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ABSTRACT

We show how auction theory can be used in the analysis of order statistics. In

particular, we use a thought experiment in which we allocate signals to bidders who

compete in a k+ 1-price auction. We use recent results about information aggregation

in auction with many bidders to show that the amount of information in the k-th order

statistics is increasing in k in the limit when the number of signals increases and k is

fixed. Still, even the first-order statistic contains non-trivial information.

1We would like to thank George Shanthikumar, Matt Jackson and Peter DeMarzo for helpful
comments. Contact information: Graduate School of Business, Stanford, CA 94305-5015 E-mail:
ikremer@stanford.edu, andy@gsb.stanford.edu.
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1 Introduction

Recently there has been a growing interest in the properties of common value auctions

with a large number of bidders. This continues a classic line of research that examines

markets with many strategic agents. Such analysis provides insights to the way prices

aggregate private information and hence provides foundation to the concept of Rational

Expectation Equilibrium (REE).

The properties of prices in these auctions are strongly related to the statistical

properties of order statistics. For example, the price in a k + 1-price auction is a

function of the k+1 order statistic. Hence, it is no surprise that results from statistics

about order statistics are the basis to much of the auction literature on this topic.

In this paper we show how one can use this link in the opposite direction. We obtain

results about the statistical properties of order statistics using results about information

aggregation in auctions with many bidders. In particular we show how the results from

Milgrom (1981), Pesendorfer and Swinkels (1997), Kremer (2000) and Jackson and

Kremer (2004) can be used for that purpose. To the best of our knowledge our results

were not previously known in statistics.

We derive new results about the informativeness of extreme order statistics when

there are many signals. In particular, we consider a case when there are n signals about

an unknown random variable V which can be thought of as the state of nature; the

signals are distributed i.i.d. conditional on V . The general question is how much we can

infer about the realization of V from observing different order statistics. In particular,

we examine the information contained in order statistics in the limit as n grows to

infinity.

We first show that under fairly standard assumptions, all order statistics are in-

formative about V , even in the limit. That is, the expected value of V conditional

on observing a k-th order statistic (for any k) does not collapse to the unconditional

average value of V as n grows large. To the contrary, even in the limit there is a strict

positive relationship between that conditional expectation and the actually realized

value.

Second, we rank the information content of order statistics in the limit as n grows

to infinity. We show that in the limit k-th order statistic is more informative than a

k + 1 order statistic, for any k. We provide formal definitions below, but in words,

more informative means that if we want to infer the value of V , once we condition
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our inference on the realization of the k + 1 order statistic, a further conditioning on

the k-th order statistic does not improve the estimate any further (we prove that the

ranking is strict, in the sense that once we condition on the k-th order statistic, we can

learn more from the k + 1 order).

Such results are of general statistical interest (apart of economics) as is evident by

the large volume of research devoted to this topic (for example, Herbert (1981)). One

motivation comes from the analysis of extreme or catastrophic events. For a simple

example in which our analysis may be useful, suppose that a new engineering solution

is incorporated in many bridges. The effect of this solution on stability of the bridges

is not completely known, especially in the event of extreme weather conditions. Over

time, some of the bridges show visible signs of structural damage. The question becomes

how much can we infer about the invisible damage from these extreme statistics.

In econometrics, order statistics are especially important when we work with cen-

sored data. For example, in auctions we may see only the winning bids or price. The

question is then how much we can infer from such data about bidders’ preferences.

Similarly, data on discrete decisions/selections present us only with a selection of the

first-order (or a few more) statistic from a large set of alternatives. The question is

then how much we can infer about the underlying state of the world from such censored

data.

Our results may be also useful in examining agents who try to estimate a demand

function. Consider a seller who wants to figure out the underlying value of a new

product. He considers selling a few samples to estimate the demand and later plans to

produce and sell more only if the distribution of buyers’ valuations for his product is

sufficiently high. Our results imply that selling more units in the trial run is better.

Finally, our results can be useful in analysis of models of advertising, like a recent

paper by Bernhardt and Duggan (2005) on political campaigns. To illustrate, consider

the following simple model of advertising in political campaigns. A political candidate

has a quality V (with voters agreeing that a higher V is better) and has n attributes

that are affiliated with V (and distributed i.i.d. conditional on V ). Suppose n is large

and the candidate can reveal to the public only k << n of attributes (say, because

communication is costly). Suppose that he cannot commit to a strategy of revealing a

particular order statistic. The optimal strategy is then to reveal the best k of attributes.

Our results on order statistics can then be used to characterize the equilibrium, in

particular the inferences that voters can make about V .
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2 The information in order statistics

Consider a random variable, V, distributed on [0, 1] according to a non-degenerate

distribution FV (v) . We try to estimate V using signals that are given by {Si}∞i=1 that
are also distributed on [0, 1]; conditional on V signals are distributed i.i.d. according

to a conditional density f (s|v) . We make the following assumptions:

(A1) For any ε > 0 there exists δ > 0 such that if |s− s0| < δ then for almost every v¯̄̄̄
f (v|s)
f (v|s0) − 1

¯̄̄̄
< ε.

(A2) Monotone likelihood ratio (MLRP) f(s|v)
f(s0|v) >

f(s|v0)
f(s0|v0) for s > s0, v > v0.

(A3) There exists some a, b > 0 so that for any s and v we have that: a < f (s|v) < b.

(A1) is a uniform continuity condition in signals that applies across v. It implies that

nearby signals provide similar information about the realization of V . (A2) means that

s and v are strictly affiliated. This is a standard assumption in the auction literature

and it implies a positive correlation between signals and V . Lastly, assumption (A3)

implies that there is a limited amount of information in every signal. While in the limit

the collection of all signals is sufficient to infer V precisely, a single signal conveys only

partial information. Technically, (A3) implies a finite likelihood ratio of V given Si.

See Pesendorfer and Swinkels (1997) for a more detailed discussion of the implications

of such bounds.

We examine what can be inferred about V when observing the k-th order statistic;

we denote by Yn (k) the k − th order statistic among the first n signals, {Si}ni=1 and
consider

E [V |Yn (k)]

We use the notion of conditional expectation to define what we mean by saying that

in the limit one random variable is more informative than another. One may worry

that this definition of information is restricted to first moments. Note however that

E [V |Yn (k)] is actually a random variable; it is the expectation of V conditional on the

σ−algebra generated by Yn (k) .2 As a result, one can show that if E [V |Yn (k) , Yn (k0)]−
E [V |Yn (k)] → 0 (in probability) then E [f(V )|Yn (k) , Yn (k0)] − E [f(V )|Yn (k)] → 0

2See Durrett (1996) for a definition of conditional expectation.
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(in probability) for any function f, hence, one can replace the first moment with any

other moment. Formally,

Definition 1 (i) We say that in the limit the k − th order statistic is at least as

informative as the k0 − th order statistic if E [V |Yn (k) , Yn (k0)] − E [V |Yn (k)] → 0 in

probability

(ii) We say that in the limit the k − th order statistic is more informative than the

k0− th order statistic if it is at least as informative and E [V |Yn (k0)]−E [V |Yn (k)]9 0

in probability.

(iii) We say that in the limit the k− th order statistic contains non-trivial information

if E [V ]−E [V |Yn (k)]9 0 in probability.

In words, part (i) of the definition states that (in the limit) if we want to infer V,

once we condition on Yn (k) , there is no additional information in Yn (k
0) . Part (ii)

states that (in the limit) conditioning on Yn (k) and Yn (k
0) leads to different amount

of information, which combined with part (i) allows us to strictly rank informativeness

of the order statistics. Finally, part (iii) states that even in the limit conditioning on

Yn (k) we can estimate V better than just by using its unconditional mean.

Our main result is that using auction theory we can rank the limiting information

in order statistics. We conduct the following thought experiment: we assign signals

{Si}ni=1 to agents and run a k+1-price auction in which bidders compete for k identical
goods whose (common) value is given by V . In such an auction, the k highest bidders

win one unit each and all of them pay the k + 1 highest price. This is a generalization

of what is known as the second price auction which corresponds to k = 1.

Our results are based on some known properties of common value auctions. Milgrom

(1981) analyzed such an auction and showed that an agent with a signal s bids in a

symmetric equilibrium:

bn (s) = E [V |Yn (k) = Yn (k + 1) = s]

The above expression implies that:

• The bidding strategy is monotone, as a result the price equals the bid of the agent
with the k + 1 highest signal, that is Pn = bn (Yn (k + 1)) .

• Pn ≤ E [V |Yn (k + 1)] almost surely; this follows from our affiliation assumption

(A2),
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E [V |Yn (k) = Yn (k + 1) = s] ≤ E [V |Yn (k + 1) = s, Yn (k + 1) ≤ Yn (k)] = E [V |Yn (k + 1) = s]

(1)

Jackson and Kremer (2004) prove that such an auction is ‘competitive’ in the sense

that as n→∞, bidders’ profits to converge to zero, i.e.3

E [V ]−E [Pn]→ 0

Some of the above properties extend also to a first-price auction (for a single item).

In particular, while the bidding function takes a different form (see Milgrom and Weber

(1982)), it is still the case that Pn ≤ E [V |Yn (1)] and E [V ] − E [Pn] → 0. Based on

this one can conclude that for any k ≥ 0 the price in the k+1 price auction (where we
take k = 0 to be a first-price auction) satisfies:4

Pn −E [V |Yn (k + 1)]→ 0 in probability (2)

Furthermore, for k ≥ 1 (1) implies that in a k+1 price auction Pn ≤ E [V |Yn (k) , Yn (k + 1)] .
Hence, we by the same reasoning:

Pn −E [V |Yn (k) , Yn (k + 1)]→ 0 in probability (3)

As we shall see, the combination of the above results enables us to rank the information

in order statistics. First we show that extreme order statistics contain non-trivial

information. One may conjecture that it is not the case as in our setup regardless of

the realization of V the highest signals converge to one. However, using auction theory

we argue that:

Lemma 1 In the limit every k-th order statistic Yn (k) contains non-trivial informa-

tion.

Proof. We argued that Pn−E [V |Yn (k)]→ 0 in probability. Assume, by contradiction,

that Pn−E [V ]→ 0. An individual signal contains non trivial information (even in the
3The convergence of E [Pn] to E [V ] can be interpreted as a simple convergence as both E [Pn] and

E [V ] are constants and not random variables.
4If we have two sequences of bounded random variables where Xn ≤ Yn almost surely and E [Xn]−

E [Yn]→ 0, then Xn− Yn → 0 in probability. Kremer (2002) uses a similar argument to compare first
and second-price auctions.
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limit) as E [V |Si] does not depend on n; in particular for s close to one we have that

E [V |Si = s] > E [V ] . This leads to a contradiction as there is a positive probability

that there is an agent with a high signal such that E [V |Si] > E [V ] + ε for some ε > 0.

This agent can bid E [V ] + ε/2 and ensure a profit that is bounded away from zero.

This would contradict that in such an auction the expected bidder payoffs converge to

zero as n→∞.

Next, we show that in the limit there is a strict ranking of the information contained

in different order statistics:

Theorem 1 For any k ≥ 1 in the limit the k + 1 order statistic, Yn (k + 1) , is more
informative than the k − th order statistic, Yn (k) .

The formal proof appears in the appendix but we provide here a short outline.

An immediate implication of (2) and (3) is that for any k ≥ 1 in the limit the

k + 1 order statistic, Yn (k + 1) , is at least as informative as the k − th order sta-

tistic, Yn (k) .Hence, we need only to verify that E [V |Yn (k0)] − E [V |Yn (k)] 9 0 .

Since signals are in [0, 1], the maximal conditional expectations for the value of the

asset are given by: E [V |Yn (k + 1) = 1] and E [V |Yn (k) = 1] , respectively. It can be
shown that both E [V |Yn (k + 1) = 1]and E [V |Yn (k) = 1] do not depend on n and

E [V |Yn (k + 1) = 1] > E [V |Yn (k) = 1] .5 The claim then follows from the fact that we
can find a threshold s∗n close to one so that (i) for any s > s∗n, E [V |Yn (k + 1) = s] >

E [V |Yn (k) = 1] , and (ii) Pr (Yn (k + 1) > s∗n) is (uniformly) bounded away from zero.

We conclude the analysis by illustrating our results using a numerical example:

Example 1 Consider the case where V = {0, 1} with equal probabilities and

f (s|v) =
½
1 if v = 0
2s if v = 1

Suppose there are n = 1000 signals and we observe the highest or the fifth-highest signal.

To what extent can we tell the value of V ? Using Bayes rule, we can express the expected

value of V conditional on observing the l − th highest signal, E [V |Yn (l) = s] :R
vF (Si = s|v)n−l f (Si = s|v) (1− F (Si = s|v))l−1 f (v) dvR
F (Si = s|v)n−l f (Si = s|v) (1− F (Si = s|v))l−1 f (v) dv

5Consider for example k = 1. Conditioning on the first signal being one, S1 = 1, is the same as
conditioning on the first-order statistic being one. Since signals are in [0, 1], the S1 must be the highest
signal. This argument is used in Pesendorfer and Swinkels (1997) p.1257.
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In Figure 1 we use a Monte-Carlo simulation to plot the density function of the ran-

dom variable E [V |Yn (1)] , that is the expected value of V conditional on the first-order

statistic. Figure 2 shows the results for the fifth order statistic, that is, E [V |Yn (5)].6

In both cases we plot two curves that represent the conditional densities of the random

variables when we conditional on the realization of V being zero or one.

Two conclusions can be made:

1. The two conditional distributions are not identical, so even the first order sta-

tistic contains some information. In fact, if the first order statistic contained no

information both conditional distributions would converge simply to a spike at

0.5.

2. The two conditional distributions are more separated when we use the fifth order

statistic. It reflects the fact that the fifth order statistic is more informative than

the first order statistic (although dispersion of conditional distributions is not the

formal definition of informativeness that we use, the separation of the conditional

distributions is indicative of the information contained in the order statistic).

E  ( V | Yn  (1) )

0

3

6

9

0 0.5 1

conditional on v=1
conditional on v=0

Figure 1

E  ( V | Yn  (5) )

0

3

6

9

0 0.5 1

conditional on v=1
conditional on v=0

Figure 2

3 Appendix

Proof of Theorem 1:
6We use 1, 000, 000 iterations.
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An immediate implication of (2) and (3) is that for any k ≥ 1 in the limit the k+1
order statistic, Yn (k + 1) , is at least as informative as the k− th order statistic, Yn (k) .
Hence, we need only to verify that E [V |Yn (k0)]−E [V |Yn (k)]9 0.

We first note a few properties of the expected value of V conditional on the l − th

order statistic being equal to s, E [Vn|Yn (l) = s], which is given by:R
vF (Si = s|v)n−l f (Si = s|v) (1− F (Si = s|v))l−1 f (v) dvR
F (Si = s|v)n−l f (Si = s|v) (1− F (Si = s|v))l−1 f (v) dv

(4)

Because lims↑1
1−F (s|v)
(1−s)f(s|v) = 1 (by continuity of f (s|v) , for details see Pesendorfer and

Swinkels (1997) p.1257), taking the limit of the above expression we get:

E [Vn|Yn (l) = 1] =
R
vf (Si = 1|v)l f (v) dvR
f (Si = 1|v)l f (v) dv

Hence, E [Vn|Yn (l) = 1] does not depend on n.

For s ∈ [0, 1) define

g (s, l) =

R
vf (Si = s|v) (1− F (Si = s|v))l−1 f (v) dvR
f (Si = s|v) (1− F (Si = s|v))l−1 f (v) dv

Note that g (s, l) is continuous in s and by strict affiliation (assumption (A2)) it is

strictly increasing in l. Using again lims↑1
1−F (s|v)
(1−s)f(s|v) = 1, we can define g (1, l) as the

limit as s ↑ 1:
g (1, l) ≡ lim

s↑1
g (s, l) = E [Vn|Yn (l) = 1]

which is strictly increasing in l.

Next, consider a fixed δ ∈
¡
0, 1

b

¢
and some s > 1− δ

n| {z }
sn

. We argue that the probability

of the l − th order statistic being above sn is uniformly bounded away from zero and

the expectations conditional on the two order statistics differ in this range (for some δ

and uniformly for all n).

By assumption (A3), F (s|v) > 1− bδ
n
for all v, which implies that:7

F (s|v)n−l > F (s|v)n >
µ
1− bδ

n

¶n

> 1− bδ (5)

7Note that
¡
1− x

n

¢n
> 1− x for x ∈ (0, 1) .
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We claim that for any fixed l, Pr
¡
Yn (l) > 1− δ

n

¢
is bounded away from zero. This

probability is higher than the probability that exactly l signals are above 1 − δ
n
. We

bound the probability of this event by conditioning on V = v :

Pr

µ
Yn (l) > 1−

δ

n

¶
≥
µ
n

l

¶
F

µ
Si = 1−

δ

n
|v
¶n−lµ

1− F

µ
Si = 1−

δ

n
|v
¶¶l

.

(A3) implies that 1−F
¡
Si = 1− δ

n
|v
¢
> aδ

n
.As in (5), we note that F

¡
Si = 1− δ

n
|v
¢n−l

>

1− bδ which provides a bound:

Pr

µ
Yn (l) > 1−

δ

n

¶
≥ (1− bδ)

µ
n

l

¶µ
aδ

n

¶l

For large enough n, we know that
¡
n
l

¢
> nl

2ll!
. Since l is fixed, we can combine these

inequalities to conclude that for any l there exists α > 0 so that Pr
¡
Yn (l) > 1− δ

n

¢
> α

for all n large enough.

Now, keeping s > 1− δ
n
,using (4) and F (s|v)n−l ∈ (1− bδ, 1) , we can conclude that:

E [V |Yn (l) = s] ≥ (1− bδ) g (s, l)

For n is large enough, continuity of g (s, l) and s > 1 − δ
n
implies that g (s, l) >

(1− bδ) g (1, l) . Therefore:

E [V |Yn (l) = s] > (1− bδ)2 g (1, l)

Finally, consider the k-th and k+1 order statistics. As we noted above, g (1, k + 1) >

g (1, k) . Set δ∗ so that (1− bδ∗)2 g (1, k + 1) > g (1, k) . The theorem then follows

as we know that the probability that Yn (k + 1) is above 1−
δ∗

n| {z }
s∗n

is bounded away

from zero and for any s > 1 − δ∗

n
we have that the conditional expectations dif-

fer: E [Vn|Yn (k + 1) = s] > (1− bδ∗)2 g (1, k + 1) > g (1, k) = E [Vn|Yn (k) = 1] ≥
E [Vn|Yn (k) ≥ s] .
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