a profit
1
3

ˆ

´

22 `
72
11

` 3
¯

“
347
33

ą
31
3

.

The suboptimality of nested bundling can be understood using Corollary 4 since the

nested menu
␣

t2u,t1,2u
(

that includes the best-selling bundle t2u yields a strictly lower

profit than the other nested menu
␣

t1u,t1,2u
(

.

Case (b). The values are given by Table 2b, which is exactly the same as Table 2a except

that type t3’s value for bundle t1,2u is lowered from 25 to 20. Given this change, when

bundle t1,2u is sold alone, the monopoly price would be 12 and the quantity Qpt1,2uq

would be 2{3 rather than 1{3. Then, bundle t1u is dominated, and the nesting condi-

tion holds. The optimal mechanism in this case is deterministic and given by the nested

menu
␣

t2u,t1,2u
(

, which coincides with the undominated bundles. The optimality of

nested bundling and the construction of optimal menu follow directly from Theorem 1

and Proposition 1.
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