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Abstract

In many stochastic optimization problems, the learner is provided
with random functions, and the common practice has been to dif-
ferentiate the said functions and perform stochastic gradient descent
(SGD). However, to use just the gradient and not the entire func-
tion seems suboptimal. To address this issue, we present an algorithm
which we call stochastic proximal iteration (SPI). Each iterate of SPI is
obtained by applying the proximal mapping with respect to the given
random function to the previous iterate. This makes SPI an online
algorithm with a computational cost comparable to that of SGD in
certain interesting settings. Using machinery from monotone operator
theory, we show that SPI has an asymptotic performance equivalent
to SGD but does better in the non-asymptotic regime.
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1 Introduction

In many machine learning and statistics problems the learner is given a se-
quence of i.i.d. random functions, f1(x), . . . , fk(x), and is asked to find iter-
ates x1, . . . xk that minimize F (x) = Efk(x) approximately.

There are two simple and standard methods: The first is to report xk =
argminx

∑k
i=1 fk(x), the empirical risk minimizer. While this approach may

produce good iterates xk’s, the computation of each xk requires a numeri-
cal solve of a convex optimization problem, and this may be prohibitively
expensive when k and the dimension of x is large.

The second approach is to compute a subgradient g ∈ ∂fk(xk) (so g =
∇fk(xk) if fk is differentiable) and perform stochastic gradient descent (SGD).
Indeed, this is computationally tractable. However, at each iteration we only
use a subgradient, which is just part of the provided information. Could we
design a better algorithm by using the entire function fk at each iteration?

In this paper, we present an algorithm that does this: stochastic proximal
iteration (SPI). At each iteration of SPI, we apply the proximal mapping with
respect to fk, the random function, to the current iterate, xk−1, to obtain the
next iterate, xk. In Section 2 we set up notation and define the algorithm
precisely.

To analyze SPI, we use tools from monotone operator theory and a weaker
notion of strong convexity, which we introduce and discuss in Section 3.

Because SPI is applied to the problem setting where SGD is commonly
used (and because it was conceived as an improvement upon SGD), we ana-
lyze the algorithm’s performance with a focus on the comparison with SGD.
It turns out that SPI has essentially the same asymptotic performance as
SGD but does much better in the non-asymptotic regime. This is discussed
in detail in Section 4 and Section 5, respectively.

However, SPI would be meaningless unless it is computationally tractable
because of the computationally expensive but well-performing alternative,
the empirical risk minimizer. In Section 6 we discuss the computational cost
and show that for many interesting examples SPI is tractable and in fact has
computational cost comparable to SGD.

Finally, we conclude the paper by exhibiting examples in Section 7 and
providing a summary and possible extentions in Section 8.

Note. Most proofs of the presented results are deferred to the appendix
in which sections are labeled by alphabets.
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2 Problem Setup and Algorithms

2.1 Notation and Terminology

Throughout this paper, all functions will be closed, proper, and convex, and
we will often not bother to state this. We do so because a convex function
that is not closed or proper may not have a well-defined proximal mapping
and because such functions are mere pathologies that do not arise in practice.

Unless stated otherwise, f denotes a function, x denotes the optimization
variable in Rn, and ω denotes a random variable in Ω, a sample space. We
write ∂f(x) to denote the subdifferential, the set of subgradients. If f is
differentiable at x then ∂f(x) = {∇f(x)}. For the definition relating to
convex functions, we refer interested readers to Rockafellar’s book [Roc70].

Finally, we define the proximal mapping with respect to a function f with
step size α as

Tαf (x) = argmin
y∈Rn

{
αf(y) +

1

2
‖y − x‖2

}
.

(The argmin exists and is unique [PB13].) We will often drop the subscript
and write Tx = Tαfx when the meaning is clear from context.

2.2 Random Function Oracle Model

The goal is to minimize the convex function defined as

F (x) = Eωf(x;ω),

where ω ∈ Ω is a random variable and f(x;ω) is convex in x for every ω. We
denote an optimal point x⋆.

We assume that at the kth iteration we are given a random function
fk(x). Equivalently, we are given a sample ωk and we can evaluate the
random function f(x;ωk) = fk(x).

Under certain regularity conditions that allow us to change the order of
differentiation and expectation, we have

∇F (x) = Eω [∇xf(x;ω)] = Eω [∇xfk(x)] .

Therefore we can view ∇xfk(xk) as a noise corrupted version of ∇F (xk).
(The same holds for subgradients.)

Finally, we assume F (x) < ∞ somewhere, and, to avoid pathologies where
F (x) = −∞ for some x, we assume Eω infx f(x;ω) > −∞.
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2.3 Stochastic Gradient Descent

First developed by Robbins and Monro [RM51] and extended to non-differentiable
functions by Shor [Sho62], stochastic gradient descent (SGD) is a very widely
used algorithm that has the following extremely simple form:

xk = xk−1 − αkgk. (1)

where Egk ∈ ∂F (xk−1), i.e., gk is a noisy subgradient, and x0 ∈ Rn is an
arbitrary starting point. In our setting, we can take any g ∈ ∂fk(xk−1).
Standard references of SGD include [NY83, SKR85, Pol87, KY03].

The nonnegative parameter αk, called the step size, represents the extent
to which we trust our current iterate; if αk is small we do not deviate much
from xk as we have much confidence in it and vice versa. There are many
possible choices of αk, but in this paper we only consider two types: αk = C/k
and αk = α.

In a model where one is given noisy subgradients, perhaps SGD is the
best one can do. In our setting, however, we are given random functions,
which contain more information than just subgradients.

An interpretation of SGD via the proximal mapping is

xk = Tαkfk
(xk−1), (2)

where fk(x) = fk(xk)+gTk x is a linear model of fk. The equivalence between
(1) and (2) is readily verified by taking derivatives.

So SGD is the proximal mapping applied to a linear model of the random
function fk. However, why not use the original function instead?

2.4 Stochastic Proximal Iteration

The formulation of Equation (2) suggests the fix

xk = Tαkfk(xk−1) = argmin
x

{
αkfk(x) +

1

2
‖x− xk−1‖22

}
.

We call this algorithm stochastic proximal iteration (SPI). Like the counter-
part in SGD, the step size αk encodes our trust in the current iterate and
x0 ∈ Rn is an arbitrary starting point.

SPI has the following interpretation: At the kth iteration, we are given
fk, which measures, say, the discomfort of the kth experience. We would
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like to choose the next iterate xk to accomodate the current experience fk,
but, at the same time, we do not want to deviate too much from our current
iterate xk−1 which we trust by 1/αk. Therefore, we let xk minimize fk with
a penalty, proportional to 1/αk, for deviating from xk−1.

This algorithm is not new. First of all, proximal iteration has been an-
alyzed in the deterministic setting in great detail under the name proximal
minimization or proximal-point algorithm [Roc76, BC11]. We will discuss
some of these results in Section 3.1.

In the field of online convex optimization, algorithms of this spirit are
generically referred to as implicit updates and convergence results are proved
in certain special cases [KB10, McM11, KL11].

Also, Bertsekas studied this algorithm under the name incremental prox-
imal algorithms to minimize a finite sum of functions [Ber11]. However, his
convergence bounds depend on the number of terms in the finite sum and
therefore is limited to the finite sum setting.

So to the best of our knowledge, there have not been any convergence
results for SPI that are comparable to that of SGD.

3 Analysis preliminaries

It turns out that standard approaches used to analyze SGD do not easily
apply to SPI, and this is probably due to the implicit definition of iterates.
So rather, our approach in this work has been to use tools from monotone
operator theory. In this section, we introduce some standard concepts from
monotone operator theory and then provide and explain some new defitions
we use later.

3.1 Proxiaml mapping as a Contraction Maping

In this section we analyze the proximal iteration in the non-stochastic setting
since understanding of the deterministic setting is important for understand-
ing the stochastic counterpart.

The key observation is that the proximal iteration is a series of contraction
mappings. To begin with, the proximal mapping is always non-expansive
[Mor65], i.e.,

‖Tfx− Tfy‖ ≤ ‖x− y‖.
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If f is µ-strongly convex then

‖Tfx− Tfy‖ ≤ 1

1 + µ
‖x− y‖,

i.e., Tf is a strict contraction [BMMW12]. Moreover, if x⋆ is minimizes f ,
then x⋆ is a fixed-point of Tf , i.e., Tfx

⋆ = x⋆ [PB13].
The strong convexity parameter µ represents the curvature of the func-

tion. Intuitively speaking, stronger the curvature, stronger the contraction
is, and stronger the contraction, faster the convergence is. As the worst-case,
the proximal mapping with respect to a linear function offers no contraction.

Finally, with a standard contraction argument we conclude

‖xk − x⋆‖ = ‖Tfxk−1 − Tfx
⋆‖ ≤ 1

1 + µ
‖xk−1 − x⋆‖

≤ · · · ≤ 1

(1 + µ)k
‖x0 − x⋆‖.

So xk converges exponentially (linearly) to x⋆. The idea is that every appli-
cation of the proximal mapping shrinks our iterate towards the fixed point,
x⋆.

This simple analysis, however, doesn’t immediately apply to the stochas-
tic setting: Even when the random mapping Tfk provides a strict contraction,
x⋆ is no longer a fixed-point.

3.2 M-Rectricted Strong Convexity

In the deterministic setting, we assumed strong convexity, which, intuitively
speaking, requires the function to have curvature in all directions. In the
stochastic setting, however, this is too strong of an assumption. As a quick
example, a random function of the form f(ωT

k x) only varies along the one
dimension parallel to ωk and therefore can have curvature only along that
one direction. Therefore, we introduce a weaker notion to replace strong
convexity.

A convex function is µ-strongly convex if for any x, x0 ∈ domf and
g ∈ ∂f(x0) we have

f(x) ≥ f(x0) + gT (x− x0) +
µ

2
‖x− x0‖2.
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On the other hand, we say f satisfies M-restricted strong convexity if for any
x, x0 ∈ domf and g ∈ ∂f(x0)

f(x) ≥ f(x0) + gT (x− x0) +
1

2
(x− x0)

TM(x− x0)

holds, where M is a symmetric positive semidefinite matrix. Equivalently, f
satisfies M-restricted strong convexity if f(x)− 1

2
xTMx is a convex function

(c.f. Section B). If M � µI then f is µ-strongly convex.
For each given random function f , there is an associated strong convexity

matrix M , where M could simply equal the 0 matrix in the worst case. (M
is not unique, c.f. Section E.)

To prove convergence of SPI, we assume that EM ≻ 0, i.e., λmin(EM) >
0, instead of µ-strong convexity. Intuitively, this assumption requires that
the random proximal mapping Tf has positive probability to contract in any
direction, although not in all directions simultaneously.

Finally, we will note that the assumption λmin(EM) > 0 implies F (x) is
λmin(EM)-strongly convex and therefore has a unique minimum, which we
denote as x⋆ (c.f. Section B).

3.3 Contraction in Expectation

For our convergence results, we need the proximal mapping Tαf to be a
contraction in expectation, i.e.,

E‖Tαfx− Tαfy‖2 ≤ γ(α)‖x− y‖2 (3)

for all x, y ∈ Rn, where γ(α) < 1 for α > 0. We also need to know the
behavior of the contraction factor, γ(α), as α → 0.

However, directly analyzing the contraction factor of Tαf is hard. So
instead we analyze the contraction factor of a quadratic model of f .

Given f with restricted strong convexity matrix M and a subgradient g
at x0, we define a quadratic model as

f̆(x) = f(x0) + gT (x− x0) +
1

2
(x− x0)

TM(x− x0).

Since f is the sum of two convex functions,

f(x) = f̆(x) + (f(x)− f̆(x)),
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f has “stronger curvature” than f̆ . (Since f − f̆ = f − 1
2
xTMx + affine, it

is convex.) Therefore, it seems intuitively reasonable to expect Tαf to be a
stronger contraction than Tαf̆ . This assertion turns out to be somewhat true.

Theorem 1. Assume f̆ is a random convex quadratic, for which

E
‖Tf̆x− Tf̆y‖2

‖x− y‖2 ≤ γ2

holds for any x, y ∈ Rn, and r is random closed proper convex function.
Then we have

E
‖Tf̆+rx− Tf̆+ry‖2

‖x− y‖2 ≤ γ.

Note that absense of the square in the second equation; this is saddening
since γ2 ≤ γ ≤ 1. However, the theorem would not be true with the square
(c.f. Section E).

Theorem 1, which is the backbone of the theoretical analysis of this paper,
tells us that although Tαf is not necessarily a stronger contraction than Tαf̆ ,
we can still bound the contraction factor of Tαf with that of Tαf̆ .

With straightforward calculations we get

Tαf̆ (x)− Tαf̆ (y) = (I + αM)−1(x− y).

(Although the function f̆ depends on the choice of x0 and g, this choice
ultimately does not matter as the above equation does not depend on it.)
This in turn gives us

E‖Tαf̆(x)− Tαf̆ (y)‖2 = (x− y)TE(I + αM)−2(x− y)

E‖Tαf̆(x)− Tαf̆ (y)‖2
‖x− y‖2 ≤ λmax

(
E(I + αM)−2

)
.

Now we define the function

γ2(α) = λmax

(
E(I + αM)−2

)
.

Combining this with Theorem 1, we arrive at Equation (3).
Finally, the following theorem characterizes the contraction factor γ(α).

Theorem 2. If EM is well-defined (i.e., finite-valued) and satisfies λmin(EM) >
0, the contraction factor γ(α) (defined for α ≥ 0) is a strictly decreasing
function with

γ(α) = 1− αλmin(EM) + o(α)

as α → 0.

10



3.4 Quantifying Randomness

Since SPI operates on random data, its convergence will depend on the ran-
domness, or noise level, of the setting. As we will see in Sections 4.3 and 5.4,
this dependence is only through ‖Tx⋆−x⋆‖, a quantity that is zero in the de-
terministic setting as discussed in Section 3.1 and bounded by the following
lemma.

Lemma 1. Given any convex function f and a point x in domf , where
∂f(x) 6= ∅, we have

‖Tx− x‖ ≤ ‖g(x)‖,
where g is the minimum-norm subgradient, i.e.,

g(x) = argmin
v∈∂f(x)

‖v‖.

(g(x) is unique, c.f. Section B.) Therefore E‖Tαfx
⋆−x⋆‖2 ≤ α2E‖g(x⋆)‖2.

Since E∇f(x⋆) = 0 in the differentiable case, E‖g(x⋆)‖2 can be thought of
as a noise level.

4 Asymptotic Analysis

In this section, we analyze the asymptotic behavior of SPI and compare it
to SGD. As we will see, the asymptotic performances of the two algorithms
are the same (in the big O sense).

4.1 Asymptotic Behavior of the Proximal Mapping

The limiting behavior of Tαf (x) as α → 0 is crucial to the asymptotic analysis
and intuitively justifies why SPI behaves like SGD, asymptotically. When f
is twice continuously differentiable, the asymptotic behavior is

Tf(x) = x− α∇f(x) + α2(∇2f(x))∇f(x) + o(α2),

which is readily obtained by applying a basic Neumann series argument to
Parikh’s characterization [PB13].

However, as we wish to deal with non-differentiable convex functions as
well, a more general result is necessary. The following result is, to the best
of our knowledge, novel.
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Theorem 3. Let f be any closed proper convex function and x a point in
domf , where ∂f(x) 6= ∅. Then

Tf (x) = x− αg(x) + o(α),

where g is the minimum-norm subgradient.

The theorem states that, for small α, the proximal mapping is, to first
order, a subgradient step with respect to the subgradient of smallest magni-
tude.

4.2 Asymptotic Rate of Convergence

Because of Theorem 12, we expect the asymptotic performance of SGD and
SPI to be equivalent. The following theorem affirms this intuition.

Theorem 4. Assume that:

• the random functions fk are almost surely twice continuously differen-
tiable at any given point, have a common closed domain, and associated
restricted strong convexity matrices Mk,

• EM is well defined,

• λmin(EM) > 0,

• ‖∇f(x)−∇f(y)‖ ≤ L̃‖x− y‖ for all x, y ∈ domf , where EL̃2 < ∞,

• σ = E‖g(x⋆)‖2 < ∞,

• x⋆ is in the relative interior of the domain.

Using step sizes αk = C/k, we get

E‖xk − x⋆‖2 =





O(1/k) if Cλmin(EM) > 1
O(log k/k) if Cλmin(EM) = 1
O(1/kCλmin(EM)) if Cλmin(EM) < 1.

These asymptotic results are exactly the same as that of SGD [BM11].
One may be concerned that the rate can be arbitrarily slow if C is too small.
However, since this exact phenomenon happens with SGD and already has
been studied in detail, we shall not [NY78, NJLS09].
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4.3 Proof Outline and Remarks

The proof of Theorem 12 (and of Theorem 14) is based on the decomposition
xk − x⋆ = (Txk−1 − Tx⋆)− (x⋆ − Tx⋆).

E‖xk−x⋆‖2 = E‖Txk−1 − Tx⋆‖2 + E‖Tx⋆ − x⋆‖2
+ E〈Txk−1 − Tx⋆, Tx⋆ − x⋆〉

≤γ(αk)‖xk−1 − x⋆‖2 + α2
kσ

2

+ E〈xk−1 − x⋆ +O(αk), αk∇f(x⋆) +O(α2
k)〉

=(1−O(αk))‖xk−1 − x⋆‖2 +O(α2
k)

The first term is contracted as discussed in Section 3.3, the second term is
bounded by noise as discussed in Section 3.4, and the third term is analyzed
with the results of Section 4.1. Finally, with a recursive application of the
above inequality we get Theorem 12.

We conclude this section with several remarks. Theorem 15 does not hold
for non-differentiable random functions, and we presume that the optimal
rate for the non-differentiable setting is O(1/

√
k), as it is with other SGD

methods [Ber99, DS09, LLZ09]. However, Theorems 1, 2, and 12 hold for
non-differentiable functions and we will utilize this generality in Section 5.

5 Non-Asymptotic Analysis

One can argue that SGD is a reckless algorithm as it blindly moves in the
direction of the noisy gradient with no regard to how the step is in fact
affecting the objective. On the other hand, SPI is more deliberate as each
iterate at least never increases the value on the given function fk.

As we have already discussed, these differences disappear in the asymp-
totic regime. Rather, the real merit of SPI comes from its non-asymptotic
performance.

In this section, we first discuss how SGD is unstable even with all the
standard regularity conditions. We then show that SPI is stable under es-
sentially no assumptions at all. Finally, we show that given the appropriate
assumptions, SPI exhibits an exponential rate of convergence into a noise
dominated region.
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5.1 Instability of SGD

SGD is unstable if initial stepsizes are chosen to be too large. Precisely
speaking, E‖xk − x⋆‖22 can grow exponentially until the step sizes become
sufficiently small [BM11].

Theorem 5. [BM11]. Under certain regularity assumptions, the iterates of
SGD with step sizes αk = C/k satisfy

E‖xk − x⋆‖2 ≤ exp(D1C
2)

kµC
D2 +O

(
1

k

)

for C > 2/µ, where D1, D2 and µ are certain constants.

This bound (although it has the asymptotic rate O(1/k)) grows exponen-
tially for a given n if we use too large of a C.

This is not merely an artifact of their bound. Consider the following
counter example: f(x) = x2/2, no noise, constant step-size αk = 3, and
starting point x0 = 1. With simple algebra, we can see that xk = (−1)k2k

and that ‖xk − x⋆‖ grows exponentially. If we were to use a decreasing step
size, the iterates would eventually converge but the gradient step does harm
until the step size reduces to below 2. On the other hand, the SPI iterates
with αk = 3 are xk = 1/4k.

5.2 Stability of SPI

In contrast to SGD, whose iterates may exponentially run away from the
solution, SPI is much more stable: Even with essentially no assumptions,
SPI iterations can do harm no more than the sum of the step sizes.

Theorem 6. Assume that:

• the set of optimal points, X⋆, is nonempty,

• σ = supx⋆∈X⋆ E‖g(x⋆)‖ < ∞,

but nothing else. Then

ED(xk, X
⋆) ≤ D(x0, X

⋆) + σ

k∑

i=1

αi,

where D(x,X⋆) denotes the distance of x to the set of optimal points, i.e.,
D(x,X⋆) = infx⋆∈X⋆ ‖x− x⋆‖2.
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5.3 Exponential Convergence to Noise Dominated Re-

gion

In machine learning literature it is often loosely argued that SGD performs
well because it exhibits rapid convergence to the region where noise becomes
dominant [SD03]. As discussed in Section 5.1, this is not always true with
SGD, but it is with SPI.

Theorem 7. Assume that:

• the random functions fk have a common closed domain and associated
restricted strong convexity matrices Mk,

• λmin(EM) > 0,

• σ = E‖g(x⋆)‖ < ∞.

Using constant step size αk = α, we get

E‖xk − x⋆‖ ≤ γk/2(α)‖x0 − x⋆‖+ ασ

1− γ1/2(α)
.

While this bound does not show xk → x⋆, it does inform us of SPI’s non-
asymptotic behavior: With constant step size, xk converges exponentially
into a neighborhood of x⋆ with radius ασ/(1− γ1/2(α)).

5.4 Proof Outline and Remarks

The proof of Theorem 14 follows from the decomposition of Section 4.3 and
an application of the triangle inequality.

E‖xk − x⋆‖ ≤ E‖Txk−1 − Tx⋆‖+ E‖Tx⋆ − x⋆‖
≤ γ1/2(α)‖xk−1 − x⋆‖+ ασ

With a recursive application of the above we get Theorem 14. Theorem 6 is
also shown similarly. Figure 1 illustrates the intuition of this inequality.

Note that the results proven with the triangle inequality, Theorem 6 and
14, do not depend on the differentiability of f . However, this approach does
not show the convergence of xk when applied to decreasing step sizes (c.f.
Section D), which is why in Section 4 we considered the squared norm instead.
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x⋆
Tx⋆≤ α‖g(x⋆)‖

xk

xk−1

contracted by γ(α)

Figure 1: Illustration of the triangle inequality. The distance between
xk = Txk−1 and Tx⋆ is contracted but Tx⋆ moves away from x⋆. Since
the contraction is multiplicative, if xk−1 is far away from x⋆, the next iterate
xk is closer to x⋆ than xk−1.

6 Computational Efficiency

One indismissible advantage of SGD is its computational efficiency; each it-
eration costs O(n) flops. To be competitive as a practical algorithm, SPI
must also have a low computational cost, especially because of the computa-
tionally expensive but well-performing alternative xk = argminx

∑k
i=1 fk(x),

the empirical risk minimizer.
Each iteration of SPI evaluates a proximal mapping, which is a convex

optimization problem that in general costs roughly O(n3) flops. While it is
true that the burden can be alleviated with methods like warm-starting or
inexact solves, the O(n3) cost is hard to justify. However, in many interesting
cases, the iteration can be done with O(n) cost, if the optimization is done
right.

In this section, we will provide several examples where the computational
cost of SPI is tractable. Our discussion will be informal and quick, as the
ideas we introduce in this section are completely standard in optimization.
The purpose is to demonstrate the practical feasibility of SPI in some inter-
esting settings.
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6.1 Univariate Function with Seprable Regularization

Consider the class of functions of the form

f(ωTx) +
n∑

i=1

ri(xi),

where xi here denotes the ith coordinate of x, not the iterate of SPI. For
example, MAP with generalized linear models have this form.

First of all, if ri = 0 for all i, then Tfx0 reduces to the univariate opti-
mization problem

minimize f(ωTx0 + a‖ω‖2) + a2

2
‖ω‖2,

where a ∈ R is the optimization variable. Univariate optimization problems
can be solved (say, with bisection) in essentially O(n) time.

Otherwise, when the ri’s are not zero, we use Lagrange duality for an
efficient solution. Consider an equivalent form of the proximal mapping

minimize f(y) +
∑n

i=1 ri(xi) +
1
2
‖x− x0‖2

subject to y = ωTx,

where y ∈ R and x ∈ Rn are the optimization variables. We take the dual
of this problem and get

maximize −f ∗(−ν)−∑n
i=1 r

⋄
i (νωi) +

‖x0‖2

2
,

where ν ∈ R is the optimization variable. We write f ∗ for the Fenchel
conjugate of f and

r⋄i (µ) = r∗i (µ) ⋄
(µ+ (x0)i)

2

2
,

where ⋄ denotes the infimal convolution [Roc70]. This univariate optimiza-
tion problem (assuming f ∗ and r⋄ are easy to evaluate) can be solved in
essentially O(n) time.

Finally, once the optimal ν⋆ is computed, x⋆ can be found as the solution
of

minimize
∑n

i=1 ri(xi) +
1
2
‖x− x0‖2 − ν⋆ωTx,

where x ∈ Rn is the optimization variable. The optimization problem is
separable in each coordinate of x and therefore can be solved in essentially
O(n) time. For a more thorough treatment of this idea, interested readers
should refer to §5.5.5 of Boyd and Vandenberghe’s book [BV04].
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6.2 Problems with Structured KKT Systems

When one uses an interior point method to solve an optimization problem,
the bottleneck of the computational cost is solving the KKT system. In
general, KKT systems of optimization problems cost O(n3) time to solve.
However, the KKT system sometimes has exploitable structure, which can
be used to significantly reduce the cost of the solve. In this section, we
provide an example that illustrates this point.

Consider the following function

f(ωTx) + ‖Dx‖1,

where D is a tridiagonal matrix (e.g., a 1D finite difference matrix).
One way to solve the optimization problem of Tf is via a barrier method

in which we solve a sequence of problems:

minimize f(xTω) + 1
2
‖x− x0‖2 + 1Ty

−1
t

∑n
i=1 log(y

2
i − (Dix)

2)

where x, y ∈ Rn are the optimization variables and t > 0 is a parameter for
the barrier [BV04]. The dominant cost for the barrier method is inverting
the KKT matrix of the system. Consider the first n×n block of the Hessian

f ′′(ωTx)ωωT + I +
2

t
DTdiag

(
y2i + (Dix)

2

(y2i − (Dix)2)2

)
D.

The tridiagonal matrix D can be inverted in O(n) time, and so can this
entire sub-block with the Sherman-Morrison-Woodbury formula [GL12]. Fi-
nally, the entire KKT system can be solved in O(n) time by applying block
elimination and repeating the same idea [BV04].

6.3 Switch-to-SGD Heuristic

Even in the above examples where we argue the computational cost is O(n),
SPI is still more expensive than SGD (at least by a constant factor). There-
fore, it would make sense to switch from SPI to SGD once we reach the
asymptotic regime.

One heuristic criterion for this is to run SPI until

‖Tαkfkxk−1 − xk−1 + αk∇fk(xk−1)‖ ≤ εαk‖∇fk(xk−1)‖
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for N consecutive iterations, where ε > 0 is a predefined parameter. (When
fk is not differentiable, we can replace ∇fk with g, the minimum-norm sub-
gradient.)

Intuitively speaking, the method switches to SGD once the SGD and SPI
steps no longer differ by much. In the experiments of Section 7, we will see
that the performance of this heuristic is essentially as good as that of SPI.
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Figure 2: Convergence of the SVM example. SPI and switch-to-SGD heuris-
tic have nearly indistinguishable performance.

7 Examples

In this section, we present examples to compare the performance of SGD,
SPI, and the switch-to-SGD heuristic.

The experimental results agree with the theory: SPI indeed performs
much better in the non-asymptotic regime but SGD eventually catches up.
Also, the switch-to-SGD heuristic performs essentially as good as SPI.

7.1 Support Vector Machine

We first consider the Support Vector Machine (SVM) with hinge loss:

minimize Emax{0, 1− yωTx}+ 1
2
‖x‖2,
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where y = ±1 and ω ∈ Rn are random samples and x ∈ Rn is the optimiza-
tion variable.

At each iteration, we are given a sample (yk, ωk) which in turn gives us
the random function max{0, 1 − yiω

T
i x} + 1

2
‖x‖2. This random function is

not twice differentiable everywhere but it is, almost surely, at any given x if
ω, say, has a continuous distribution.

To evaluate Txk, we use the dual problem

maximize ν/y − 1
2(1+α)

‖νω + x0‖2 + 1
2
‖x0‖2

subject to 0 ≤ ν/y ≤ α

in the manner described in Section 6.1. Results are shown in Figure 2.
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Figure 3: Convergence of the portfolio optimization example. We can see
when the switch to SGD happens.

7.2 Portfolio Optimization

Consider the portfolio optimization problem where we have a concave utility
function log and the n assets have random returns ω > 0. To maximize the
expected utility, we solve

maximize E log(ωTx)
subject to x ≥ 0 1Tx = 1,

where x ∈ Rn is the optimization variable.
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In this example, we approximately evaluate the proximal mapping with
the following heuristic. We first evaluate the prox without the constraint
x ≥ 0 (with an analytic formula), and then project this point onto the
constraint set {x : x ≥ 0, 1Tx = 1}.

It turns out that this inexact solve approach works quite well. Results
are shown in Figure 3.

8 Conclusion and Further Directions

SPI is an online algorithm, applicable to many problems where SGD is used,
that has an edge in the non-asymptotic regime. The behavior of SPI is
theoretically analyzed and empirically confirmed.

We mention here a few interesting extensions and variations of SPI. The
first to relax the strong convexity and differentiability requirement. There
has been much work on (the degradation of) SGD’s convergence rate without
certain assumptions. To study the performance of SPI in these settings would
be interesting.

Another direction is to allow inexact solves. Throughout this paper,
we have assumed that the proximal mappings are evaluated exactly. By
allowing inexact solves, we can reduce the cost of each iteration while perhaps
retaining some convergence properties.

Mini-batch updates, where the proximal mapping is with respect to a
sum of a few of the random functions, is also an interesting topic. The
theoretical analysis of this paper does not exclude mini-batch updates and it
is a straightforward exercise to understand the dependence of Theorem 4.1
to the batch size. However, the non-asymptotic effect of mini-batching is a
bit subtle.

Finally, we can consider the effect of averaging. SGD is often improved
with the use of Polyak-Ruppert averaging, xk =

1
k

∑k
i=1 xi [Rup88, PJ92]. A

related idea from monotone operator theory is to use the Cayley operator,
which would amount to using the iterates xk = 2Txk−1 − xk−1.
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Appendices

The appendix supplements the main document with proofs and details. In
section B, we show several results to assure that the objects we use are
well-defined. Although these are necessary for the rigorous treatment of the
subject, the proofs simply exercise standard techniques and are not particu-
larly intersting. In section C, we provide several lemmas that are used in later
proofs but are not directly relevant to core idea of this work. Section D con-
tains the substance of this article, the proofs of the main theorems. Finally,
in section E, we provide several counter examples that further illuminate
certain concepts.

A Introduction and notation

This article supplements the main document with proofs and details. The
material is organized so that the logic is sound with a linear reading, but the
material only becomes interesting and important by section D. Therefore,
for the casual readers, we suggest quickly reading the statements but not the
proofs of section B, skipping section C, and spending time on section D and
E.

The numbering of the theorems here is different from that of the main
article. (The wording is also sometimes different.) Theorem 1 of the main
article corresponds to theorem 10 here, theorem 2 to theorem 11, lemma 1
to lemma 9, theorem 3 to theorem 12, theorem 4 to theorem 15, theorem 6
to theorem 13, and theorem 7 to theorem 14.

Like the main article, we are primarily interested in closed proper convex
functions. However, as some of the results are more general, we will not
automatically assume these properties. In this article, functions are closed,
proper, or convex only when explicitly specified.

Finally, we define some notation. We write ∂f(x) for the set of subdif-
ferentials, domf for the domain of the function f , i.e., domf = {x ∈ Rn :
f(x) < ∞}, and riS for the relative interior of the set S. A function is
closed if its epigraph, epi f = {(x, u) ∈ Rn+1 : u ≥ f(x)}, is closed and is
proper if f = −∞ nowhere and f < ∞ somewhere. An extreme point x
of a convex set S is a point that is an average of two distinct points in S,
i.e., x = (y + z)/2 for y, z ∈ S and y 6= z. These definitions are standard in
convex analysis and can be found in Rockafellar’s book [Roc70].
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We use E to denote the expectation with respect to the random variable ω
and we write Eω when we wish to emphasize that ω contains the randomness.
The norm ‖ · ‖ denotes the standard Euclidean norm. The big O notation
f(x) = O(g(x)) denotes

lim
x→X

f(x)

g(x)
= C /∈ {0,∞,−∞},

and the small o notation f(x) = o(g(x)) denotes

lim
x→X

f(x)

g(x)
= 0,

where the limit X (often ∞) depends on the context. The notation f(x) ∼
g(x) and f(x) . g(x) denotes

lim
x→X

f(x)

g(x)
= 1 lim

x→X

f(x)

g(x)
≤ 1,

respectively, where, again, the limit X (often ∞) depends on the context.

B Sanity check results

Lemma 2 (Uniqueness of minimum-norm subgradient). If f is subdiffer-
entiable at x then g(x), the minimum-norm subgradient at x, exists and is
unique.

Proof. The set ∂f(x) is closed and convex [Roc70, §23] and is nonempty by
assumption. The minimum-norm subgradient is the solution to the optimiza-
tion problem

minimize ‖g‖2
subject to g ∈ ∂f(x),

where g is the optimization variable. Existence of the solution is readily
shown by observing that the sublevel sets of ‖ · ‖2 is compact and applying a
simple convergent subsequence argument. Uniqueness of the solution follows
from strict convexity of the objective.
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Lemma 3 (Restricted strong convexity). The two definitions of M-restricted
strong convexity are equivalent if f is closed, proper, and convex. In other
words, for any closed proper convex function f ,

f(x) ≥ f(x0) + gT (x− x0) +
1

2
(x− x0)

TM(x− x0) (4)

for any x, x0 ∈ domf and g ∈ ∂f(x0) holds if and only if

f(x)− 1

2
xTMx

is convex.

Proof. We first show the forward direction. Let x, y ∈ domf and z =
λx+ (1− λ)y, where λ ∈ [0, 1].

If z ∈ ri (domf), then a subgradient gz ∈ ∂f(z) exists [Roc70, §23]. So
we apply Equation (4) to the pairs (y, z) and (x, z) to get

f(x) ≥ f(z) + gTz (x− z) +
1

2
(x− z)TM(x− z)

f(y) ≥ f(z) + gTz (y − z) +
1

2
(y − z)TM(y − z).

Now we multiply the first inequality by (1−λ) and the second by λ and add
the two to get

λ

(
f(x)− 1

2
xTMx

)
+ (1− λ)

(
f(y)− 1

2
yTMy

)
≥ f(z)− 1

2
zTMz. (5)

Now we extend the result to z ∈ domf . Let xk be a sequence in
ri (domf) such that xk → x and x, x1, x2, . . . all lie on a single line seg-
ment. Define yk in the same manner and write zk = λxk + (1 − λ)yk. Then
we have

λ

(
f(xk)−

1

2
xT
kMxk

)
+ (1− λ)

(
f(yk)−

1

2
yTk Myk

)
≥ f(zk)−

1

2
zTk Mzk

Since a closed convex function restricted to a line segment is continuous even
at the end-points [Roc70, §10] (if the line segment is within domf) we can
take the limit on both sides to get inequality (5) for the general case.

24



Finally, we show the other direction. Since f(x)− 1
2
xTMx is convex for

any x, x0 ∈ domf and g ∈ ∂f(x0) we have

f(x)− 1

2
xTMx ≥ f(x0)−

1

2
xT
0Mx0 + gT (x− x0)− xT

0M(x− x0)

Rearranging this gives us Equation (4).

Lemma 4 (Measurability). Assume that:

• the random functions f(x;ω) : Rn×Ω → (−∞,∞] are (almost surely)
closed, proper, and convex,

• f(x;ω) have a common domain D ⊆ Rn, i.e., f(x;ω) < ∞ for any
x ∈ D (almost surely),

• f(x;ω) are measurable for any given x, with respect to ω’s σ-algebra,

• ω’s σ-algebra is complete.

Then Tfx and infx∈D f(x;ω) are measurable with respect to ω’s σ-algebra.

Proof. We first show the measurability of infx∈D f(x;ω). Since f(x;ω) is
closed, it is lower semi-continuous [Roc70, §7] and continuous in ri (D)[Roc70,
§10]. Now let Q be a countable dense subset of riD. Then we have

inf
x∈D

f(x;ω) = inf
x∈riD

f(x;ω) (6)

= inf
x∈Q

f(x;ω), (7)

where all equality holds almost surely.
In equation (6), infx∈D f(x;ω) ≤ infx∈riD f(x;ω) is clear since riD ⊆

D. Now consider any sequence xk in riD and any point x ∈ D such that
xk → x and x, x1, x2, . . . all lie on a single line segment. Since a closed
convex function restricted to a line segment is continuous even at the end
points [Roc70, §10], we have f(x;ω) = limk→∞ f(xk;ω) ≥ infx∈riD f(x;ω).
Therefore infx∈D f(x;ω) ≥ infx∈riD f(x;ω), and we conclude equation (6).

Equation (7) follows from continuity. Since a countable infimum of ran-
dom variables is measurable [Bil95, §13], equation (7) is measurable.

Finally, infx∈D f(x;ω) is measurable as it differs from a measurable ran-
dom variable only on a null set and since our probability measure is complete.
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Next, we show measurability of Tfx. With a some careful thought we get

{ω ∈ Ω : (Tfx(ω))i < α} =

∞⋃

k=1

⋂

y∈Q∩{yi≥α}

{
ω ∈ Ω : f(y;ω) +

1

2
‖y − x‖2 > m(ω) +

1

2k

}

for i = 1, 2, . . . , n and any α ∈ R. In other words, the preimage of the co-
ordinatewise sublevel sets are measurable. Since the coordinatewise sublevel
sets generate the Borel σ-algebra, this implies that Tfx(ω) is measurable.

Lemma 5 (Uniqueness of x⋆). Assume the random convex functions f(x;ω)
are closed and Eω infx f(x;ω) > −∞. Then F (x) = Eωf(x;ω) is a closed
function. So if F (x) < ∞ for some x, then F is closed, proper, and convex.
Furthermore, assume each function f(x;ω) has an associated strong convexity
matrix M(ω) such that EM is well-defined and λmin(EM) > 0. Then F
satisfies EM-restricted strong convexity, and the minimum of F (x) exists
and is unique.

Proof. First assume Eω infx f(x;ω) 6= ∞ because otherwise F (x) = ∞ ev-
erywhere and there is nothing to show.

Note that F is closed if and only if F is lower semi-continuous [Roc70, §7].
We apply Fatou’s lemma [Bil95, §16] to the nonnegative functions f(x;ω)−
infx f(x;ω) and get

lim inf
x→x0

F (x) = lim inf
x→x0

Ef(x;ω) ≥ E lim inf
x→x0

f(x;ω) ≥ Ef(x0;ω) = F (x0).

So F is lower semi-continuous and therefore closed.
Next, we have F (x) ≥ Eω infx f(x;ω) > −∞, so if F (x) < ∞ for some x,

by definition F is proper.
By lemma 3, F (x) satisfies EM-restricted strong convexity if and only if

F (x)− 1
2
xTEMx is convex. Since we have

F (x)− 1

2
xTEMx = Eω

[
f(x;ω)− 1

2
xTM(ω)x

]
,

where f(x;ω) − 1
2
xTMx is convex by assumption, the expected function is

convex. Thus F (x) satisfies EM-restricted strong convexity.
Let x0 be any point in ri (domF ) (which exists by [Roc70, §6]). Then

F (x) ≥ F (x0) + gTx+
1

2
(x− x0)

TEM(x− x0),
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where g ∈ ∂F (x0) (which exists since x ∈ ri (domF ) [Roc70, §23]). So any
x such that F (x) ≤ F (x0) must be in the compact set

K =

{
x ∈ R : F (x0) + gTx+

1

2
(x− x0)

TEM(x− x0) ≤ F (x0)

}
.

(K is compact since EM ≻ 0.) Now let xk be a sequence such that that
F (xk) → infx F (x). Then for large enough k, we have

(xk, Fk) ∈ (epiF ) ∩
(
K × [inf

x
F (x), F (x0)]

)
.

Since F is closed, epiF is by definition closed, and sinceK×[infx F (x), F (x0)]
is a compact set, (xk, Fk) has a convergent subsequence that converges to
(x⋆, F (x⋆)) ∈ epiF . By construction, F (x⋆) = infx F (x) holds and therefore
x⋆ is a solution for F (x). So a minimizer of F exists.

Finally, since F is strongly convex, it is strictly convex and therefore the
solution is unique.

Lemma 6 (Swapping expectation and differentiation). Assume that the ran-
dom function f is almost surely twice continuously differentiable at x, that
‖∇f(x) − ∇f(y)‖ ≤ L̃‖x − y‖ for all x, y ∈ domf , where EL̃2 < ∞, and
that E‖g(x⋆)‖2 < ∞. (These are assumed in theorem 15.) Then F (x) is
differentiable at x⋆ and

∇F (x) = Eω∇xf(x;ω).

Proof. By definition of differentiation, we have

∂

∂xi

F (x) = lim
h→0

E

[
f(x+ hei)− f(x)

h

]
= lim

h→0
E

[
1

h

∫ h

0

eTi ∇f(x+ sei) ds

]
.

To use dominated convergence, bound the inner term as follows:
∣∣∣∣
1

h

∫ h

0

eTi ∇f(x+ sei) ds

∣∣∣∣ ≤
1

h

∫ h

0

‖∇f(x+ sei)‖ ds

≤ sup
|s|≤h

‖∇f(x+ sei)‖

≤ ‖∇f(x⋆)‖+ L̃(‖x⋆ − x‖ + |h|).
The final term has finite expectation by assumption. Therefore, by domi-
nated convergence, we can swap the order of the limit and expectation, and
this proves the desired result.
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C Auxiliary results

Lemma 7. Let H be a symmetric positive definite matrix such that λ
max

(H) ≤
1. Then for any x such that ‖x‖2 = 1 we have

‖Hx‖22 ≤ xTHx.

Proof. Let v1, v2, . . . , vn be the orthonormal eigenvectors of H corresponding
to their eigenvalues λ1, λ2, . . . , λn. Then x has the eigenvector expansion

x = α1v1 + α2v2 + · · ·+ αnvn.

We conclude

‖Hx‖22 =
n∑

i=1

α2
iλ

2
i ≤

n∑

i=1

α2
iλi = xTHx.

Lemma 8 (Semidefinite dominated convergence.). Let Xk → X be a se-
quence of positive semidefinite matrices such that 0 � Xk � Y , where EY is
well-defined and finite. Then

lim
k→∞

EXk = E lim
k→∞

Xk = EX.

Proof. First, let ‖ · ‖max be the entrywise maximum norm and ‖ · ‖2 be the
spectral norm. Since all finite dimensional norms are equivalent, there is a
c > 0 such that

1

c
‖ · ‖max ≤ ‖ · ‖2 ≤ c‖ · ‖max.

Since 0 � Xk � Y implies

‖Xk‖2 = λmax(Xk) ≤ λmax(Y ) = ‖Y ‖2,
we have

|(Xk)ij| ≤ ‖Xk‖max ≤ c‖Xk‖2 ≤ c‖Y ‖2 ≤ c2‖Y ‖max ≤ c2
∑

ij

|Yij|

We conclude by applying dominated convergence theorem to Xk, elemen-
twise.

Theorem 8 (7.7.4 of Horn and Johnson [HJ90]). If positive semidefinite
matrices satisfy A � B � 0, then B−1 � A−1.

Theorem 9 (24.4 of Rockafellar [Roc70]). Let f be a closed proper convex
function. If x1, x2, . . . and v1, v2, . . . are sequences such that vi ∈ ∂f(xi),
where xi converges to x and vi converges to v, then v ∈ ∂f(x).
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D Main results

Theorem 10 (Bounding the contraction factor). Assume f̆ is a convex
quadratic and r is a closed proper convex function. Then

‖Tf̆+rx− Tf̆+ry‖2
‖x− y‖2 ≤

‖Tf̆x− Tf̆y‖
‖x− y‖

holds for any x, y ∈ Rn. Therefore, if f̆ and r are random and

E
‖Tf̆x− Tf̆y‖2

‖x− y‖2 ≤ γ2

holds for any x, y ∈ Rn, when we have

E
‖Tf̆+rx− Tf̆+ry‖2

‖x− y‖2 ≤ γ.

Proof. Write f = f̆ + r. Assume x 6= y and Tfx 6= Tfy as otherwise there is
nothing to show.

Define

r̃ε(z) = −(∇f̆(Tfx) + Tfx− x)T z +
1

2
(z − Tfx)

T vεv
T
ε

aε
(z − Tfx),

where

vε = (∇f̆(Tfx) + Tfx− x)− (∇f̆(Tfy) + Tfy − y) + ε(Tfy − Tfx)

aε = vTε (Tfy − Tfx)

for some ε > 0. Since we have

vε ∈ −∂r(Tfx) + ∂r(Tfy) + ε(Tfy − Tfx)

and since ∂r is a monotone operator, we have

aε = vTε (Tfy − Tfx) ≥ ε‖Tfy − Tfx‖2 > 0,

and therefore r̃ε is a well-defined convex quadratic.
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By design, r̃ε satisfies

∇r̃ε(Tf(x)) = −(∇f̆(Tfx) + Tfx− x)

∇r̃ε(Tf (y)) = −(∇f̆(Tfy) + Tfy − y) + ε(Tfy − Tfx)

Tf̆+r̃ε
x = Tf̆+rx = Tfx

lim
ε→0

Tf̆+r̃ε
y = Tf̆+ry = Tfy. (8)

Let n̂ = (x− y)/‖x− y‖. Now we have

‖Tf̆x− Tf̆y‖
‖x− y‖ = ‖(1 +M)−1n̂‖ (9)

≥ n̂(1 +M)−1n̂ (10)

≥ n̂

(
1 +M +

vεv
T
ε

aε

)−1

n̂ (11)

≥
∥∥∥∥∥

(
1 +M +

vεv
T
ε

aε

)−1

n̂

∥∥∥∥∥

2

(12)

=
‖Tfx− Tf̆+r̃ε

y‖2
‖x− y‖2 (13)

→ ‖Tfx− Tfy‖2
‖x− y‖2 as ε → 0. (14)

Equation (9) follows from explicitly working out Tf̆x−Tf̆y, (10) from Cauchy-
Schwartz, (11) from theorem 8, (12) from lemma 7, (13) again from explicitly
working out Tf̆+r̃ε

x− Tf̆+r̃ε
y, and (14) from equation (8).

Finally, we take expectations on both sides and apply Jensen’s inequality
[Bil95, §5] to get the desired result.

E
‖Tfx− Tfy‖2

‖x− y‖2 ≤ E
‖Tf̆x− Tf̆y‖

‖x− y‖ ≤
(
E
‖Tf̆x− Tf̆y‖2

‖x− y‖2

)1/2

≤ γ.

Corollary 1. By theorem 10 and the reasoning of section 3.3 of the main
article, we conclude that

E‖Tαfx− Tαfy‖2 ≤ γ(α)‖x− y‖2,
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where the asymptotic behavior of γ is characterized by theorem 11. Also, by
Jensen’s inequality [Bil95, §5], we have

E‖Tαfx− Tαfy‖ ≤ γ1/2(α)‖x− y‖.

Theorem 11 (The contraction factor). Let γ(α) defined as in section 3.3
of the main article. If EM is well-defined (i.e., finite-valued) and satisfies
λmin(EM) > 0, the contraction factor γ(α) (defined for α ≥ 0) is a strictly
decreasing function with

γ(α) = 1− αλmin(EM) + o(α)

as α → 0.

Proof. Note that the matrices I, M , I + αM , (I + αM)−1, and all other
variants share a same set of eigenvectors and therefore commute.

We first show that γ(α) is a strictly decreasing function. Since λmin(EM) >
0, the event

Aε,x = {ω ∈ Ω : ε ≤ xTMx, },
satisfies P(Aε,x) > 0 for sufficiently small ε > 0. With routine calculations,
we find that

xT (I + αM)−2x > xT (I + (α + h)M)−2x conditioned on Aε,x

holds. This implies

xTE(I + αM)−2x > xTE(I + (α+ h)M)−2x,

which in turn implies

min
‖x‖=1

{
xTE(I + αM)−2x− xTE(I + (α + h)M)−2x

}
= δ > 0,

since ‖x‖ = 1 is a compact set. Therefore

E(I + αM)−2 ≥ E(I + (α + h)M)−2x+ δI,

and we conclude

γ2(α) ≥ γ2(α+ h) + δ > γ2(α + h),

i.e., γ(α) is strictly decreasing.
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We now show the asymptotic expansion. First, the following shows (I +
αM)−2 = I − 2αM + o(α)

− lim
α→0+

1

α

(
(I + αM)−2 − I

)
= lim

α→0+
(I + αM)−2 2M (I + (α/2)M) = 2M.

Next, to change the order of expectation and limit, we use the dominated
convergence theorem. The limiting term satisfies

0 � (I + αM)−2 2M (I + (α/2)M)

� (I + αM)−2 2M (I + αM)

= (I + αM)−1 2M � 2M

for α ≥ 0. Since EM is by assumption well-defined and finite, we use
lemma 8, a version of the dominated convergence theorem, to conclude

lim
α→0+

1

α

(
E(I + αM)−2 − I

)
= 2EM,

which says
E(I + αM)−2 = I − 2αEM + o(α).

This, in turn, implies

γ(α) =
√

λmax (I − 2αEM + o(α))

=
√

1− 2αλmax (EM + o(1))

= 1− αλmax(EM) + o(α),

where the last line is by the continuity of λmax.

Lemma 9 (Bound on the proximal step). Assime f is subdifferentiable at
x. Than for any g ∈ ∂f(x), we have ‖Tf(x)− x‖ ≤ ‖g‖. In particular,

‖Tf (x)− x‖ ≤ min
g∈∂f(x)

‖g‖.

Proof. By definition of Tfx we have

−(Tfx− x) ∈ ∂f(Tfx).
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Since convexity of f(x) implies 〈∂f(x1)− ∂f(x2), x1 − x2〉 ≥ 0, we conclude

〈−(Tfx− x)− g,Tfx− x〉 ≥ 0

‖Tfx− x‖2 ≤ 〈−g, Tfx− x〉
‖Tfx− x‖ ≤ ‖g‖,

where the last line is by Cauchy-Schwartz.

Lemma 10 (Bound on the proximal step 2). For any g ∈ ∂f(x) and g′ ∈
∂f(x− g)

‖Tfx− x+ g‖ ≤ ‖g − g‖.

Proof. By simply rearranging terms we get

Tf (x) = argmin
y

{
f(y) +

1

2
‖y − x‖2

}

= argmin
y

{
f(y)− gTy +

1

2
‖y − (x− g)‖2

}

= Tf(y)−gT y(x− g).

Therefore

‖Tf(x)− x+ g‖ = ‖Tf(y)−gT y(x− g)− x+ g‖ ≤ ‖g′ − g‖,

where we have used lemma 9 in the last inequality.

Theorem 12 (Asymptotic behavior of the proximal mapping). For any
closed proper convex function f and an x ∈ domf such that ∂f(x) 6= ∅,
we have

Tαfx = x− αg(x) + o(α)

as α → 0, where g is the minimum-norm subgradient at x.

Proof. By definition of the proximal mapping, we have

−Tαfx− x

α
= vα ∈ ∂f(Tαfx).

Moreover, by lemma 9, we have

‖vα‖ ≤ ‖g(x)‖.

33



So ‖Tαfx − x‖ ≤ α‖g(x)‖ and therefore Tαfx → x as α → 0. Also, the
sequence vα is contained in a compact set and therefore there is a convergent
subsequence vαk

→ v, where αk → 0. So by theorem 9 we have v ∈ ∂f(x).
Since we know ‖v‖ ≤ ‖g‖ and since g is, by definition, the only subgradient
that satisfies this, we conclude v = g.

Finally, since this argument applies to any convergence subsequence of
vα, we conclude that limα→0+ vα = g.

Theorem 13 (SPI’s worst case). Assume that:

• the set of optimal points, X⋆, is nonempty,

• σ = supx⋆∈X⋆ E‖g(x⋆)‖ < ∞,

but nothing else. Then

ED(xk, X
⋆) ≤ D(x0, X

⋆) + σ

k∑

i=1

αi,

where D(x,X⋆) denotes the distance of x to the set of optimal points, i.e.,
D(x,X⋆) = infx⋆∈X⋆ ‖x− x⋆‖2.

Proof. Let x⋆ be any optimal point. Then we have

E [D(xk, X
⋆)] ≤ E‖xk − x⋆‖

≤ E‖Tαkfkxk−1 − Tαkfkx
⋆‖+ E‖Tαkfkx

⋆ − x⋆‖
≤ E‖xk−1 − x⋆‖+ αkσ

· · · ≤ ‖x0 − x⋆‖+ σ

k∑

i=1

αi.

Finally, we take the minimum of the RHS over all x⋆ ∈ X⋆ to get the desired
result.

Theorem 14. Assume that:

• the random functions fk have a common closed domain and associated
restricted strong convexity matrices Mk,

• λmin(EM) > 0,
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• σ = E‖g(x⋆)‖ < ∞.

Using constant step size αk = α, we get

E‖xk − x⋆‖ ≤ γk/2(α)‖x0 − x⋆‖+ ασ

1− γ1/2(α)
.

Proof. By corollary 1, lemma 9, and a simple recursive argument, we get

E‖xk − x⋆‖ ≤ E‖Tαfxk−1 − Tαfx
⋆‖+ E‖Tαfx

⋆ − x⋆‖
≤ γ1/2(α)E‖xk−1 − x⋆‖+ ασ

· · · ≤ γk/2(α)‖x0 − x⋆‖+ ασ
k−1∑

i=0

γi/2(α)

≤ γk/2(α)‖x0 − x⋆‖+ ασ

1− γ1/2(α)
.

Lemma 11. Assume the same assumptions as theorem 14 but use step size
αk = C/k. Then we have

lim sup
k→∞

E‖xk − x⋆‖ ≤ 2σ

λmin(EM)
.

Proof. By corollary 1, lemma 9, and a simple recursive argument, we get

E‖xk − x⋆‖ ≤ E‖Tαfxk−1 − Tαfx
⋆‖+ E‖Tαfx

⋆ − x⋆‖

≤ γ1/2(C/k)E‖xk−1 − x⋆‖+ σ
C

k

· · · ≤ ‖x0 − x⋆‖
k∏

i=1

γ1/2(C/i) + σC
k∑

i=1

1

i

k∏

j=i+1

γ1/2(C/j)

. ‖x0 − x⋆‖ exp
(
−Cλmin(EM)

2

k∑

i=1

1/i

)
+ σC

k∑

i=1

1

i
exp

(
−Cλmin(EM)

2

k∑

j=i+1

1/j

)

∼ ‖x0 − x⋆‖ exp
(
−Cλmin(EM)

2
log k

)
+ σC

k∑

i=1

1

i
exp

(
−Cλmin(EM)

2
log(k/i)

)

=
‖x0 − x⋆‖

kCλmin(EM)/2
+

σC

kCλmin(EM)/2

k∑

i=1

iCλmin(EM)/2−1

.
‖x0 − x⋆‖

kCλmin(EM)/2
+

σ

λmin(EM)/2
→ 2σ

λmin(EM)
.
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Theorem 15. Assume that:

• the random functions fk are almost surely twice continuously differen-
tiable at any given point, have a common closed domain, and associated
restricted strong convexity matrices Mk,

• EM is well defined,

• λmin(EM) > 0,

• ‖∇f(x)−∇f(y)‖ ≤ L̃‖x− y‖ for all x, y ∈ domf , where EL̃2 < ∞,

• σ = E‖g(x⋆)‖2 < ∞,

• x⋆ is in the relative interior of the domain.

Using step sizes αk = C/k, we get

E‖xk − x⋆‖2 =





O(1/k) if Cλmin(EM) > 1
O(log k/k) if Cλmin(EM) = 1
O(1/kCλmin(EM)) if Cλmin(EM) < 1.

Proof. We decompose mentioned in the main article to get

E[‖xk − x⋆‖2|xk−1] = E[‖Tαkfkxk−1 − Tαkfkx
⋆ + Tαkfkx

⋆ − x⋆‖2|xk−1]

= E
[
‖Tαkfkxk−1 − Tαkfkx

⋆‖2 + 〈Tαkfkxk−1 − Tαkfkx
⋆, Tαkfkx

⋆ − x⋆〉+ ‖Tαkfkx
⋆ − x⋆‖2

∣∣xk−1

]

≤ γ(αk)‖xk−1 − x⋆‖2 + α2
kσ

2 + E[〈Tαkfkxk−1 − Tαkfkx
⋆, Tαkfkx

⋆ − x⋆〉|xk−1].

The the first term is bounded by corollary 1 and the second term by lemma 9.
Now we further decompose the third term to get

〈Tαkfkxk−1−Tαkfkx
⋆, Tαkfkx

⋆ − x⋆〉
= −αk〈xk−1 − x⋆,∇fk(x

⋆)〉 (15)

+ 〈xk−1 − x⋆, Tαkfkx
⋆ − x⋆ + αk∇fk(x

⋆)〉 (16)

+ 〈Tαkfkxk−1 − xk−1, Tαkfkx
⋆ − x⋆〉 (17)

− 〈Tαkfkx
⋆ − x⋆, Tαkfkx

⋆ − x⋆〉. (18)

Since x⋆ ∈ ri (domf) by assumption, we have E∇f(x⋆) = 0 by lemma 6.
Therefore the expectation of term (15) is 0.
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Next we bound second part of term (16) to get

‖Tαfx
⋆ − x⋆ + αk∇f(x⋆)‖ ≤ α‖∇f(x⋆ − α∇f(x⋆))−∇f(x⋆)‖ ≤ α2‖∇f(x⋆)‖L̃,

where the first inequality is by lemma 10 and the second by assumption.
Then we take the expectation and apply Cauchy-Schwarz to get

E‖Tαfx
⋆ − x⋆ + αk∇f(x⋆)‖ ≤ α2σL.

Finally, by applying Cauchy-Schwartz again, we get

E(16) ≤ α2σL‖xk−1 − x⋆‖.

Finally we bound (17) and (18). By Cauchy-Schwarz applied twice,

E[〈Tαkfkxk−1 − xk−1, Tαkfkx
⋆ − x⋆〉|xk−1] ≤ α2

k

√
E[‖∇fk(xk−1)‖2|xk]E[‖∇fk(x⋆)‖2].

Note that the assumption

‖∇f(x)−∇f(x⋆)‖ ≤ L̃‖x− x⋆‖

implies
‖∇f(x)‖ ≤ L̃‖x− x⋆‖+ ‖∇f(x⋆)‖

by the triangle inequality. By applying this, we get

E [〈Tαkfkxk−1 − xk−1, Tαkfkx
⋆ − x⋆〉|xk−1] ≤ α2

k(L‖xk−1 − x⋆‖+ σ)σ.
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So finally, we combine all these results and lemma 11 and get

E‖xk−x⋆‖2 ≤ γ(αk)‖xk−1 − x⋆‖2 + α2
k

(
3σ2 + 2σL‖x− x⋆‖

)

∼
k∏

i=1

γ(C/i)‖x0 − x⋆‖2 +
k∑

i=1

C2

i2
(3σ2 + 4σ2L/λmin(EM))

k∏

j=i+1

γ(C/i)

. ‖x0 − x⋆‖2 exp
(
−Cλmin(EM)

k∑

i=1

1/i

)

+

k∑

i=1

C2

i2
(3σ2 + 4σ2L/λmin(EM)) exp

(
−Cλmin(EM)

k∑

j=i+1

1/i

)

∼ ‖x0 − x⋆‖2
kCλmin(EM)

+
C2(3σ2 + 4σ2L/λmin(EM))

kCλmin(EM)

k∑

i=1

iCλmin(EM)−2

∼ ‖x0 − x⋆‖2
kCλmin(EM)

+ C2

(
3σ2 +

4σ2L

λmin(EM)

)




1
k(Cλmin(EM)−1)

if Cλmin(EM) > 1
log k
k

if Cλmin(EM) = 1
1

kCλmin(EM)(1−Cλmin(EM))
if Cλmin(EM) < 1

∼





C2(3σ2+4σ2L/λmin(EM))
(Cλmin(EM)−1)

1
k

if Cλmin(EM) > 1

C2(3σ2 + 4σ2L/λmin(EM)) log k
k

if Cλmin(EM) = 1(
1

(1−Cλmin(EM))
+ ‖x0 − x⋆‖2

)
1

kCλmin(EM) if Cλmin(EM) < 1.

Finally, we get the desired result by disregarding all the constants.
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E Counter examples

Example 1. Non-uniqueness of the “best” restricted strong convexity matrix.

Consider the convex function

f(x, y) = max{x2 + 2y2, 2x2 + y2}
which has restricted strong convexity matrices

M1 =

[
1 0
0 1

]
M2 =

[
2/3 2/3
2/3 2/3

]
.

We can verify via brute force that M1 and M2 are maximal. More precisely, f
has no restricted strong convexity matrixM such thatM 6= M1 andM � M1,
and the same holds for M2. In particular, M1 and M2 are incomparable, i.e.,
M1 � M2 and M1 � M2.

So given a convex function, it may not always be possible to uniquely
choose the “strongest” restricted strong convexity matrix. As this example
shows, it is possible to have many distinct choices that are incomparable.

Fundamentally, we have this complication because the set of symmetric
matrices (which is partially ordered) does not have a well-defined meet, i.e.,
the partially ordered set does not form a lattice. This example was inspired
by [Mak].

Example 2. Tf̆+r is not always a stronger contraction than Tf̆ .

Consider the functions

f̆(x) =
1

2
xT

[
1 0
0 0

]
x r(x) =

1

2
xT

[
1 1
1 1

]
x

and the points

x =

[
3
0

]
y =

[
0
1

]
.

Then simple calculations gives us

‖x− y‖2 = 10 ‖Tf̆x− Tf̆y‖2 = 3.25 ‖Tf̆+rx− Tf̆+ry‖2 = 3.4

and we see that Tf̆+r is a weaker contraction than Tf̆ . However, theorem 10

is not violated since 3.4/10 ≤
√

3.25/10.
Fundamentally, we have this complication because A � B � 0 does not

imply A2 � B2. This example was inspired by [CK85].
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