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Abstract

We consider the effect a public revelation of information (e.g. rat-
ing, grade) has on signaling and trading in a dynamic model. Com-
peting buyers offer prices to a privately informed seller who can reject
these offers and delay trade. This delay is costly and the seller has no
commitment to the duration of the delay. We show how the external
public information allows for signaling in equilibrium. More interest-
ingly, we characterize the dynamics of trade and prices. If the signal
is not fully revealing, then there is no trade just before the revelation
of external information. A lemons market develops endogenously over
time and prevents any trade close to the release of the public announce-
ment. On the other hand, if the external signal is fully revealing, then
trade occurs even close to the final period; however, in this case there

is a discontinuity in prices.
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1 Introduction

Many real-world markets, such as labor markets and financial markets, fea-
ture a privately informed seller who faces a pool of uninformed buyers. A
growing literature, starting with Spence’s (1973, 1974) seminal work on ed-
ucation, explores how the seller can signal his type in this wide range of
markets. In Spence’s original work, education is modeled as a static choice,
so that a more able seller/worker could commit to more ‘units’ of education.
In practice, many markets are dynamic and often the signaling variable is
the time to agreement. Moreover, commitment is rare so agents make a new
decision in every period; in particular, the seller can quit signaling at any
time. This lack of commitment is likely to disturb signaling, as pointed out
by Weiss (1983), Admati and Perry (1987), and Swinkels (1999).

In this paper, we follow the above literature in examining a fully dynamic
game (& la Swinkels (1999)), but incorporate another important feature
of many markets, the release of external information. In particular, we
introduce a public signal that is not fully controlled by the seller or the
buyers. Some examples are: a grade that partly reflects the ability of a
student, an earnings announcement, an FDA approval, or a court decision
that may affect a firm’s value. More generally, this external information
can be any realization of some uncertainty. As we show, the release of this
information enables signaling despite the lack of commitment. However, our
focus is on how it affects the resulting trading patterns.

We consider a generic trading model in which an informed seller faces
competitive uninformed buyers. The seller owns an indivisible asset and he
is privately informed about its value. With the asset as labor, the model
includes educational signaling as a special case. The model is dynamic and
trade can take place at any point in time (formally we divide time into many
small periods). In each period, buyers make simultaneous sealed offers to
the seller. The seller decides whether to accept or reject. If he accepts any
offer, the game ends; if he rejects all offers, the game continues. Since the
cost of delay can depend on the seller’s privately known value for the good,

rejection can signal information about his type. The new feature of the



model is that after a fixed time (at time ¢t = 1) an external signal (a grade)
is publicly revealed.!

A crucial assumption is that if trade takes place before ¢t = 1, the terms
of trade cannot be made contingent on future realization of the final signal.
Such restriction arises naturally in markets where the signal is not generated
if the trade takes place before t = 1, or is observable but not verifiable in
court. The feasibility of such contingent payments may also be affected by
the seller’s limited liability, preventing him from paying any money back
after a low signal realization, or by possible manipulation by the buyer. In
other markets, some limited contingent contracts are possible and are used
in practice. Examples of such contracts include product warranties or collars
in financial markets.

Our equilibria do not rely on the offers becoming public. Hence, off-
equilibrium beliefs do not provide commitment to the seller (see Noldeke and
Van Damme (1990)). We follow Swinkels (1999) in assuming the opposite
extreme. In each period there are two new buyers who replace the two (old)
incumbent buyers whose offers were rejected in the previous period. This
replacement assumption provides tractability to a model of private offers.

We examine the conditions under which there is signaling in equilibrium.
More importantly, we analyze how the external information affects the re-
sulting trading patterns and prices. Our main results can be summarized as

follows:

e With the release of public information, the seller can employ costly
signaling, as long as waiting costs are not too high. This contrasts a
dynamic signaling model without external information, in which the
unique sequential equilibrium involves full pooling and trade in the

first period whenever delay is unproductive (Swinkels (1999)).

e When the external signal is noisy, there is a discontinuity in trade,

i.e. no trade takes place close to the announcement. The intuition

!'We focus on the case in which the timing of the external signal is fixed and commonly
known, which is a reasonable assumption in some markets. We also discuss the effects of
relaxing this assumption in the last part of the paper.



is that a lemons market develops endogenously. For example, with a
noisy grade and two types of sellers, the low type is overpaid in the
last period and the high type is underpaid, but still paid more than
the average. As the announcement approaches, waiting costs become
small and the reservation price of each type approaches his payoff in
the last period. Buyers would hence have to pay more than the value
of the average type who is accepting an offer if trade occurred just
before graduation (importantly, any price that the high type accepts,
the low type does as well).

If the external signal is fully revealing, then there is no market break-
down. In contrast to the noisy signal case, there is trade just before
the release of the external information. However, there is a discon-
tinuity in prices around that time. In particular upon the release of
the external signal, average prices are strictly higher than prior prices.
The intuition can be illustrated by the following example. Suppose
that the distribution of graduating types (i.e. types that do not trade
before the grade is revealed) is uniform between [10,20]. The aver-
age price upon graduation is therefore 15. Just before graduation the
highest offer that can be made is 15 since the agent’s type is unknown.
However, since waiting costs are minimal, types above 15 would reject
such an offer. For the buyers not to lose money, trade just before
graduation occurs only with types lower than 15, so the highest price

they can offer is 12.5 or less. This implies a strict jump in prices.

It is interesting to point out that we do not need to assume that costs of

delay are strictly decreasing in value. As we later discuss, this is very useful

in financial applications where the seller tries to sell a company he owns.

In this case, costs follow from discounting and do not vary by type. In our

setup, signaling is still possible as the high types expect to receive better

offers upon the realization of the external signal.

Literature Review

This paper is related to the literature on dynamic signaling that started with

Spence’s (1973, 1974) papers on educational signaling. In these papers,
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he suggests that workers may over-invest in education in order to signal
their productivity. Cho and Kreps (1987) formalized this and showed that
if the worker can commit to the length of education, then, in the unique
equilibrium satisfying standard refinements, the agent obtains least-costly
full separation (known as the ‘Riley outcome’, Riley (1979)).

Weiss (1983) and Admati and Perry (1987) pointed out that long-term
commitment is difficult in many markets and may disturb signaling. Swinkels
(1999) formalized this argument in a paper that is the most related to ours.
He showed that if offers are private, then the unique sequential equilibrium
is full pooling. Before school starts, the firms offer wages equal to the av-
erage productivity and all types accept. Therefore, the lack of commitment
makes it very difficult to use non-productive education for signaling. We
differ from Swinkels (1999) in that we introduce the exogenous release of
information; this exogenous information is the focus of this paper. Another
difference is that rather than the often-used framework of education, we
describe a generic dynamic trading model. As we discussed above, this gen-
erality is needed for some of the applications we consider in which there are
no explicit differences in delay costs across types.

Noldeke and Van Damme (1990) show how signaling can be restored as
off-equilibrium beliefs may provide commitment for the worker to continue
signaling. In their model, offers are public and there are many sequential
equilibria. They employ a standard refinement (Never a Weak Best Re-
sponse from Kohlberg and Mertens (1986)) to select a unique one. In that
equilibrium, firms believe that a worker is the highest type whenever she
deviates from the equilibrium by rejecting an offer. As a result, the firms
have no incentive to approach the worker publicly and the worker signals
her type over time. As the length of the periods converges to zero, the equi-
librium outcome essentially converges to the ‘Riley outcome’: in the limit,
the workers separate at the beginning of the game. Swinkels (1999) shows
that for this result, it is critical that all offers are made public, given that
firms have incentives to approach the worker privately.

Weiss (1983) was the first to examine the role of grades in an education

model. Similar to our paper, he observes that signaling may occur even if



costs do not vary by type. His model differs from ours in two important
dimensions. First, in his model, there is full commitment, as agents choose
the duration of their education and firms are not able to approach them until
graduation.? As a result, there are no trade patterns before graduation. In
contrast, these trade patterns are the main focus of our paper. Second, in
his model, grades provide information not available to any agent ex-ante.
Therefore, grades are productive as they yield new information and serve an
important allocative role. In fact, he motivates his assumption that the firms
do not offer wages before graduation by assuming that firms care not only
about a worker’s own assessment of his ability, but also about the grades
per se. In our model, grades may or may not provide new information; more
importantly, if there was no information asymmetry between the seller and
the buyers, then trade would occur immediately and efficiently.

There are also a few papers that examine static models in which the
external release of information plays a role. Teoh and Hwang (1991) study a
model in which a firm can control the release of some information. The firm
can choose not to release information, but rather wait for it to become public.
They show that the firm may actually decide to disclose negative information
rather than positive. Feltovich, Harbaugh and To (2002) examine a model
in which there is an external noisy signal. They show that with more than
two types, high types may choose not to signal (or countersignal) to ensure
they are separated from medium types.

Finally, Kojarczyk, Lucas, and McDonald (1991, 1992) consider a model
in which a seller times the issuance of equity in a market with external
information release. In this model, buyers are not aware that the seller
exists until he decides to issue the equity. Therefore, they cannot approach
him in the interim period. In other words, this is a model of pure signaling.
In contrast, we allow the buyers and the seller to be active in the market,
allowing for both signaling and screening.

The paper is organized as follows: in the next section we present the

details of the model. In Section 3 we present general analysis of all sequen-

*Weiss (1983) also assumes that the timing of the grade is chosen by the seller, while
we assume it is fixed.



tial equilibria in the general model. We then specialize the model to two
cases: noisy grades (Section 4) and fully revealing grades (Section 5) and
prove the main theorems about the dynamic patterns of trade. Section 6
contains examples of equilibria in a binary model for both noisy and fully
revealing grades. Section 7 considers a case of productive signaling. Section

8 concludes, and proofs appear in the Appendix.

2 The Model

We analyze dynamic trade with signaling and no commitment. In our model,
an informed seller is facing a pool of uninformed buyers. Buyers decide what
offers to make and when; the seller decides which offer to accept and when.
As we have both sides of the market active, our model involves both signaling
by the seller as well as screening by the buyers.?

Our model is based on that of Swinkels (1999). The two key features
are the impossibility of commitment and private offers. Thus, we do not
rely on offers being public and on off-equilibrium beliefs to provide commit-
ment (see Noldeke and Van Damme (1990)). Similar to Swinkels (1999), for
tractability we assume the opposite extreme. We assume no recall of past
offers (by having new buyers every period) so that the strategies of buyers
do not depend on the levels of offers rejected in the past. We differ from
Swinkels (1999) in that we introduce the exogenous release of information;
this is the focus of our paper.

Another difference is that we describe a generic dynamic trading model
rather than the usual framework of education. The difference is more than
just reinterpretation of an existing model. To see why, consider first the
often-studied case of education signaling in which an agent sells his labor.
The cost of education is usually assumed to depend on the agent’s produc-
tivity. In a dynamic framework the cost for a type v of staying in school
from zero to t takes the form of t¢(v) for some decreasing function ¢ (v).

Thus, education is less costly for the high-productivity workers than it is for

3Each buyer is active in only one period, so the screening is by the buyers as a group
rather than by individual buyers.



low-productivity workers.

Now consider an example of an entrepreneur who sells his company. The
motive for trade follows from the fact that the entrepreneur has a preference
for getting money earlier rather than later. This is described by his discount
factor 5 € (0,1), while the market is normalized to have a zero discount
rate. This implies that the seller’s cost of waiting depends on the amount
he receives and the delay, but not his type. He values $w in period t only
as ftw and hence his waiting costs are given by (1 — Bt) w. Nevertheless,
as we shall see, future realization of uncertainty still enables signaling in
equilibrium.

We incorporate both cases by employing an abstract cost function ¢ (¢, v, w)
that represents the loss for a type v if he receives $w in period ¢ rather than
today. This cost function plays a key role in our model, which we describe
now formally.

Types and timing

A seller owns a single indivisible asset that has value to the potential
buyers given by v € V C [v, 9], where v > 0.* The seller knows this value,
while potential buyers share only a commonly known prior, . The market
belief (i.e. a probability distribution over V') regarding the value at time ¢
is denoted by .

For simplicity we focus on the case in which V is finite and values are
given by v = v1 < va... < vy = ¥. Most of our conclusions do not depend
on this assumption, and in some cases we consider explicitly the continuous
case where V' = [v, 7].

We consider a discrete time model in which we divide the time of the
game [0,1] into T' intervals, each of length A = % This defines a grid
t = {0,A,...1} in which offers are made. In general, taking A to be small
corresponds to less commitment by the seller as he may change his mind in
a short period of time. Since we are interested in the seller being unable to
commit, we focus on A being small.

Following Swinkels (1999), for tractability we assume that at the begin-

4One could expect a normalization of types to [0,1]; however, a type zero has some
unique implications. This is related to what is known in the literature as the gap case.



ning of each period there are two new buyers that make simultaneous offers
to the seller; in total there are 2 (7 + 1) buyers in the game. The seller
observes offers privately and he decides whether to accept or reject. If he
rejects, he waits for another period A and two new buyers enter next period.
These buyers replace the two “old” buyers that exit the game. If the seller
accepts an offer, the game is over. Hence, we describe a competitive market

in which buyers are unable to recall the history of price offers.?

Payoffs
We assume that all the agents are risk neutral with respect to payment.

The payoff to a buyer that pays w and in return gets v is

The payoff to the seller of an asset with value v that sells at time ¢ for
w is

w — ¢ (t,v,w)

where ¢ (t,v,w) denotes the waiting cost. We assume the following:
Assumption 1:
e ¢(t,v,w) is non-negative and ¢ (0,v,w) = 0.

e c(t,v,w) is continuously differentiable and there exists o > 0 so that

W>Qforanyvandw22-

e ¢ (t,v,w) is non-increasing in value v, non-decreasing in w, and (w — ¢ (t, v, w))
is strictly increasing in w.
o Zcltva) <)o that the i tal delay cost Kly d i
59— < 0so that the incremental delay costs are weakly decreasing

in value.

e ¢(t,v,w) is linear in w, so that the seller is risk neutral.

’The game is very difficult to analyze if the offers are private but the same buyers
continue to make offers, since over time the buyers will have different private beliefs. The
concluding section elaborates on this.



This structure allows us to embed a model of discounting as well as an
education model. As we discussed before, assuming c (¢, v, w) = (1 — Bt) w
lets us describe financial markets, while assuming c (¢, v,w) = tc(v) fits a

traditional education-signaling model.

Grades and final offers

If the game is not over by t = 1, then a public signal regarding the value
of the asset is revealed and becomes common knowledge.® We borrow the
education terminology and name this public signal a grade. We denote it by

g. We say in this case that the seller graduated. We assume that
Assumption 2: g and v are strictly affiliated.

The above assumption, which is standard in the literature, implies that
expected type, conditional on the grade, is increasing in it. We specialize

our analysis to one of the following two cases:

e Case 1- The grade is noisy. In this case we assume that the signal
is represented by a continuous random variable g with a distribution
conditional on the type being v given by a density function f (g|v). To
guarantee that all grades are noisy, we assume that there exists some

v > 0 so that f (g|v) >~ for any v and g.

e Case 2- The grade is fully revealing, that is g = v.

After the announcement of the grade, the final offers are made. Without
loss of generality, we assume that the game ends after the grade is revealed.
As long as no other external information is expected after ¢ = 1, Swinkels
(1999) has shown that for a sufficiently small A in the unique (continuation)
sequential equilibrium, trade takes place immediately at a price equal to the
expected value.

Bertrand competition among buyers implies that upon graduation of-

fered prices are equal to the conditional type based on the grade g and

See Section 8 for a discussion of a model with more than one signal.
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the population of types that graduate, u1. That is, w/™% (¢) = E,, [v|g].”
Hence, upon graduation buyers make zero expected profit while the agent
earns w/Me (g) — ¢ (1,v,w/™ (g)) . Let hy, (v) denote the final price upon
graduation that a type v expects, given that the market belief in the final
period is p1 = i :

Py (v) = By [ (g) o]

In the case where g is fully revealing (case 2), this simplifies to hy, (v) = 0.8

It is a crucial assumption that trade before ¢ = 1 cannot have prices
contingent on the future realization of the signal. Such restriction arises
naturally in some markets where the signal does not arrive if trade takes
place before graduation, or is observable but not verifiable in court, or is
subject to negative manipulation by the buyer. For example, a student may
need to drop out of school to take the job (and avoid the cost of signaling);
the buyer can settle the court case privately, affecting the observed outcome;
or he can delay submission of the documents to receive the FDA approval. In
other markets such contingent contracts are possible and are used in practice,
for example, as warranties or as collars in financial markets.” The feasibility
of such contingent contracts can be affected by the information problems
listed above, as well as by the seller’s limited liability that would prevent
him from paying any money back after a low-signal realization. Admittedly,
in many markets the situation is more complicated than our model depicts,
but we believe that the assumption of non-contractible grades allows us to
isolate the relevant effects of non-commitment and dynamic signaling from

static signaling through warranties.'”

TOur assumption that competition eliminates the buyers’ surplus is not crucial and is
made to simplify the exposition. For example, our analysis holds even if the buyers and
the seller split the surplus evenly.

8 When the grade is fully revealing, then even if j; A assigns probability 0 to the
revealed type, the posterior beliefs agree with the grade. This follows from the definition
of sequential equilibrium (the consistency requirement for off-equilibrium beliefs).

9 A different market solution is for the seller to obtain a loan backed by the value of the
asset and to sell it only after the realization of the signal. Our model is therefore relevant
to cases where the seller faces above-market interest rates (for example, due to limited
liability) which may be the main reason he wants to sell the asset.

10Tn case the signal was contractible ex-ante, we conjecture that the results of Swinkels
(1999) would generalize, thus, all types would trade at time 0 and sign contracts con-
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3 General Analysis

The game we have described has potentially more than a single equilibrium.
Our goal is not to describe a specific equilibrium or to provide conditions
that guarantee that the equilibrium is unique.!! Our approach is to provide
characterization of the entire equilibria set and to focus on some salient and
robust features.

In this section, we characterize the equilibrium strategy of the seller and
explain some simple dynamics that it implies. We name this section “Gen-
eral Analysis” since more interesting insights are obtained in the next two
sections when we introduce additional assumptions regarding the informa-
tion content of the grade. This allows us to establish important properties
of trade and price dynamics

We first note that the seller follows a reservation-price strategy. At time
t, type v accepts an offer w based on whether it exceeds a threshold R (¢, v) .
This is an immediate implication of our no-recall assumption. The level of
a rejected offer has no further future consequences. Thus, R (t,v) equals
the time ¢ seller’s expected continuation payoff (i.e., expected price less the

incremental cost of delay) if he declines current offers. We argue that

Lemma 1 The reservation price, R(t,v), is non-decreasing in type, that
is v > v implies R(t,v") > R(t,v). Moreover, if % < 0 orif
v graduates (i.e., reaches the final period) with positive probability then

R (t,v") > R(t,v) for any v’ > v.

The above Lemma implies that the quitting decision is (weakly) monotone
in type. If a type v that graduates with positive probability accepts an offer
at t < 1, then lower types accept this offer with certainty (or they never

graduate). As a result we get the following:

tingent on the grade realization. Therefore, signaling would only be static through the
contracts/warranties signed at time 0 and not dynamic through delay of trade.

'TA two-type case is an exception and we construct the equilibrium in this case, see
Section 6.1.
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Corollary 1 If in equilibrium there is a positive probability that the seller
1‘12

graduates, then py first-order stochastically dominates py for any t <

Without grades, an argument similar to that of Swinkels (1999) shows
that for a small A, the unique equilibrium is a pooling equilibrium in which
all types accept the initial offer. In our model, this would be the unique out-
come for very high costs (say, ¢ (1,7, w) > 0 —wv), but it is not an equilibrium

outcome for lower costs:

Proposition 1 If ¢ (1,v,0) < 1 (hy, (V) — Euyv), then if (i) the grade is
fully revealing (g = v), or if (ii) off-equilibrium beliefs satisfy “Divinity”,
then the high type v graduates with a positive probability, bounded away
from zero (for all A).

The reasoning behind the result is quite simple. In a pooling equilibrium,
all types accept an average offer. With final grade and low costs, high types
prefer to graduate, prove their type, and on average earn more. Formally, in
the case of a noisy grade, this claim depends on ruling out non-realistic off-
equilibrium beliefs. Specifically, consider the off-equilibrium belief regarding
a seller who graduates and assigns probability 1 to the lowest type. Such a
belief supports a pooling equilibrium as the grade is ignored and the seller
gets the lowest payoff upon graduation. However, such a belief does not
survive standard refinement such as “Divinity.” 3
From now on we will maintain the sufficient assumption that
Assumption 3: ¢(1,v,0) < 3 (hy, (V) — Eyov).1
One may wonder if this condition excludes the possibility of a separating

equilibrium even under commitment and no grades. However, as we argued

20ne could expect that p; improves stochastically over time, not only compared with
t = 1. We were not able to establish this without additional assumptions to guarantee
that the reservation prices are strictly monotone (see Proposition 2). The problem is that
an offer that matches the reservation price of a pool of types can potentially be accepted
by high types and rejected by low types.

3By “Divinity” we mean divine equilibrium introduced by Banks and Sobel (1987).
The stronger D1 (Cho and Kreps (1987)) is obviously sufficient as well.

14YWe use this sufficient condition as it simplifies the proofs. As we show in the next
proposition, for a small A it is possible to relax this assumption.
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before, without loss of generality we can extend the game beyond ¢t = 1.
This has no effect on our results as there would not be any trade beyond
t = 1 (following Swinkels (1999)). Extending the model ensures the exis-
tence of separating equilibria under commitment (for example, least-costly
separating equilibria known as the “Riley Outcome”) as long as delay costs
are decreasing in type.

So far we were able to provide only a partial characterization of equi-
libria in the general model: the seller follows a monotone reservation-price
strategy, some types signal, graduation is reached with positive probability
and graduating types are better than non-graduating. If reservation prices
are strictly increasing in type, then we can provide a more complete char-

acterization:

Proposition 2 Suppose that R (t,v) is strictly increasing in v. Then the
following properties hold:

(i) pe improves over time (in the sense of first-order stochastic dominance),
(i) (zero profit) In equilibrium, every offer made by a buyer earns him zero
expected profit. Moreover, if an offer is accepted with positive probability at
time t, then it takes the form of E,, [vlv < v*| and if it is higher than the
current lowest type, all types of sellers play a pure acceptance strategy (even
if the offer is equal to the reservation price of some types),

(#ii) (no gaps in trade) If there is a positive probability of trade at some
t < 1, then there is a positive probability of trade at any t' < t,

(w) If ¢ (1,9,0) < (hyy (0) — Euyv) , then for small enough A the high type,

v, graduates with positive probability.

The proof follows the methods introduced in Swinkels (1999), and we

provide it in the Appendix. If the incremental costs do not vary by value,

2
(i.e. %g;’w) = 0) then the reservation price is the same for all types that

never graduate. This, in general, allows for a more complicated evolution
of the distribution of types, and we were not able to establish such general

characterization in this case.!®

15Gee the Appendix for an example of an equilibrium with a continuum of types in which
this equality of reserve prices plays a role.
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When is R (t,v) strictly increasing in v? First, one can use Lemma 1 to
conclude that a sufficient condition is % < 0 (or, by a similar argu-
ment, that there are only two types). Second, our model can be slightly
modified to ensure that R (¢,v) would be increasing even if % = 0.
For example, in each period we could introduce a small probability that
buyers do not show up; alternatively, in each period there could be a small
probability that the external signal arrives early. In either case, upon re-
jection, each type has a positive probability of reaching the revelation of an
external signal, and by Lemma 1, reservation prices are strictly increasing.

The last general question we examine about equilibria is whether a fully
separating equilibrium exists. Note that in a separating equilibrium, the
lowest type gets no benefit from waiting, and hence, he quits at t = 0.
By induction it then follows that in a separating equilibrium types quit
one by one; type v;—1 accepts an offer at t = iA. Since we focus on the
case in which the agent is unable to commit, we consider a small A. If
A is sufficiently small, namely A < %, then no agent would graduate in
a separating equilibrium. This contradicts our previous proposition, and
hence, a fully separating equilibrium does not exist.

We now argue that having a small number of possible types (relative to
1/A) is not crucial for this result. To illustrate this, consider the case of
a continuum of types: V = [v,7]. Let U (v) denote the utility of type v
in a separating equilibrium. In the Appendix we show using an envelope

condition that:
Lemma 2 U (v) is differentiable at v and 2U (v) = 0.
This allows us to establish the following;:

Proposition 3 Assuming that either (i) the set of types is finite and A is
sufficiently small, or that (ii) there is a continuum of types, then there does

not exist a fully separating equilibrium.

The proof of part (ii) is as follows. In a fully separating equilibrium, the

lowest type not only trades in the beginning but he also gets a price that
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equals his value (as buyers compete away all profits). Therefore, U (v) = v.
Consider now a price offer of v + € in period zero. This attracts all types
v for which R (0,v) = U (v) < v +e. As U is continuous and LU (v) = 0,
increasing the price from v by a small enough € attracts a strictly better
pool:

EplU@) <v+e >v+e

Hence, this offer yields a profit to the buyer, which leads to a contradiction.

4 Noisy Grades and Market Breakdown

To further characterize trade patterns, we now specialize the model and as-
sume that grades are only partly revealing; in the next section we consider
the case of fully revealing grades. Noise reflects the fact that in many cases
the grade is not fully informative. For example, a pass/fail grade or a credit
rating provides only partial information. Similarly, an earnings announce-
ment is a noisy predictor of future performance of a company. In this case,
the seller has additional private information even when the grade is revealed.
Our main finding is that this implies a market breakdown. Close to t = 1,
a severe lemons market develops endogenously, preventing any trade.

We consider the case in which the cost of signaling is not too high so
that by Proposition 1 some types graduate with positive probability. In fact,

using Assumption 3, one can strengthen Proposition 1 and conclude that

Lemma 3 In equilibrium the probability that the second-highest type grad-

uates is uniformly (for all A) bounded away from zero.

As a result, average prices received by low types (i.e., below some thresh-

old) upon graduation are higher than their average type:

Lemma 4 Upon graduation, low types tend to be overpaid, that is, E,, [hy, (v)|v < v*] >
E,, [vlv <v*]+n for somen >0 and any v* < ©.

6 Clearly, the market breaks down only close to the announcement, and the trade takes
place either before or after the signal arrives.
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At a time close to graduation that creates a severe lemons market. If the
reservation price R (t,v) is increasing in v, buyers can attract type v only if
they attract all types below it. However, types lower than v* expect to be
overpaid upon graduation and hence reject offers that do not cause buyers
to lose money. Attracting all types is not an option either, since to attract o,
the buyers have to offer more than average value, which again would make

them lose money. Formally we argue that

Theorem 1 In any equilibrium there exists t* < 1 so that there is no trade
in [t*,1].

To illustrate the intuition behind this theorem, consider a game with
two types. At t = 1 — A both types are present with positive probability
(otherwise no type would graduate). Any price the high type would accept
with positive probability will definitely be accepted by the low type (at
t = 1 — A the reservation prices R (t,v) are strictly increasing since upon
rejection the seller is certain to graduate). Upon graduation, the low type
expects a price above his value and the high type expects a price above
average. Therefore, if the price is accepted by the low type only, it must be
above his value. If a price is accepted by the high type, it has to be above
the average value, but it will be accepted by both types. In either case the
trade would make the buyers lose money. We can extend the reasoning to
time t* < 1, showing that if there is no trade after ¢t* then there will not be
any trade at t* either, unless t* is sufficiently less than 1. Lemma 4 allows
us to generalize this argument to N types. This result stands in contrast to
the case in which grades are fully informative. As we shall see later, in this
case there is trade even immediately before graduation.

In Section 6.2 we construct an example of equilibrium with noisy grades.
It is important to note that the strategy space in this game is not finite
since prices are not restricted to a finite set. Hence, standard arguments
do not guarantee that equilibrium exists. Accordingly, the explicit exam-
ple establishes existence. It also illustrates possible equilibrium dynamics
(for example, Figure 2 in Section 6.2 illustrates the "silent period" before

graduation).
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5 Fully revealing grades and graduation premium

We now turn to the case of fully revealing grades. We assume that the value
becomes public at time ¢ = 1. Since agents are risk-neutral, this setup also
has a different interpretation. The seller may not know the exact value of his
asset and the grade is more informative than his own private information.

We argue that in this case the market is active even close to graduation.
This stands in contrast to the case of noisy grades. However, while there
is continuity in trade, the price pattern is discontinuous. Specifically, there
is a graduation premium so that the average accepted price at t = 1 — A
is strictly lower than the average price upon graduation ( ¢t = 1). This
difference is bounded away from zero when we take the limit as A — 0.

As in the previous section, we focus on the case in which the costs are
small enough so that by Proposition 1 some types graduate. We strengthen
this assumption slightly by assuming throughout this section that

Assumption 4: The cost function satisfies ¢ (1,v,0) < % (vnN—1 — Eyyv) .

Note that since costs are positive, Assumption 4 can be satisfied only if
there are at least three types, that is, N > 3. We first argue that

Lemma 5 The two highest types vy and vy_1 graduate with probability that

18 bounded away from zero.

The proof is almost identical to the proof of Proposition 1. If type vy _1
does not graduate, all worse types can mimic him. Given Assumption 4,
this would make buyers overpay on average and lead to a contradiction. We
continue by arguing that even at 1 — A there is a strictly positive probability
of trade. Formally,

Lemma 6 The probability of trade att = 1— A is bounded away from zero.

The proof uses the following reasoning: there exists a worst type at
t =1 — A. This type has no benefit from graduating and therefore trades

with certainty. Note that the bound is not uniform for all A, since when A
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gets small, the probability of trade in almost any period converges to zero.
However, the probability that there is trade in time interval ¢t € [1 —&,1)
for any € > 0 is bounded away from zero as A — 0. Next, the average price

upon graduation is not lower than any prior price:

Lemma 7 In any equilibrium, the average transaction price att =1 is not

lower than the highest price offered at any other period.

The reasoning behind this lemma is that the pool of types that graduate
is better than any earlier pool.

Based on the above short lemmas, we argue that there is a jump in the
prices upon graduation, i.e., a graduation premium. The average price at
t = 1 is strictly higher than at ¢t = 1 — A; there is a gap that is bounded
away from zero uniformly for all small A (i.e., even as A — 0 the gap does
not disappear). The intuition is that the non-trivial presence of vy_1 at
1 — A prevents buyers from making an offer that can attract the highest
type, vy . This is because the highest type’s reservation price, R(1 — A, vy),
approaches his value, vy, when A is close to zero, and any w that attracts
him attracts all lower types. As a result, the selection of types that trade

at t =1 — A is strictly worse than at t = 1.

Theorem 2 The average price upon graduation is strictly higher than the
average accepted price at t = 1 — A. This graduation premium is bounded

away from zero when we take A — 0.

Proof. Consider ¢ =1~ A. By Lemma 7, the highest possible offer is £, v.
However, since type vy_1 has a strictly positive probability of not quitting
before ¢, we conclude that F,,v is bounded away from vy. Hence, for a small
A, the highest type, vy, will reject this offer. This implies that such an offer
would result in losses to the buyers. The upper bound on offers that would

not make the buyers lose money is

wy < By, [vlv <on| < Euv
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Figure 1: Average price conditional on trade

The strict inequality comes both from conditioning and from pu; stochasti-
cally dominating p;. The right-hand side is the average price upon gradua-
tion. The left hand side is an upper bound on offered prices at t = 1 — A.
Given there is trade with positive probability (by Lemma 6), there is strict
inequality in accepted prices at t = 1 — A and ¢t = 1, even in the limit as
A—0 nm

The result is illustrated in Figure 1. It shows average price conditional
on trade in equilibrium. The example equilibrium is constructed in Section
6.1. As we can see, there is discontinuity at ¢ = 1. It is interesting to note
that for Theorem 2 we require at least three types. However, in Section
6.1 we establish directly that the discontinuity in transaction prices is the

unique outcome, even with only two types.
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6 Examples of equilibria

In this section we construct equilibria in a game with two types of sellers
for both fully revealing and noisy grades. This allows us to establish the
existence of equilibria and illustrate possible equilibrium dynamics. The
equilibria are similar, so we start with the simpler one when grades are fully

revealing.

6.1 Example with fully revealing grades

Consider a case with two types of sellers V' = {v;,vy}. For simplicity we
assume that ¢ (t,v,w) = t, and that v, — E, v > 1.17

We slightly abuse the notation and let u; denote the probability assigned
by the buyers to type vy at time t. The equilibrium strategies are as follows.
At time t = 0 buyers offer price wyg = v;. After that, buyers randomize
between w; = v; and a higher price (which is offered with probability p;).'®
The higher price is equal to the reservation price of the v, type as well as

to the current average type:
wy = Eyv=R(tvp) =vp — (1 1)

Conditional on being offered w; = v;, the high type, vy, rejects and the low
type, vy, accepts with probability ;. Conditional on being offered the higher
price both types accept with probability 1. The particular probabilities are
derived from the Bayes rule and indifference conditions (that the v; type has

to be indifferent between accepting and rejecting w; = v;, and that buyers

In words, we assume delay costs are the same for both types and are proportional
to time. We normalize the cost of graduating to one, and we assume the difference in
values relative to delay costs is large enough so that v, prefers to graduate rather than
immediately receive a price equal to average type. See the Appendix for a more general
example with different delay costs for the two types as well as for an example with a
continuum of types, which illustrates that in general the equilibria are quite complicated
and non-unique.

18 Any randomization strategies of the individual buyers that give the same distribution
of the highest price form a payoff-equivalent equilibrium. As a result, the equilibrium is
essentially unique.
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make zero profit from either offer) that yield a system of equations:

Ht+A = L (1a)
pre + (1= pe) (1 — o)
R(t,vp) =v, — (1 —1) (1b)
A= p (R(tvn) —u) (1c)
For t > 0 these probabilities are!?
1—1¢ — A
gp=1— gy = ta b (2)

v, — v t_Mt+A(1—/~Lt)’ Cop—y— (11

We prove in the Appendix that these strategies form a unique equilib-

rium:

Proposition 4 If v, — E, v > 1, for small A the proposed strategies form

the (essentially) unique sequential equilibrium.

The equilibrium dynamics can be easily calculated from the strategies.
In particular, the probability of trade at ¢ € (0,1) (conditional on reaching
this period) decreases over time:

2A
Uh—vl—<1—t—A)

Po=pi+or(1—p)(1—p) =

and the average transaction price, conditional on trade, increases over time:

R(t 1- 1- 1 1
B fufoccepl = PTG IO C O = 2 ) (1)
t

Finally, the average transaction price at t =1 — A (for all A) is

1
E [wi—1-alaccept] = 3 (vp +v1) << v

which means that even in the two-type case, average transaction prices jump

discontinuously upon graduation (recall that in equilibrium, only the vy,

T assure pt < 1 we need to assume that A is small.
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type graduates). Figure 1 shows an example of that discontinuity in the

equilibrium for v, = 10 and v; = 5 (for A — 0).

6.2 Example with noisy grades

The equilibrium we construct now is similar to the one above. The main
differences are that close to graduation there is zero probability of trade and
that both types graduate with positive probability. As before, we have two
types of sellers, V' = {wv;, v}, and the simple cost function ¢ (t,v,w) =
t. Assume there are two possible external signals: ¢ € {H,L} so that
Pr(Llv =) = Pr(H[v =) = ¢ > 3. Again, we slightly abuse notation
and denote by u; the probability assigned to type v, at time ¢.

If the buyers arrive at the last period with a prior p*, then the final
prices expected by the two types are given by Bayes rule:

- ¢y (19w

hu (o) = 4 (on = ) u*q+(1—q)(1—u*)+u*(1—Q)+Q(1_“*)]
ot (o — v 1-qq 1-qq

yr () = vt (v =) [u*q+(1—q)(1—u*)+,u*(1—q)+Q(1_H*J

In equilibrium, there exists a time t* such that in all periods t < t* there
is trade with positive probability, and for ¢ > t* (until graduation) there is
no trade. In periods t € (0,t*] buyers mix between two offers: w; = v; and
wy = E,,v. At time 0 they offer a price based on the low type, wo = .

The reservation price of the low type for ¢ < t* matches his value,
R (t,v;) = vy; for t > t*, his reservation price exceeds his value, R (t,v;) =
hys (v) — (1 —t) > v;. When offered w = v; before ¢*, this type mixes be-
tween accepting and rejecting the offer. The reservation price of the high
type for t < t*is R(t,vs) = hy (vn) — (1 —t) = E,v (equals the pay-
off he gets from rejecting all offers until graduation and the current av-
erage value). When offered this price before or at t*, he (as well as the
low type) accepts it with certainty. For ¢ > ¢*, his reservation price is
R(t,vn) = hy (vy) — (1 —t) > E,~v so that he prefers to graduate rather
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than to accept a price equal to the value of the average type.
To find t* we look for a time such that type v; is indifferent between grad-
uating and getting w = v; while type vy is indifferent between graduating

and getting a price equal to the average value. These conditions are

hys (v1) = (L =t7) = v (3)
Py (vp) — (1 = t%) = pop + (1 — p*) vy
Solving them yields p* = 1 — —ng(:(l), t* =1— (hy (v)) — v;). To ensure
that there is some trade before graduation, we assume that the prior belief
and ¢ are such that pug < p* and t* > 0.2° For now, to simplify exposition,
assume that t* is on the time grid defined by A.

The mixing is as follows. At t = 0, buyers offer price wg = v; that is
accepted by the v; type with a probability such that the posterior average
type, Eu v, is equal to R (A, vp). At t € (0,t*], buyers randomize between
the low and high offers in such a way that the v; type is indifferent between
accepting and rejecting w; = v;. The probability p; of the higher offer being
offered by at least one of the buyers is pinned down by the indifference con-
dition for type v;, equation (1c).?! At ¢ > t* buyers do not make any serious
offers (i.e., with positive probability of acceptance). Finally, denote by oy
the probability that type v; accepts w = v; at t € (0,¢*]. This probability is
defined by Bayes rule and by matching the average type with the reservation
price of the high type vy, i.e., condition (1a) and a modified (1b):

R (t, ) = hye (vp) = (1 = 1) (4)

The exception is period t*, when w = v; is rejected with certainty (so that

prpn = ppe = p*).

20For any po there exists a range of sufficiently high ¢ such that these conditions are
satisfied.

2! As before, what matters in equilibrium is only the probability with which any of the
buyers offers the high price and not what the individual mixing strategies are.

22The argument that these strategies indeed form an equilibrium is analogous to the
previous example.
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Figure 2: The c.d.f. of equilibrium trade time

As q approaches 1, the equilibrium converges to the unique equilibrium
in the fully revealing grade case we constructed above. To see this note that
p* — 1 and t* — 1 as ¢ — 1, and the conditions determining the mixing
strategies converge as well to the conditions in the previous example.

To illustrate the dynamics of trade, Figure 2 shows the c.d.f. of the
distribution of trade times in the constructed equilibrium when v, = 10,
v =5, q=0.95 u = %, (and A — 0), (the lower curve). The c.d.f. is
constant between t* =~ 0.08 and ¢ = 1 which means there is no trade in that
time range. For a comparison, we have also drawn the c.d.f. for ¢ = 0.99
(the upper line). As we can see, a more precise grade leads to more trade
before graduation.

Finally, we can modify the equilibrium for the case that t* does not
happen to be on the grid defined by A. If t* that solves (3) is not on the
grid, we define t; as the largest time on the grid less than t* and recalculate
w* to satisfy:

e (0) = (1— t2) = v (5)
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Then we find p, as a solution to:
Py (vn) = (1 —t1) = peyvn + (1 — puy) 01

These conditions guarantee that offers equal to reservation prices of the
two types yield zero profit at t; and after t; a negative profit. The last
modification is that at ¢ = t1 if wy; = v; is offered, it is accepted by the low
type with probability o, > 0. That o, is such that the posterior drops

from g, to exactly p*.

7 Productive signaling

In the model we have examined so far, any level of signaling represents a
welfare loss. This assumption is too extreme in some cases. For example,
consider the case of education signaling. A positive level of education may
improve an employee’s productivity. However, as Spence (1973, 1974) has
shown, signaling leads to over-education.

To see the implication of productive delay in our model, we examine a
simple modification of our previous example in Section 6.1. We modify this
example by interpreting it as an education model and considering the case
of productive education. We denote the productivity of type v who stays in
school until time ¢ by 7 (v,t).23 We assume that 7 (v;,t) < 7 (vp,t) for all
t>0and 0 < 7o (v,t) < ma(vp,t) — d for some d > 0 (where 7o denotes
the derivative with respect to the second argument). We also assume that
7 (v,t) is continuously differentiable and strictly concave in ¢. Denote by ¢

the efficient level of education for type v, that is**
th = arg max [ (v,t) — ct]

Note that we do not normalize the cost of delay but write it as ct. Our

assumptions imply that it is efficient for the high type to stay longer at

23 The payoff of a firm that hires a worker with productivity = at wage w is ™ — w.
?4Since that game is defined over a finite time grid, we assume that ¢ are on the grid
to avoid integer problems.
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school:
t, >t >0

As always, we normalize the timing of the external signal to one, and
assume that the grades are fully revealing. There are two cases to consider:

First, consider the case in which it is efficient for the high type, vy, to
graduate: t; > 1. In this case we argue that the equilibrium is unique and
both types choose the efficient amount of education in equilibrium. Since the
grade is fully revealing, the high type obtains a full return for his education,
and as a result, chooses the optimal amount. This implies full separation,
and therefore, the low type also obtains the efficient amount of education.

Second, suppose that it is not efficient for the high type to graduate:
t; < 1. We claim that in this case the low type will always choose either the
efficient or higher-than-efficient level of education (the second with positive
probability) and the high type will mix between undereducation and over-
education. The intuition is that, with positive probability, trade takes place
before t = 1 at a price equal to average productivity . Therefore the high
type is sometimes pooled with the low type and is paid according to the av-
erage value. This implies less-than-full return on investment, and therefore,
possible undereducation. In the Appendix, we show formally that the low
type is never undereducated and the high type can be either undereducated

or over-educated:

Proposition 5 If ¢ and A are sufficiently small, then in equilibrium, the
high type trades with positive probability both at t < t; and at t > t;. The
low type always trades at t > t.

8 Conclusions

In this paper we have shown that an external release of information has
strong implications for the resulting trade patterns. It can help agents com-
mit to costly signaling even though, in a dynamic setup, such commitment
is hard to achieve. Moreover, it allows for signaling even when the direct

delay costs are the same for all types. The resulting trade pattern has some
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discontinuity before the period when information arrives. When the public
signal is fully informative, there is a discontinuity in prices and trade is con-
tinuous. When the signal is noisy, there is a market breakdown close to the
announcement as the adverse selection becomes more severe and a lemons
market develops endogenously.

The model we examine is a one-shot game in the sense that the release
of public information occurs only once. Clearly, there are many interesting
applications in which the signals arrive in a more complicated fashion. We
plan to analyze such markets in future research; however, we think that the
current results allow us to provide some intuition already. First, in some
markets, the release of public information is gradual; signals or grades are
revealed at some frequency. In this case we expect behavior similar to what
we derived in every sub-interval. A more challenging setup is the case in
which the timing of the release of public information is not perfectly known
to all parties. Consider for example a setup in which the timing is random.
In such a setup one can show that some of our basic structure carries over.
For example, 1) the seller follows a reservation-price strategy, and 2) if every
period a signal arrives with positive probability, then Proposition 2 holds
even if ¢ (t,v,w) is constant in v. Similarly, if the signal is noisy, there will
be no trade before periods with a high probability of a signal arriving.

One important case is that of a Poisson distribution. Conditional on non-
arrival of a signal, agents have a stationary belief regarding the distribution
of future arrival. Under this assumption (and assuming costs are the same
for all types of sellers) one can show that there exists a stationary equilibrium
in which both types behave the same way after the initial period. Therefore,
the average type and transaction prices remain constant over time.

Another important direction of future research is to allow the good for
sale to be divisible. The classic paper in this context is Leland and Pyle
(1977). It shows that in a static model the seller can signal a high value by
reducing the quantity he offers for sale. If the value is not realized immedi-
ately, then after the first sale the buyers will have incentives to approach the
seller to buy additional units. That in turn may disturb the equilibrium,

just like the lack of commitment to stay in school disturbs the education
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signaling.?’

Finally, we have assumed that the offers are private, and for tractability,
we also assumed that each buyer makes only one offer in the game. Making
the offer public is unlikely to increase the payoffs of the buyers in our game:
if rejecting an offer signals high value, then the seller is more likely to reject
a public offer than a private one. Therefore, buyers have incentives to make
their offers private.

Allowing each buyer to make more than one offer would be more in-
teresting, but extending the model makes it hard to solve. The assump-
tion that buyers are replaced after every period (borrowed from Swinkels
(1999)) greatly simplifies the analysis since there is no information asym-
metry among buyers. Private information may arise because buyers can use
the private history of rejected offers. This would complicate significantly the
equilibrium characterization. For example, the seller may no longer follow a
reservation-price strategy, buyers may be able to extract information rents,
and it will not be sufficient to check single-period deviations to verify that
proposed strategies form an equilibrium. Still, we believe that the intuition
developed here carries over, especially in the fully revealing case. For ex-
ample, there still would be some signaling in any equilibrium and the high
types would graduate. Also, Theorem 2 is likely to hold, since one period
before graduation, the seller would follow a reservation-price strategy, even
if buyers used private histories.

Admittedly, we do not capture all important features of the markets
that motivate this paper, like the role of public offers, the possibility of
buyers making multiple offers, divisibility of the asset, partial contractibility
of the external signal, or the seller’s ability to influence the timing and
realization of the signal. We focus on the role of commitment and the
resulting trade patterns. As such, this paper should be considered a step
towards the understanding of dynamic signaling. Much more research is

needed for this understanding to be complete.

25In some markets this problem is solved by restricting additional sales for a specified
period. For example, in many IPOs the original owners are not allowed to sell shares
during the six-month period after the offering.
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9 Appendix

Proof of Lemma 1. The fact that R (¢,v) is non-decreasing (in the second
parameter) follows as if v/ > v then v’ can imitate v and get at least the same
expected payoff. If % < 0 or v graduates with positive probability,
then imitating v yields a strictly higher payoff for v’ (as either the incremen-
tal costs of delay are strictly lower, or upon graduation the expected prices

are strictly higher, for v than for v). m

Proof of Proposition 1. Suppose by contradiction that type © never
graduates. First consider the case of a fully revealing grade. Type © has
the option to graduate and hence his equilibrium payoff has to be at least
v—c(1,v,0), so any price w that he accepts has to satisfy w — ¢ (t,v,w) >
v —c(1,0,0). Given that v never graduates, any type v can mimic him and

earn that price for a payoff of
w—c(t,v,w) >0 —c(1,0,0) + c(t,0,w) — c(t,v,w) >0 —2¢(1,v,0)

Therefore, the payoffs of all types have to be at least v—2¢ (1, v, ), which is a
lower bound on the average price. However, we assumed that v—2¢ (1,v,v) >
E,,v. This implies that on average buyers lose money: a contradiction.

In the case of a noisy grade, we note that Corollary 1 implies that if
the highest type never graduates, then no type graduates. Hence, p; is an
off-equilibrium belief. "Divinity" implies that p; dominates pg in the first
order stochastic sense, hence E,,v > E,v.20 The claim follows a similar
argument to the first case since the highest type expects a better than av-
erage grade, and hence the expected price, conditional on him graduating,
satisfies hy, (0) > E, v.

Finally, the probability that the highest type graduates is bounded away
from zero, because if it is very close to zero, then all lower types can mimic

him and obtain 1—2¢ (1, v, ¥) with a probability arbitrarily close to one. This

26The refinement argument is as follows. As the cost of waiting until ¢t = 1 is weakly
decreasing in v and the distribution of grades is improving in v, for any off-equilibrium
beliefs that make a weaker type willing to wait, all higher types strictly prefer to wait.
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still implies a contradiction, as bidders would still lose money on average. m

Proof of Proposition 2. The first two parts follow the same line of rea-
soning as Swinkels (1999). Part (i) is simply implied by the buyers following
a reservation-price strategy that is strictly increasing in type. Hence, if a
type v weakly prefers to accept an offer, then any lower type strictly prefers
to accept it and any higher type strictly prefers to decline it.

The proof of part (ii) is the same as Lemma 2.3 in Swinkels and we outline
it below. Suppose buyer 2 makes a profit () > 0. He makes this profit with
any price that is in support of his (mixing) strategy. Let w be the infimum
over buyer 2’s offers. Buyer 1 can then make a profit by offering w+¢ and
hence, buyer 1 must also make a positive profit in equilibrium. Since profits
are bounded, every equilibrium offer would have to be accepted with posi-
tive probability. That implies that both buyers offer w with strictly positive
probability. However, this implies a positive probability of a tie and hence,
there is a profitable deviation, which is a contradiction. The second part of
this claim follows because if an offer is accepted by more than one type and
the highest accepting type is mixing, then by increasing the offer by ¢, the
buyer would obtain a strictly better selection of types.

To see why (iii) holds, assume that there is a positive probability of trade
at ¢t but there is no trade at t — A. Let w* denote the highest offer made
(and accepted) with positive probability at time ¢, and ¢* = ¢ (t, 0, w*) —
c(t—A,v,w*). Note that ¢* is a lower bound on the waiting cost from
t — A to t, assuming that the current offer is w* and the offer accepted at ¢
is w*. Consider now the strategy of a buyer to offer price w* — ¢*/2 at time
t — A. All the seller types that in equilibrium accept w* at time t will accept
w* — ¢*/2 at time ¢t — A, and possibly even some better types will as well.
As the distribution of types at t — A is the same as at ¢ (and w* yields zero
expected profit), this strategy results in positive profit for the buyer; this
contradicts part (ii).

To establish part (iv), we first note that if no type graduates with positive
probability, then the trade has to be with probability 1 at time ¢ = 0. The

reasoning follows Lemma 2.4 and Theorem 2.5 in Swinkels (1999) so we just
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sketch the argument. Denote by 7 > 0 the last period (before graduation)
that is reached with positive probability. In that period, trade takes place
with certainty at F, v. For a sufficiently small A we argue that p; = pr_a.
Suppose the opposite, so that with positive probability there is trade at time
7— A that does not involve type ©. The highest price the buyers pay in such
a trade is £, _, [vlv < 9]. But the reservation price for a small A for any
type v is close to £, v (as the additional delay cost is negligible). So there
is no possibility of such a trade without the buyers losing money. Second, if
lr—A = 47, then the reservation prices at time 7 — A are strictly less than at
7 (because of the small cost of delay) so there would be trade with probability
1 at time 7 — A, which contradicts the definition of 7. Finally, it implies that
if type v does not graduate with positive probability, then (if A is small
enough) in equilibrium his payoff is E,,v. As we argued in Proposition 1,
graduating yields an expected payoff of at least hy, () — c¢(1,7,0), so it is

a profitable deviation. m

Proof of Lemma 2. We prove the lemma using the direct revelation
mechanism approach. Let U (v,v") denote the utility of an agent of type v

who pretends to be v/, that is
U (v,v') = Fw— Ec (7‘ (U') , U, w)

where w is the price, 7 (v') is the time that type v’ trades, and Fe (7 (v) , v, w)
is the cost of signaling. This implies that U (v) = U (v,v) . In a separating
equilibrium, type v accepts a price that matches his type, that is, w = v.
So although in general w is a function of both v and v’, in a separating
equilibrium it depends on v’ only.?”

This implies that the lowest type has no incentive to wait and quits at

time ¢ = 0. Incentive constraints imply

U(v,v) > U (v,v) = U (v,0) + [Ec(7 (v) ,v,0) — Ec(7 (v),v,0)]

2Tw depends on v indirectly as the mechanism can assign the price conditional on the
realization of the grade, which is affiliated with v.
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or that

U (v,v) = U (v,0) > Ec (7 (v),v,v) — Ec(7 (v) ,v,v)

v—v v—u

Switching the roles of v and v, we get the following:

U (v,v) = U (v,0) < Ec(1(v),v,v) — Ec(1 (v),v,v)

v—u v—u

This establishes differentiability of U (v) since ¢ is assumed to be contin-
uously differentiable. Using the envelope condition we get the following

derivative: g
TUW= |

2 dc (T (v’),fu,w)}

ov

v'=v=w=yv

This derivative equals zero, as ¢(0,v,w) = 0 for all v and w and
T(V)yy — 0 as.

(The last claim holds since (i) %’f’”) > a > 0 and (ii) type v gets price

w = v, so it must be that 7 (v) < ==.)m

Proof of Lemma 3. Suppose the opposite. Then for any €; > 0 we can
find a A such that the probability of vy_1 graduating, conditional on his
type, is less than €;. By Lemma 1 the probability that any type below vy _1
graduates, conditional on his type, is also smaller than ¢;. Hence, for any
g2 > 0 we can find a A such that hy, (v) > © — eo for all v. This holds
since Proposition 1 implies that type v graduates with positive probability,
uniformly bounded away from zero. As a result, for any €3 > 0 there exists

a A such that in equilibrium all types earn at least
v—c(l,v,0) —e3

By Assumption 3, if €3 is small enough, it implies that buyers lose money

on average. This is a contradiction. m

Proof of Lemma 4. We take v* as given and let k (g) = E[v|g,v < v*].
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By Lemma 3, the probability that some types below v graduate is bounded
away from zero. Hence, we can find an 7 > 0 so that k (g) +n < w/™ (g).

The proof follows using
B by (v) [v < 0] = B [w ™! (g) |v < "]

and
Efvjv <o =E[E|g,v <v']lv <v] = Efk(g)[v < v']

Proof of Theorem 1. Denote by ¢ the last period before graduation where

there is some positive probability of trade, that is
t = max {t < 1|there is positive probability of trade at ¢}

Since we assume time to be discrete, this is well defined. Our goal is to show
that even when A goes to zero, t is bounded away from one. Denote by v*
the highest type that trades with positive probability at time ¢.

At t, the reservation prices are strictly increasing in type since upon
rejection the seller graduates with certainty. As a result, when there is
trade, buyers attract all types v < v* by offering the reservation price of
type v*, R(t,v*). We argue that if ¢ would be too close to one, then any
such offer results in losses to the buyer who makes it; this is a contradiction.

The reservation price of type v* is
R(8,0%) = hyy (07) = (¢ (1,07, by (V7)) = ¢ (t,07, R (¢, 07)))
From Lemma 8 (which we prove below) we can bound the reservation price:

R(F,0) > hyy (v*) = M(1 1) (6)

Suppose first that v* < 0. Lemma 4 implies that the average price upon

graduation for types not higher than v* is strictly higher than their average

34



value:
By, [hy, (0) [v <™ > By, oo < o'+

for some n > 0. Affiliation implies that upon graduation type v* expects a

price that is even higher:
by (6°) > Epy Iy (0) o < 0]
Combining these inequalities with the bound (6), we obtain
R (6,v7) > By [olo < o'+ = M(1-1) (7)

Hence, the result follows when we set t* > 1 — K% as for smaller ¢ a trade
would result in buyers losing money.
Similarly, consider v* = v. Now, because the distribution p; is bounded

away from being degenerate,
huy (V°) > E [y by, (0) [0 S 0"+ = Ey, [olo <o+
which implies (7), and hence, again t* > 1 — . m
Lemma 8 Suppose that after a rejection at time t, there is no trade until
graduation. Then there exists M such that R (t,v*) > hy, (v*) — M(1 —t).

Proof. Denote z = R (t*,v*) and y = hy, (v*). Upon rejecting the current

offer, the seller graduates with certainty, so his reservation price x solves
y—z—(c(l,v,y) —c(t",v",x)) =0 (8)

Note that the left hand side is (continuously) strictly decreasing in x, and

at © =y it is equal to ¢ (1,v,y) —c(t,v,x) € (=6 (1 —t),—a (1 —t)), where
Oc(t,v,w)
ot

the equation has a unique solution which is strictly less than y. Also by

« and 6 are bounds on § > > « from Assumption 1. Therefore

Assumption 1, w — ¢(t,v,w) is strictly increasing: W > ¢ > 0.

Therefore, for x <y — % (1 —t) the left hand side of (8) is positive. Hence,
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the unique solution satisfies the following:

huy (v°) = R (87, 0%) = hyy (07) =

Proof of Lemma 5. The proof is identical to that of Proposition 1:
If type vy_1 does not graduate, then he must obtain at least vy_1 —
c¢(l,vny-1,un-1) . But then every lower type has to obtain at least vy_1 —
c(1,vn-1,uvn-1) — c(1,v,0), which, using the assumption, would make the
buyers lose money on average. This is a contradiction. If type vy_1 gradu-
ates, then type vy graduates as well. Finally, note that even as A — 0, the
probability of graduation by type vy_1 is strictly higher than 0. m

Proof of Lemma 6. At t =1 — A, for any type v, R (t,v) < v. Consider
the lowest type that with some probability has not quit yet, that is, v* =
min {v|p (v) > 0}. We argue that the lowest price offered at ¢ is not lower
than v*. If the highest price is strictly less than v* with positive probability,
then there exists a price below v* that would be accepted by v* and result
in a profit for the buyers. Therefore, by the standard Bertrand-competition

argument, prices are always at least v* and type v* trades with certainty. m

Proof of Lemma 7. Denote by W; the average price offered at t = 1. It is

equal to the average value of types that graduate
W1 = EMIU

By Lemma 5, at t = 1 — A the beliefs are non-degenerate, so at any ¢ < 1
they are also non-degenerate. By Corollary 1, ;3 dominates p¢. In order for

the buyers not to lose money, the highest offer at ¢ < 1 can be
wy < Eyv < Eyv=W;
Note that, in case R (t,v) is constant over some types (that never grad-
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uate), an offer can attract only the best type in this pool. However, as the
worst type that graduates (with positive probability) is strictly better than
any type that does not, the claim still holds. m

Proof of Proposition 4. The following lemma helps in constructing the

equilibrium:

Lemma 9 In equilibrium only prices equal to v; or E v are accepted with

positive probability.

Using argument like in Proposition 1 we can show that type vp, graduates
with positive probability in any equilibrium. Therefore, R (¢,v;) < R (t,vp) .
From that it can be easily argued that buyers make zero profits in any
equilibrium.

Now, suppose that some price w other than the ones postulated is ac-
cepted with positive probability. Clearly, any price w < v if accepted yields
positive profit, a contradiction. Any price w > Fyv if accepted yields nega-
tive profit, again a contradiction. We are only left with prices w € (v, Eyv).
Take any w and suppose it yields zero profit. That implies w = R (¢, vp,) as
type vy, is not accepting with probability 1. But then offering w + ¢ makes
the price accepted at least as often and yields a positive expected profit, as
type vy will accept this price with probability 1, a contradiction. l

Now we derive the equilibrium probabilities postulated in (2) . First, we

have the Bayes rule:

Mt
e+ (1 — ) (1 — o)

M+ A =

Second, the buyers are indifferent between offering v; and the higher price,

so as we argued in the lemma above for any ¢ > 0,
E,v=v,—(1-1)

Third, the v; type seller is indifferent between accepting v; now and waiting
for another period:
A= p (Eyv—1)
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The boundary condition is g1 = 1 so that 6;_A = 1. One can verify that
(2) are the unique solutions to these equations.

Clearly the proposed strategies form an equilibrium for small A: given
the strategies of the buyers, the type v; is indifferent in every period (other
than 1 —A) between accepting and rejecting w = vy, so the randomization is
optimal. Also, given the buyers’ strategy the reservation price of the vy, type
is R (t,vp) = vp — (1 —t), so indeed when the higher price is offered, both
types are willing to accept it.?® Given the seller’s strategy, the two prices
vy and vy, — (1 — t) yield zero expected profits and any other price does not
yield positive profits, so all buyers are also playing a best response.

To show uniqueness we now construct the equilibrium starting from the
last period and move backwards and argue that in every step the equilibrium
is essentially unique. In period t = 1, after the signal g arrives, prices are
w = v. Therefore, the reservation prices at timet =1—A are R(1 — A,v) =
v—A. If B, ,v < R(1—A,vy) then the unique equilibrium outcome
is for the buyers to offer w = wv; and type v; accept and type vy reject
and graduate. If £, ,v > R(1— A, vy), then the unique equilibrium is
for the buyers to offer w = E,, ,v and both types to accept. Finally,
if F1_av = R(1—A,vp), then the buyers can mix between w = v; and
w = E,, ,v.In any such equilibrium we need to have that if the highest
offer is v; then the type v; accepts and if it is E,; ,v then both types accept
(we need type vy, to accept with probability 1 as otherwise the buyers would
be losing money). So in this case there can be many equilibria that differ
with the probability of offering F,,, ,v.

Now consider period ¢ = 1 — 2A and assume E,,v < vp —2A. We argue
that the equilibrium strategies in that period have to be such that next
period E,, ,v = R(1—A,v). Suppose E,, v < R(1—A,v;). Then
R(1—2A,v;) = v — A and hence type v; accepts for sure at time 1 — 2A,
inducing E,, v = vy, a contradiction. Suppose E,, v > R(1 — A, vy).
Then next period price will be higher than v, — A, while the type v; accepts
this period price v; with positive probability. Clearly, for small A, type v; is

*8We need A to be small, to guarantee that the probabilities p; defined in (2) satisfy
pt € [0, ].] .
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strictly better off rejecting v, making E,, v = E,, ,,v < R(1—A,uvy),
a contradiction. So if E,, ,,v < v, — 2A the unique equilibrium is for the
buyers to offer w = v; and the seller type v; accept with a probability such
that £,, ,v=R(1— A, uv). Next period the buyers randomize between v;
and R (1 — A,vp). As we mentioned in the text, this randomization creates
a trivial multiplicity of equilibria: for the payoffs of the seller only the
highest price matters, so any randomization strategies by the buyers that
give the same probability distribution of the highest price induce the same
best responses by the seller. Therefore, we will focus on the distribution of
the highest price.

Denote by p; the probability that the highest price at time ¢ is equal to
E,,v. For the type v; to be indifferent at time 1 — 2A we need:

A= (ElilfAv - Ul) P1-A

If B, ,,v > vp —2A the unique equilibrium is for buyers to offer
w = E,, _,,v and both types to accept. If F,,, ,,v = R(1 —2A,vp) then
we have a multiplicity of equilibria, in which in period 1 — 2A the buyers
randomize in any way between v; and E,, ,,v. The higher offer ends the
game. Conditional on offer v; the game proceeds the same way as in case
Eu av < R(1—-2A,vp).

Now consider any period ¢t <1 —3A. If E, v < v, — (1 —t) then by in-
duction we argue that the strategies have to satisfy EHH_AU =R(t+ A,vp).
Suppose not.

First, suppose E,, ,v > R(t+ A,v;). Then next period buyers offer

t+A

Wip A = EuHAv and both types accept. That implies:

R(t,v)=F

(AUN v
Because vy, type always has the option to graduate, we have

E

[SEWN

’U>R(t+A,’Uh)Z’Uh—(1—(t+A))
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Combining:
R(t,v) >vp — 1>

Therefore v; would reject w; = v; for sure and so £, \v = E, v < R(t+ A, vp),

t+A
a contradiction.
v < R(t+ A,vp). It implies that the next period

buyers offer w1 A = v;. But then R (t,v;) = v;— A and given the competition

Second, consider E,, .,
between buyers, type v; would for sure accept an offer at time ¢, making
E

Ht+A
By induction we see also that in equilibrium as long as E,v < v, —

(1 —1t), then in all future periods t' > t, R(t',vp) = v, — (1 = t') = B, v.

Combining, we get that if at ¢t = 0, Ej, v < v, — 1, then the strategies

v = vy, a contradiction.

have to be such that in any period ¢ > 0, E,,v = v, — (1 —¢). Also, in any
period t > 0 the buyers have to randomize between prices v; and R (¢,vp,) in
a way that makes type v; indifferent between accepting and rejecting w = v;
in the previous period. Finally, the seller if offered w = R (¢, v) accepts and
if offered w = v; the type vy, rejects and type v; accepts with such probability
that the average value evolves exactly the same way as R (t,vp,). These are
exactly the conditions of the constructed equilibrium. =

Proof of Proposition 5. We first note a few properties of any equilibrium
that still hold in the modified example: (i) the seller follows a reservation-
price strategy, (ii) if ¢ is small, then the high type graduates with positive
probability, (iii) the low type reaches period ¢ = 1 — A with positive prob-
ability, and (iv) in any equilibrium, trade takes place only at w! = 7 (v;, 1)
or at w} = puw (vp,t) + (1 — pe) 7 (vy,t) . The proofs are analogous to the
proofs in the unproductive signaling model. Based on the same reasoning

as in Proposition 1, a sufficient condition on ¢ for (ii) to hold is

2 — o
1 — po

¢ <7T(Uh,1)—7T(Ul,1)

We can also conclude that there is no trade until ¢ since it is commonly

known that it is inefficient to trade until then. Formally, at any time £, type

vy obtains a gross payoff at least 7 (v;,t) (otherwise he would trade, violating
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(iii)). Therefore, if only this type was to trade, at time ¢ < ¢; the firms would
have to offer him more than m (v;,¢) and would lose money. Also, there
cannot be trade with both types, since the reservation price of the vy type
in any period is at least as high as current average productivity (otherwise
this type would trade, violating (ii)). As the average productivity grows
faster than at rate c before ¢}, the reservation price of type vy, is strictly
above the average productivity, and again trade would imply a negative
payoff for the firms.

The only part left to show is that the high type underinvests with pos-
itive probability. First, one can show that for ¢t € [t}, 1], the game has a
unique outcome; the argument is the same as for the unproductive delay
(the argument is the same as in Proposition 4 for non-productive delay).
Firms randomize between w}* and w} with probabilities such that the low
type is indifferent between accepting and rejecting wi. When w! is offered,
the low type accepts it with positive probability and the high type rejects it.
If wf is offered, both types accept. The mixing probabilities are such that
the average type increases over time to stay equal to the reservation price

of the high type, which is equal to
R (vp,t) =7 (vp, 1) — (1 —1t)c

Now consider period ¢t = t; — A. We claim that for a small A it must be
the case that f1x A < pr. The reservation price of the high type is

R (vp,t) = R (v, t],) —Ac = pysam (vp, t + A)+(1 — ) m (v, t + A)—Ac
If gy = pern, then for a small A the average productivity is
w7 (v, t) + (L — pe) w (v, t) > R (vp, t)

(This is true since ma (vp,t) converges continuously to ¢ as ¢t converges to
ty, so that 7 (vp,t) grows approximately at a rate ¢, while 7 (v;,t) grows at
a strictly lower rate and u; < 1.) As a result, there would be trade at w},

contradicting (ii). Therefore, in any equilibrium the beliefs have to satisfy
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Her —A < bty -

Now, suppose that the probability that type v;, trades at t = t; — A
is zero. Consider period ¢t = ¢} — 2A and type v;. Because next period
this type accepts wff 4+ When offered (and higher prices are not offered), the

reservation price of this type is
R (u,t) < w,lf+A — Ac < m (v, t)

where the last inequality holds for a small A. Hence, this type would cer-
tainly trade at ¢, contradicting point (iii) above. Therefore, it must be the
case that type v, trades with positive probability at time ¢t = t; — A, that

is, he underinvests with positive probability. m

9.1 Additional examples

We now provide two additional examples. First, we generalize the simple
game in Section 6.1 to allow for ¢(vy) < ¢(v;). Second, we construct an
equilibrium in a three-period model with a continuum of types and argue

that it is in general not unique.

General binary example Suppose that like in Section 6.1 there are two
types V' = {uv;, v} and assume that the costs are ¢ (t,v,w) = t¢(v), with
0 <c(vy) <c(u) <wvp — Euyv. The grade is fully revealing.

In this modified game the following strategies form an equilibrium, sim-
ilar to the equilibrium described in Section 6.1: at time 0 both buyers offer
w! = v; and the low type seller accepts with a positive probability (and the
high type rejects). After the initial period the buyers randomize between
w! and w = pvy + (1 — ) v;. The probability of the highest wage offered
being w} is p;. When w; is offered the low type mixes between accepting
and rejecting, while the high types rejects. When w is offered, both types
accept.

Denote the probability of type v; accepting offer w' by oy. It is such that

the average type, wl after the initial period equals the reservation price of
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the vy, type, which in turn equals the payoff from graduating:
wl =, — (1 —1t)&(vp) fort >0

The mixing probabilities by the buyers are such that the v; type is indeed

indifferent between accepting and rejecting v; :
AC () = py (wf - wl)

Finally, the posterior evolves according to the Bayes rule:

i
pe + (1= pe) (1 = oy)

TR

The boundary condition is g3 = 1 and hence 1A = 1. These three condi-

tions have a unique solution

(1 —t)c(vn) c(v) A
ort>0:py on — ) » Pt o= =) (A=)
1—
fort<1:at:1_w
pa (1 — pe)

Furthermore, following arguments like in Proposition 4 one can show
that these strategies form the unique equilibrium for small A (of course, as
before, up to the different randomizations of the buyers that yield the same
distribution of the highest price).

As we focus on a model in which the seller has little commitment, we
can look at the limit as A — 0. For that limit we need to consider limits
of & and £ as the per-period probabilities converge to zero (for t € (0,1)).

Taking the limit A — 0 of the equilibrium strategies and beliefs we obtain:
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(1 —t)c(vn)

pe=1-—
Vp — U
gt /.j’t _ Up — Uy
A (I—p)pe  (I—=1)(on —vr—c(vp) (1—1t))
Pt c(w)

—

A v =y —c(vn)(1—¢)

Additionally, at ¢ = 0 the probability of acceptance of w = v; by the v; type,
09, is such that given pg we get poyr =1 — %

Example with continuum of types We now turn to construction of an
equilibrium in a model with a continuum of types. It turns out that these
equilibria are quite complicated, so we focus on an example of a three-period
game (A = %) with costs ¢ (v, w,t) = ¢t = 0.2t (so that the cost per period
is 0.1) and the types distributed uniformly over a range [1,2]. The grade is
fully revealing. We abuse the notation and talk about periods 1,2,3 that
.3, 1.

Denote by F' the posterior belief that the firms have in the beginning of

denote times 0

period 2. Before we construct an equilibrium we make a few claims about

every equilibrium:

1. In any equilibrium all periods are reached with positive probability.

This is a standard claim, like in Proposition 1.

2. In period 2 the buyers cannot play a pure strategy. Suppose that they
do and the highest price is wsy. First, it has to be the case that in
equilibrium some types accept wg : otherwise offering wh = inf{v :
F(v) > 0} —g earns strictly positive profits. Second, consider wa. The
types that accept it are v < wy+0.1. For all those types the reservation
price at period 1 is wo—0.1 and for all higher types it is v—0.2. Offering
w1 = wg — 0.1 in the first period the buyers attract average type of
HL;O'I. For that to be not profitable (otherwise nobody would accept
way) we get wy > 1.3. If wy > 1.3 then any price loses money in the first
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period, so F' is uniform [0, 1] and therefore the unique equilibrium in
the sub-game starting in the second period is for both buyers to offer
wo = 1.1, a contradiction.

Finally, consider we = 1.3 Now, in the first period any price below 1.2
does not attract any seller. Any price above 1.2 loses money. So the
only candidate for price in period 1 is w; = 1.2. For that to be an
equilibrium the average type accepting w; has to be at least 1.2. But
that leads to the final contradiction: The average type accepting price
1.3 can be at most as high as 1.2, so the buyers would lose money in

the second period.

. The posterior belief F cannot be a truncated uniform. Suppose it is,
with the lowest type that the buyers assign positive density to denoted
by v. Then the unique equilibrium in the second stage is for the buyers
to offer price we = v + 0.1. But that contradicts claim 2. (Directly,
the average price in period 1 would have to be w; = %, but then

all types below v would prefer to wait for wo = v+ 0.1 as v > 152.

Of course v = 1 does not work either, as then the buyers could make

profit by offering w; = 1.1 — € in the first period).

. In the first period the buyers cannot play a pure strategy. This claim is
the main difference from the equilibria in the two-type case: the claims
1 and 2 held there as well and claim 3 did not have an analogue. But
this claim states that unlike the two-type game, with continuum of
types the buyers need to randomize already in the first period.

The proof goes as follows: Denote the price in period 1 by w;. Clearly
in equilibrium it has to be equal to the reservation price for at least one
type. If it is equal to the reservation price of exactly one type, then
we get F' being a truncated uniform, which leads to a contradiction
by claim 3. Suppose that there is a mass of types for which w is equal
to the reservation price. These types would exit with probability 1
in period 2 if they stayed till then (otherwise their reservation prices
would be strictly increasing in type). So it has to be a mass of types

in a range [1,v]. Clearly, by offering w; the buyers have to obtain at
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least average selection of those types (otherwise they could deviate to
w1 + € and get strictly higher profits). Suppose that all those types
accept. Then F' is a truncated uniform, a contradiction.

Now consider type v. Given that this is the highest type that accepts
at time 2 with probability 1, with positive probability there must be
trade at w§® = v — 0.1. Now consider if this price can indeed be
offered in equilibrium. We can write the expected type that accepts

price wy > W at time 2 as:

5 flgf (v) vdv + fvw2+0'1 —1_22(}2) vdv
(vws) = F (wz +0.1)

Taking the derivative with respect to we at wi® get:

OF (’U|?,U2 = wIQnin) . %;Q) (2) 1
Sws ~ T F(u)

Therefore, increasing price slightly above wénin gives strictly higher

profits. That contradicts trade at w§™ in equilibrium.

Summing up, we need to have the buyers randomizing in every period
and the posterior F' not to be a truncated uniform distribution. Once we
know that the equilibrium cannot be ‘simple’ we are ready to construct an
example of an equilibrium.

Suppose that at period 2 buyers randomize with equal probabilities be-
tween prices wo € {1.1,1.3} (i.e. that the probability that the highest price

is 1.3 is %) Then the reservation prices at time 0 are:

R (0,v) = 1.1 for types v € [1,1.2]

1 1 1
= 5(1.3) +3 (v=0.1)-01= 3 (v+1) for types v € [1.2,1.4]

= v — 0.2 for types v € [1.4,2]

That implies that a price w; = 1.1 if accepted by average quality of types
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with R (v) = 1.1 gives zero profit. Similarly, any w; € (1.1, 1.2] gives zero
profit. Finally, any price above 1.2 loses money. Therefore, we can have
the buyers mix in period 1 with any probabilities over prices in the range
[1.1,1.2] and if they offer w = 1.1 we can have the mass of types v € [1.1,1.2]
randomize between accepting and rejecting.

In this way we can construct F' (v) that has density that is constant over
a range [1,1.2], increasing over the range [1.2,1.4] and then constant (and
higher than for any smaller v) for v € [1.4,2].

Now, the key is to consider the behavior at period 2 : in particular we
need to verify if given F'(v) it is indeed optimal for the buyers to randomize
between the postulated prices. The crucial element of the analysis is the
function describing the average type accepting offer ws given the posterior

F
v

wo—+0.1

As F'(v) is uniform on [1.1.2] we have Er (v|wy = 1.1) = 1.1 so the price
1.1 makes zero profit. We also have to check that the posterior F' satisfies:

EF (v[wg) S w9

for all we > 1.1 and
EF (U”wg = 1.3) =1.3

It turns out that given the flexibility we have in F, we can construct F' that

satisfies these two conditions. An example is:

f)=aforv<1.2
12\
f(v)zﬁ<v—m> + a for v e (1.2,1.3)

f () = (av®+bv+c) forve (1.3,1.4)

1 7 3
f(?))—2—0’}/+%,6—2—5+01f01'11>14
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with

1749 6630 77322 1082508 16026

pr— pr— p— b_ pr—
180" 0~ T390 ¢ 739 3695 ° | 11135

a

Of course, there are many other examples, and they correspond to different

average prices in the first period.
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