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Abstract

Author’s note: This document is a slightly updated and reformatted extract from
a grant proposal to the ONR. As a proposal, it aims describe useful directions while
reviewing existing and pilot work; it has no pretensions to being a systematic, rigorous,
or entirely coherent scholarly work. On the other hand, I’ve found that it provides a
useful overview of a few ideas on the architecture of natural language that haven’t yet
appeared elsewhere. I provide it for those interested, but with all due caveats.

Words are potentially one of the clearest windows on human knowledge and con-
ceptual structure. But what do words mean? In this project we aim to construct
and explore a formal model of lexical semantics grounded, via pragmatic
inference, in core conceptual structures. Flexible human cognition is derived
in large part from our ability to imagine possible worlds. A rich set of concepts, in-
tuitive theories, and other mental representations support imagining and reasoning
about possible worlds—together we call these core cognition. Here we posit that the
collection of core concepts also forms the set of primitive elements available for lexi-
cal semantics: word meanings are built from pieces of core cognition. We propose to
study lexical semantics in the setting of an architecture for language understanding
that integrates literal meaning with pragmatic inference. This architecture supports
underspecified and uncertain lexical meaning, leading to subtle interactions between
meaning, conceptual structure, and context. We will explore several cases of lexical
semantics where these interactions are particularly important: indexicals, scalar adjec-
tives, generics, and modals. We formalize both core cognition and the natural language
architecture using the Church probabilistic programming language. In this project we
aim to contribute to our understanding of the connection between words and mental
representations; from this we expect to gain critical insights into many aspects of psy-
chology, to construct vastly more useful thinking machines, and to interface natural
and artificial intelligences more efficiently.
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1 Introduction

Words are potentially one of the clearest windows on human knowledge and conceptual
structure. If we understood the connection between words and mental representation,
we could gain critical insights into almost every aspect of psychology, construct vastly
more useful thinking machines, and interface the two. But what do words mean? In this
project we aim to construct and explore a formal model of lexical semantics
grounded, via pragmatic inference, in core conceptual structures. We will
do so using a set of modeling tools—chiefly the probabilistic programming language
Church [32]—that we have previously developed and used to explain aspects of high-
level human cognition.

Flexible human cognition is derived in large part from our ability to imagine (or
sample, or simulate) possible worlds. A rich set of concepts, intuitive theories, and
other mental representations support imagining and reasoning about possible worlds—
together we call these core cognition1. We can formalize key pieces of core cognition
(such as intuitive physics and theory of mind) using probabilistic programming tools
by viewing commonsense knowledge as a set of interrelated definitions (or concepts) in
a probabilistic programming language. Probabilistic programs specify sampling pro-
cedures over possible program executions, each execution fixes (some of) the variables
in that describe the world, hence each collection of concepts describes how to sample
from a rich space of possible worlds. The inference (or conditioning, or query) operator
describes how to use these distributions on worlds for reasoning. We have been able
to explain many inferences that humans draw from sparse evidence using these tools.
Here we posit that this collection of concepts also forms the set of primitive elements
available for lexical semantics: word meanings can be built from the pieces of core
cognition.

However, the connection between core concepts and lexical semantics is not di-
rect: first, because language must flexibly adapt to the context of communication,
the connection between lexical representation and interpreted meaning is mediated by
pragmatic inference; second, sentence meanings act as constraints on possible worlds,
via their truth-value, whereas core concepts describe generation of possible worlds. We
propose to explore a model of language that formalizes and explains these differences,
again using tools of probabilistic programming.

In recent work we have made preliminary progress at combining underspecified
semantic representations with a general purpose pragmatic inference mechanism. This
potentially allows us to account for subtle aspects of language use with relatively simple
semantic denotations. In particular, we view semantic representation as indivisible

1This phrase is chosen to connote the conceptual core of human thinking, in contrast to the distal processes
of low-level perception, attention, etc. There is no particular connection intended to the developmental claims
of core knowledge, except for a concern with concepts and high-level cognition.
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from core cognition, and the effective meaning of words as emerging from a pragmatic
inference process.

Our approach is similar in spirit to cognitive semantics, in that we attempt to
ground semantics in mental representation, but we draw on the highly successful tools
of Bayesian cognitive science to formalize these ideas. Similarly, our approach draws
heavily on the progress made in formal model-theoretic semantics [61, 34], borrowing
insights about how syntax drives semantic composition, but we compose elements of
stochastic logics rather than deterministic ones. Finally, our approach is related to
recent progress in robotics [81] but is more systematic and systematically connected to
cognitive and linguistic theory.

We propose to study lexical semantics in the setting of an architecture for language
understanding that is described in section 3. We first provide, in section 2, background
on the probabilistic programming language Church and on using Church to describe
core cognition. In section 4 we describe several case studies of lexical semantics in this
framework.

2 Background

Probabilities describe degrees of belief, and probabilistic inference describes rational
reasoning under uncertainty. It is no wonder, then, that probabilistic models have
exploded onto the scene of modern artificial intelligence, cognitive science, and applied
statistics: these are all sciences of inference under uncertainty. But as probabilistic
models have become more sophisticated, the tools to formally describe them and to
perform probabilistic inference have wrestled with new complexity. Just as program-
ming more than the simplest algorithms requires tools for abstraction and composi-
tion, complex probabilistic modeling requires new progress in model representation—
probabilistic programming languages. These languages provide compositional means
for describing complex probability distributions; implementations of these languages
provide generic inference engines: tools for performing efficient probabilistic inference
over an arbitrary program.

By providing a uniform and universal representation for probabilistic models, prob-
abilistic programming provides a framework for unifying disparate Bayesian models
of human cognition. Indeed, while Bayesian models have been extremely influential
in cognitive science [e.g. 82], it is only recently that we have the tools to view the
Bayesian approach as a general framework for mental representation. We next give a
brief introduction to probabilistic programming, then an indication of how these tools
can be used for modeling human cognition.
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2.0.1 Probabilistic Programming Languages and Church

In their simplest form, probabilistic programming languages extend a well-specified de-
terministic programming language with primitive constructs for random choice. This
is a relatively old idea, with foundational work by Giry, Kozen, Jones, Moggi, Saheb-
Djahromi, Plotkin, and others [see e.g. 38]. Yet it has seen a resurgence thanks to
new tools for probabilistic inference and new complexity of probabilistic modeling ap-
plications. There are a number of recent probabilistic programming languages [e.g.
73, 66, 60, 68, 67, 45, 65, 59, 44] embodying different tradeoffs in expressivity, ef-
ficiency, and perspicuity. We will focus on the probabilistic programming language
Church [32], which has the benefits of being close to the core mathematical founda-
tion (stochastic lambda calculus) yet having sufficient expressivity to easily represent
abstract structures needed in cognitive modeling.

Church extends (the purely functional subset of) Scheme [1] with elementary ran-
dom primitives, such as flip (a bernoulli), multinomial, and gaussian. In addition, Church
includes language constructs that simplify modeling. For instance, mem, a higher-order
procedure that memoizes its input function, is useful for describing persistent random
properties and lazy model construction. If we view the semantics of the underlying
deterministic language as a map from programs to executions of the program, the se-
mantics of the probabilistic language is a map from programs to distributions over
executions. When the program halts with probability one, this induces a proper dis-
tribution over return values. Indeed, any computable distribution can be represented
as the distribution induced by a Church program in this way (see [25, §6], [2, §11], and
citations therein).

Probabilistic programs extend probabilistic graphical models [47], aka Bayes nets,
one of the most important ideas of modern AI. Indeed, graphical models can be seen
as flow diagrams for probabilistic programs—and just as flow diagrams for determin-
istic programs are useful but not powerful enough to represent general computation,
graphical models are a useful but incomplete approach to probabilistic modeling. For
an example of this, we need look no further than the fundamental operation for in-
ference, probabilistic conditioning, which forms a posterior distribution from the prior
distribution. Conditioning is typically viewed as a special operation that happens to
a probabilistic model (capturing observations or assumptions), not one that can be
expressed as a model. However, because probabilistic programs allow stochastic recur-
sion, conditioning can be defined as an ordinary probabilistic function (Fig. 1, Top).
Notice that, since conditioning is an ordinary function, conditioning can be nested
inside other calls to the conditioning operator. This is a pattern that we will use in
defining our language models in section 3.

In Church, conditioning is specified by the more convenient query syntax (Fig. 1,
Bottom). A Church query first gives a set of stochastic function definitions, which set
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1 (define (rejection-query thunk condition)
2 (let ((val (thunk)))
3 (if (condition val)
4 val
5 (rejection-query thunk condition))))

1 (query
2 ... defines...
3 query-expression
4 condition-expression)

1 (define (thunk)
2 ... defines...
3 (pair query-expression
4 condition-expression))
5 (define condition rest)

Figure 1: (Top) Defining conditional inference in Church as a stochastic recursion: rejection sam-
pling represents the conditional probability of the thunk conditioned on the condition predicate
being true. We typically use special query syntax (Bottom, left), which can be desugared into a
query thunk (Bottom, right).

up the “language” of the query, then gives the query expression (whose value we will
return) and finally the condition expression, which must return true. We also allow
factor statements which provide another way of constraining a query: the statement
(factor expr) multiplies the value of expr (assumed to be a real number) into the proba-
bility of the current execution. This provides a convenient way to add a soft constraint
on the distribution of executions (via a side-effecting operation).

2.0.2 Core Cognition: Intuitive Theories and Conceptual Structure

Church programs can be used to express a wide variety of cognitive models, captur-
ing concepts from core cognitive domains and core concepts from many specific areas
of knowledge. For a complete tutorial on using Church to model human cognition,
including many examples, see http://www.stanford.edu/˜ngoodman/ProbMods.html.

To illustrate, we consider the problem of capturing commonsense knowledge about
the game tug-of-war. Figure 2a, gives Church functions specifying key concepts for
this domain (though certainly not exhausting possible knowledge about the game).
This “conceptual library” of probabilistic functions can be used to reason about many
patterns of evidence, via different queries, without needing to specify ahead of time the
set of people, the teams, or the matches. A Church program provides a description of
how to go about simulating a possible world in the domain (here, randomly choosing
strengths, laziness, etc., and computing the winner of each match). To reason from
evidence or hypotheses, this simulation process is directed: a query describes what
assumptions to fix and what to simulate (for instance, fixing match outcomes and
simulating strengths).

http://www.stanford.edu/~ngoodman/ProbMods.html
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(a)
1 ;;Strength is a persistent (memoized) property of each person:
2 (define strength (mem (lambda (person) (gaussian 1.0 1.0))))
3

4 ;;Laziness varies from match to match:
5 (define (lazy person) (flip 0.3))
6

7 ;;When a person is lazy they pull less:
8 (define (pulling person) (if (lazy person)
9 (/ (strength person) 2)

10 (strength person)))
11

12 ;;Total pulling of the team is the sum:
13 (define (total-pulling team) (sum (map pulling team)))
14

15 ;;The winning team pulls hardest:
16 (define (winner team1 team2)
17 (if (< (total-pulling team1) (total-pulling team2))
18 team2
19 team1))

(b)

Figure 2: Modeling intuitive concepts in the tug-of-war domain. (a) A Church model to capture
core concepts. While this model is simple, probabilistic queries can explain human reasoning
from diverse evidence with high quantitative accuracy. (b) Comparison of the model to human
judgements in Experiment 1 of [27].
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The predictions of this simple model match human intuitions quite well, Figure
2b. In [27] we presented people with the results of a set of matches in a “ping-pong
tournament”, and asked for judgements about the strength of one of the players. We
found a correlation of 0.98 between model and human judgements. This compelling fit
suggests that the definitions in Figure 2a capture important aspects of the concepts
people have for reasoning about team games. However, connecting these concepts to
natural language would provide a much more natural probe of people’s intuitions. For
instance, we would like to ask Is Bob strong? rather than asking for an arbitrary rating
of Bob’s strength; but how does the adjective strong in this positive form relate to the
conceptual degree of strength? The connection must be indirect since, as discussed
in section 4.0.7, a statement like Bob is strong can be interpreted very differently in
different contexts. More generally, how may we use concepts defined in a Church model
for a given domain to build the semantics of natural language for this domain?

3 The Architecture of Natural Language

In this section we give an overview of our framework for modeling natural language
understanding. This framework provides the architecture into which lexical semantics
fits; it is thus the enabling theory for the entire project. We first describe the role of
literal meanings in updating beliefs, then describe the pragmatic enrichment of meaning
through inference, finally we extend this framework to handle context-specific semantic
denotations via free variables.

3.0.3 L0 Model: Literal meaning

The basic assumption of our probabilistic model of language interpretation is that sen-
tences can be used to update the listener’s belief distribution. Because probabilistic
belief update is performed by conditioning a prior distribution to get a posterior distri-
bution, the meaning of a sentence should be a conditioning expression—an expression
that evaluates to true or false. If we assume further that a listener’s prior knowledge
about the world is given by her concept definitions, then the literal interpretation of
language can be given by the Church function:
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1 ;;The basic listener: how is the world , given that the utterance is true?
2 (define (L0 utterance QUD)
3 (query
4 ... core concept definitions...
5 (eval QUD)
6 (eval (meaning utterance))))

This describes a listener L0 who hears utterance, and is interested in the import for a given
question-under-discussion2 (QUD). The (meta-)operator eval evaluates a given expression
in the current environment. Here this means evaluating both the QUD expression and the
meaning of the utterance in an environment in which the core concept definitions are
visible. The result is a posterior distribution for each possible QUD—hence a posterior
distribution over possible worlds.

Meaning Composition We assume for simplicity that the utterance has already
been parsed into a syntactic tree. We don’t address this syntactic parsing problem
in this project, but instead assume it can be effectively handled by existing tools.
Following standard practice of formal semantics [34] we construct the meaning of the
sentence recursively along the syntactic tree:

1 ;;Meanings are constructed by recursive composition along the (syntactic) tree:
2 (define (meaning utterance)
3 (if (lexical-item? utterance)
4 (lexicon utterance)
5 (pair (meaning (left utterance)) (meaning (right utterance)))))

Here the predicate lexical-item? determines if the remaining utterance is a single lexical
item (entry in the lexicon), the function left returns the left subtree of the utterance
(which we assume is the operator—possibly through a syntactic transformation), and
right returns the right subtree. By combining meanings with the pair operator, we
are implying that composition happens by function application: when the meaning is
evaluated (in L0) the left subtree meaning will be applied to the right subtree meaning.
Of course, a more systematic treatment of syntax and composition, such as CCG [78],
could fill in the meaning function.

Lexical Meanings The function lexicon looks up the meaning of a word, returning
an expression that can be evaluated in the current environment. Because this envi-
ronment contains core concept definitions, the meanings of words can (and will) refer
to non-linguistic mental representations: meanings of words are about the possible

2Conceptually, we think of the listener as forming a distribution over possible worlds. However worlds
are unwieldy to represent (being infinitely large), so we represent this distribution instead by a function that
can give the distribution over answers to every question that can be asked in a world. This QUD is a notion
used widely in formal models of discourse [83, 28, 29, 69, 70, 9].
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worlds that a listener considers. The lexicon is described in detail in section 4. (In
later sections use the standard notation [[word ]] for (lexicon word).)

3.0.4 L1 Model: Pragmatic enrichment

The literal meaning, as encoded by lexicon and interpreted by L0, forms the stable con-
tribution of words to meaning across contexts; however meaning can often be strength-
ened or changed in particular communicative contexts by pragmatic inference. Here
we model pragmatic enrichment of the literal meaning following [22, 31, 79]. Critically,
because query is an ordinary function that may be nested in itself, we are able to model
a listener reasoning about a speaker, who reasons about a literal listener. This model
formalizes the idea that a listener is trying to infer what the speaker intended, while a
speaker is trying to make the listener form a particular belief.

The reflective speaker makes a speech act in order to lead the listener to infer a
particular value of the question under discussion:

1 ;;The speaker: what should I say , so that the listener forms the right
interpretation?

2 (define (S1 val QUD)
3 (query
4 (define utterance (language-prior))
5 utterance
6 (equal? val (L0 utterance QUD))))

This function describes a soft-max optimal speaker whose goal is for the literal listener
to arrive at a given interpretation. The language-prior forms the a priori (non-contextual
and non-semantic) distribution over linguistic forms, which may be modeled with a
probabilistic context free grammar or similar model. This prior inserts a cost for each
utterance: using a less likely utterance will be dispreferred a priori.

The pragmatic listener can now be modeled as a Bayesian agent inferring the value
of the question under discussion, given that the reflective speaker has bothered to make
a particular speech act:

1 ;;The pragmatic listener: what value does the QUD have , given that a speaker chose
this utterance to express it?

2 (define (L1 utterance QUD)
3 (query
4 ... core concept definitions...
5 (define val (eval QUD))
6 val
7 (equal? utterance (S1 val QUD))))

This model gives rise to standard scalar implicatures (e.g. some implies not all) and has
been shown to predict human judgements with high quantitative accuracy in several
language understanding tasks [22, 31]. Ongoing research aims to further explore the
ability of this model to predict human behavior in reference games and simple language
understanding tasks.
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3.0.5 L1-sv Model: Free semantic variables

1 (define (L0 utterance QUD sv)
2 (query
3 ... core concept definitions...
4 (eval QUD)
5 (eval (meaning utterance))))
6

7 (define (S1 val QUD sv)
8 (query
9 (define utterance (language-prior))

10 utterance
11 (equal? val (L0 utterance QUD sv))))
12

13 (define (L1-sv utterance QUD)
14 (query
15 ... core concept definitions...
16 (define sv (semvar-prior))
17 (define val (eval QUD))
18 val
19 (equal? utterance (S1 val QUD sv))))

Figure 3: A probabilistic model of natural language understanding incorporating a literal listener
L0, a reflective speaker S1, and a pragmatic listener L1-sv who reasons about the question under
discussion and the value of free semantic variables.

Under standard linguistic analysis, the literal meaning of a sentence frequently
leaves some aspects underspecified; to assign a complete meaning to the sentence,
pragmatic inference is required to fill in the value of these free variables. This occurs,
for example, in sentences such as He is drinking a martini, which cannot receive a
determinate meaning until the intended referent of He is identified (see section 4.0.6).
It is believed that the same holds for Sam is tall, since literal meaning underdetermines
the height required to count as tall (see section 4.0.7); or again for Moose have horns,
where the semantics does not determine what proportion of moose must have horns in
order for this sentence to be true (see section 4.0.8). This type of context-dependence
is widespread in language, but a general and precise framework for understanding
how speakers and listeners make use of and resolve underspecified meanings has not
previously been proposed.

In our approach, semantic context-dependence is connected with pragmatic infer-
ence by instantiating semantic variables at the L1 level and passing them down to lower
levels. The complete model is shown in Figure 3. In this model, a reflective listener
L1-sv evaluates candidate resolutions of the free semantic variables sv jointly with pos-
sible values for the QUD. As we describe in section 4, this results in an interaction that



Grounding Lexical Meaning in Core Cognition 11

produces powerful context-sensitive usage of words despite relatively impoverished se-
mantic representations.

For a fully compositional theory of natural language semantics, a mechanism is
needed to account for the fact that expressions with free semantic variables (such as
the pronoun he) can occur in arbitrarily embedded positions in a sentence. Notice that
when the QUD and the meaning of the utterance are evaluated in L0 of this model, they are
evaluated in an environment in which the semantic variables (sv) are bound variables
(because these are arguments to the L0 function). These variables are thus free with
respect to the lexical entries, but not with respect to the full language model—they
have been filled in by the pragmatic listener model. Using an environment to bind
the free variables in this way is similar to the approach of relativizing the meaning
function to a fixed set of parameters [57, 58, 7]. An alternative approach would be to
adopt the assumptions about compositionality associated with variable-free semantics
[80, 77, 36, 8]. In this approach, the standard mechanism of function application is
augmented, making it possible to lift a free variable out of deeply embedded syntactic
positions, to the top level of literal meaning.

4 Lexical Semantics: Case Studies in Flexible

Meaning

The language architecture described above predicts the interpretation of an utterance
given its semantic content and context; fixing the semantic content of particular (classes
of) words makes this abstract architecture concrete by grounding language use into the
concepts of core cognition. In this section we describe our proposal to study several
classes of words as representative case studies in which concepts, uncertainty, and
inference interact in important ways. We place particular emphasis on the cases in
which free semantic variables are needed to allow contextual flexibility in semantic
interpretation.

4.0.6 Indexicals and referring expressions

Perhaps the simplest case where semantic free variables are needed is in the meanings
of referring expressions. For instance, the meaning of He is drinking a martini can be
taken to be (approximately): male(x)∧ drinking(x, y)∧martini(y), where x and y are
free semantic variables that range over individual entities. The semantic contribution
of he to this meaning is two-fold: it introduces a free variable, and it constrains that
free variable to be a male. However, in order to compose properly with the surrounding
sentence, the return value of he must be only the variable x. We can add the constraint,
without affecting the return value, by using a Church factor statement:
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[[he]]=(begin (factor (if (male x) 1.0 0.1)) x).
This definition adds the constraint as a side-effect, then goes on to return the value of
the free variable x. Notice that the constraint that he be male is a soft constraint: in a
situation where no male referent for x is plausible, it can be interpreted as a non-male.
(For instance, in a situation in which we are discussing the best way to cook a burger
the sentence Wait until he’s just brown, then flip him can be interpreted as referring
to the burger.) Interpretation of the pronoun is guided by the semantics, but driven
by probabilistic inference of the sentence meaning (similar to the conclusion of Kehler
et al. [41]).

The constraints in this approach are determined by the conceptual content, but
so are the potential referents: the possible values of x are not entities in the world,
but entities in the possible world represented by the listener L1-sv. This is particularly
striking in the case of indexicals such as I/here/now/that. The free variable for now
ranges over times, that for I over people, and each must have meta-access to the speech
act itself. For instance,

[[I]]=(begin (factor (if (eq? x (speaker-of utterance)) 1.0 0.1)) x);
where we have made use of the fact that the utterance is bound in the environment
in which [[I]] is evaluated (being an argument to L0), and assumed that the speaker-of

function returns the individual who performed a speech act.
Horn’s division of pragmatic labor [35] presents a more subtle case for the pragmatic

fixing of reference. This principle dictates that, in the absence of distinguishing seman-
tic content, simple utterances should be interpreted as un-marked (i.e. simple/prob-
able/good) meanings and complex utterances as marked (i.e. deviant/unlikely/bad)
meanings. For instance I got the car started is interpreted as doing something un-
usual to start the car, since the simpler phrase I started the car is available to be
interpreted as simply turning the ignition. To formalize this, imagine cheap/costly
utterances u1 /u2 and a priori likely/unlikely interpretations of the QUD val1/val2. We
would like the less costly expression to be interpreted as the more likely interpretation:
[[u1]]=val1, [[u2]]=val2. This is a simple signaling game [23], and this solution is a Nash
equilibrium; however, there are many equally good Nash equilibria for this game. A
number of attempts have been made to explain why this particular equilibrium should
be chosen, but all require ad-hoc stipulations on the equilibrium concept. Indeed, the
simple model L1, with no semantic free variables, is unable to arrive at the correct
interpretations. We have shown in [10] that the L1-sv model does arrive at the correct
interpretations in this case. Many questions and difficulties remain to integrate this
result with lexical semantics more generally. In particular, how does the division of
labor play out in situations with similar but not equivalent semantic meaning, and
what semantic work can we rely on this effect to do?

We propose to use the L1-sv framework with constrained entity variables to study
the details of how referring expressions can be flexibly interpreted. As illustrated
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above, complex interpretation patterns can be expected as context, concepts, and in-
ference interact. We will explore the ways that context allows semantic constraints
to be violated, the conceptual grounding of indexicals, the effect of alternative refer-
ring expressions, and the use of division of pragmatic labor in simplifying semantic
denotations.

4.0.7 Scalar Adjectives

Many words resist simple truth-functions that could be used to tell with certainty
when they hold. For instance, exactly how tall must a person be to be a tall per-
son? Vagueness of meanings has been the subject of much discussion in philosophy
and linguistics, and is of critical importance in the psychological literature on graded
concepts [71, 63, 4, 40, 21, 33]. Vagueness is particularly clear in the meanings of grad-
able adjectives, such as tall/short, wide/narrow, happy/sad, wet/dry, and full/empty.
These adjectives serve to express measurement along a scale (Sam is six feet tall);
they are grammatically gradable (Sam is very tall), are typically vague, and are highly
context-sensitive [e.g. 39, 20, 17, 85, 86, 43, 42].

Vagueness can be seen from the existence of borderline cases: individuals for whom
it is unclear whether an adjective applies. A seven-foot-tall man is obviously tall, and
a five-foot-tall man is obviously not; but does a man who is 6′2′′ count as “tall”? When
asked a question of this type, speakers typically express uncertainty, and show disagree-
ment in responses to a forced-choice [12, 74, 84, 3]. The vagueness of adjectives appears
to be related to statistical properties of a comparison class [11, 74, 76], which can be
implicit in the context or provided explicitly as in: Sam is rich for a janitor/politician
or Michael Jordan is tall for a man/basketball player.

Our approach to gradable adjectives starts with a scalar theory of their lexical
semantics. We adopt a degree semantics in which adjectives relate individuals to a
threshold value3: [[A]] = λx[µA(x) > θA], where θA is a free threshold variable on
A’s scale and µA(x) is the degree of x on this scale. We will further assume that
the function µA(x) is a concept defined in core cognition. For example, if height is a
persistent property of an individual (here drawn from a fixed gaussian for simplicity),
the basic meaning of tall is:

1 ;;core concept definitions:
2 (define height (mem (λ (x) (gaussian 6.0 1.0))))
3 ...
4

5 ;;lexicon:
6 [[tall]] = (λ (x) (> (height x) θ))

3Or rather: [[A]]= (λ (x) (> (µA x) θ), but we have used the more familiar mathematical notation
where it is clearer.
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Figure 4: Predictions of the L1-sv model for a threshold semantics for adjectives, with prior dis-
tribution over degrees appropriate to tall/short and full/empty. These simulations used Markov
Chain Monte Carlo to draw 30,000 samples from the joint posterior on degree and θ, with α = 4,
the utterance prior of u ∝ length(u), a burn-in of 5000 samples, and a lag of 100. Plots show the
kernel density of the relevant variables. The alternative utterances considered are to say nothing
or to use the positive (e.g. tall) or negative (e.g. short) adjective.

Crucially, θ is left as a free variable in the semantic representation. The meaning of Sam
is tall, then, is simply that Sam’s height is at least θ; the task of inferring θ in order to
derive a meaning for this sentence will be preformed by the full interpretation model,
L1-sv. This approach to the interpretation of vague adjectives captures the insights of
previous probabilistic accounts [18, 74, 24, 51], but improves on them in several ways,
notably in providing a clear lexical semantics from which the probabilities follow.

To illustrate, imagine a situation in which a speaker is attempting to communicate
Sam’s height to a listener who does not know how tall Sam is, but knows that Sam is an
adult male. The QUD is (height ‘sam). We assume that listener and speaker share the com-
mon prior knowledge that heights of people are approximately normally distributed.
The meaning of the sentence Sam is tall, as constructed by the meaning function, will be
simply (> (height ‘sam) theta). The listener L1-sv will then do a joint inference of Sam’s
height and the threshold variable theta.

If the value of theta is very low (e.g., one foot), the utterance Sam is tall is extremely
uninformative: the listener already has a strong belief that Sam is more than one foot
tall. On the other hand, if theta is extremely high, the utterance will be extremely
informative since the prior probability that Sam’s height is greater than theta is very
low. This means that Sam is tall was much more likely to be uttered by S1 if the
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value of theta is high. But this pressure to infer high theta, and hence large heights, is
balanced by the low prior probability of very large heights. The posterior distribution
on heights given the utterance (shown in Figure 4) reflects this balancing process. In
effect, interpretations are preferred which make Sam significantly taller than average,
but not implausibly tall. Our model thus gives precise form to an intuition about the
meaning of scalar adjectives which has been stated repeatedly in the linguistic and
philosophical literature [e.g. 11, 19, 42].

There is an immediate explanation in this approach of the context-dependence of
scalar adjectives: different comparison classes have different prior distributions, which
affects the joint inference carried out by L1-sv. This can explain not only quantitative
shifting of the threshold depending on context (e.g. tall man vs. tall basketball player),
it can also explain qualitative differences between different types of adjectives. For
instance, absolute adjectives, like full/closed, also refer to a degree along some scale,
but behave differently than relative adjectives (like tall): absolute adjectives compare
a degree to a (fairly) fixed extreme point [72, 43, 42]4. For instance, a closed door is
not one that’s more closed than average, it’s closed. Prior distributions which have
significant probability mass near the edges of a scale result in very different interpre-
tation than those with thin tails (Figure 4 left vs right): the interpreted meaning is
strongly peaked near the extreme point of the degree. The difference between relative
and absolute adjectives can thus be explained by qualitative differences in the prior dis-
tributions which they invoke. These differences in prior distribution are a consequence
of non-linguistic knowledge represented in concepts of the domain.

Sorites paradox The much-discussed sorites paradox is a key puzzle of gradable
adjectives, for example:

(1) Sorites paradox:

a. A man who is 7 feet tall is tall.

b. A man who is 0.01 inches less tall than someone who is tall is also tall.

c. Therefore, a man who is 4 feet tall is tall.

This argument is logically valid, and the premises 1a and 1b appear to be reasonable;
but the conclusion 1c is clearly false. An account of vagueness should explain both
the logical puzzle (which premise is incorrect?) and the psychological problem (why
do people find the premises so compelling, while also maintaining that the conclusion
is completely implausible? [Cf. 19]).

Our approach to adjective interpretation offers a new account of the sorites paradox.
The argument is logically unsound because the second premise 1b is not strictly true:

4There are also differences in modification patterns between relative and absolute adjectives. For example,
we can modify full as completely full but we cannot usually say not completely tall.
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if x’s height is very close to the cutoff, θ, then x may count as “tall” while someone
just slightly shorter does not. However, the second premise is highly plausible because
the probability that θ and x’s height will be so close is small. Indeed, if we choose
the height h of x and the threshold θ from the joint posterior distribution that L1-sv

defines given the utterance x is tall, the probability that h− θ > 0.01 (i.e. premise 1b
holds) is approximately 95%. This explains the psychological puzzle described above:
why is the second premise so compelling, if it is not strictly true? The answer is that
this premise has high probability (a fact which does not justify its repeated use as a
premise in logical arguments [49]).

Absolute adjectives are different: the second premise is less intuitively plausible for
an adjective like closed (“A door that is 0.1 inches less closed than a closed door is also
closed”) [42]. We suggest that this is essentially because the posterior variance of the
threshold is lower for absolute adjectives. In simulations using a prior peaked slightly
near the boundary (as in Figure 4 right), the second premise has much lower probability
(65%). Our model thus suggests that the difference in sorites susceptibility between
relative and absolute adjectives may be a difference in the degree of uncertainty after
hearing the adjective statement, rather than a qualitative difference between kinds of
uncertainty.

4.0.8 Generics and Quantifiers

Generic sentences are a ubiquitous way of communicating about the properties of
categories [13]:

(2) a. Birds fly.

b. Ducks lay eggs.

c. Mosquitoes carry West Nile Virus.

The meaning of generic sentences has been a longstanding puzzle to psychologists,
philosophers, and linguists alike [13, 48, 15, 16, 64, 55, 26, 14]. A first guess might be
that “Birds fly” means that all birds fly; but this is not right, since the existence of
penguins does not make 2a false. Weakening the meaning to most or usually is not suf-
ficient either, in light of 2b-2c: fewer than half of ducks ever lay eggs (the female ones
who survive and reproduce), and only a small proportion of mosquitoes carry West
Nile Virus. Assuming a maximally weak meaning (some) seems like the only truth-
functional meaning consistent with 2a-2c; but this is problematic as well: experimental
results indicate that, in the absence of prior knowledge, people usually infer from a
generic sentence like 2a that the property is highly prevalent [14]. In contrast to these
semantic complications, generics seem to be one of the simplest linguistic constructions
on many other dimensions: they require no explicitly marked operator (contra quan-
tifiers like some/all), they are acquired early and used abundantly in child-directed
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speech [26], and they have high frequency in everyday speech.
What is needed, it seems, is a meaning for generic sentences that makes them

semantically simple—for instance by explaining the subtleties of usage through prag-
matic inference. Something along the following lines: Birds fly is true if the rate of
flying among birds is greater than what you would expect if you did not know anything
about birds; Ducks lay eggs is true if the rate of egg-laying among ducks is greater than
that of animals in general; and so on. This kind of sensitivity to prior expectations is
reminiscent of the analysis of gradable adjectives in section 4.0.7 above.

We propose to treat generic statements in a way that parallels scalar adjectives,
with the scale being probability : the generic statement Kind Property imposes a (free
variable) threshold on the probability of the property holding for members of the kind:

[[Kind Property ]] = P (Prop(x) | x ∼ Kind)>θ.
That is, the probability that an object drawn from the distribution over objects Kind
has property Prop is greater than an underspecified threshold θ. If we wish to encode
this purely in terms of the sampling semantics of Church (i.e. not requiring a reflection
operator that exposes the probability directly), we could write:

[[Kind Property ]]=(all (repeat theta (λ () (Prop (Kind))))).
That is: draw theta samples by sampling a Kind object and evaluating Prop, return true if
all samples are true. (The two versions of the semantics, explicit probability threshold
and repeated sampling, are equivalent in expectation up to a transformation of the free
variable.)

This probability threshold semantics for generics results in a strong interpreta-
tion when there is no prior knowledge: Figure 5a shows that with uniform prior over
property rate the generic is only endorsed when the property is usually true for this
kind (i.e. a meaning close to all, though tolerating exceptions). However, background
knowledge about the property can radically alter interpretation of the generic. Figure
5b shows that if the property is believed a priori to be rare, then the generic can be
endorsed even if the property fairly infrequent for this kind. This is reminiscent of
mosquitos have West Nile virus, assuming background knowledge that carrying a dis-
ease is rare even when possible. Figure 5c shows the predictions for a case like birds fly,
where naive reasoners assume biological characteristics of animals to be homogeneous
[see 62]: an animal kind will have either a very high or very low rate of most proper-
ties. In this situation the interpretation of the generic is very strong—again close to all.
Finally, what of cases like Ducks lay eggs? Figure 5d shows an appropriate prior for
egg-laying: at most half of animals in a kind do it. The prediction is an interpretation
requiring around half of animals in the kind to lay eggs.

These preliminary results are encouraging; we propose to build a more complete
model of generics using these techniques, and evaluate it against the significant empir-
ical literature on generic usage. Having verified this approach to generics, we will have
a sharp tool for exploring people’s intuitions about kinds and properties.
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Figure 5: Prediction of the generics model for four different prior expectations about frequencies
of the property.
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Quantifiers The standard linguistic analysis of quantifiers is as deterministic logi-
cal operators on sets. However, the above analysis for generics suggests an interesting
analogy: Modifiers for scalar adjectives can strengthen meaning, e.g. very tall, and
even squeeze out much vagueness, e.g. completely closed. What if quantifiers are anal-
ogous modifiers for the generic, which we have given a scalar interpretation? That is,
perhaps all plays a similar role in all dogs have fur that completely does in the door is
completely closed. This would explain why generics appear as the un-marked form of
quantification, and would explain why even strong quantifiers like all are found exper-
imentally to have some slack [75]. However a number of potential problems with this
semantics for quantifiers must be explored. For instance, how does this modifier se-
mantics explain scope ambiguity? What predictions follow about vagueness and slack
in quantifier meaning, and are these empirically viable?

4.0.9 Modal Verbs and Adverbs

Modals are a class of linguistic expressions whose meanings are deeply bound up with
reasoning about beliefs and desires, for instance:

(3) a. Mary wants to have a birthday party.

b. I believe it is likely that she will.

c. Mary doesn’t want John to know about her party.

Modal language offers an opportunity to draw close connections between semantics
and the intuitive theories of belief, desire, observation, etc. (that is Theory of Mind).
Recent research has formulated a rich probabilistic framework for theory of mind
[5, 30, 6, 37]; at the same time, semantic research on modality has begun to move
toward representations based on related tools from probability and decision theory
[56, 87, 88, 89, 50, 53, 52, 46]. The latter line of research emphasizes the graded nature
of belief and desire, but has not drawn systematic connections with the relevant cogni-
tive science research—rather than inheriting these structures from theories of mental
representation, they posit them as part of semantics. In our approach the meanings of
linguistic expressions of uncertainty, desire, and causation are not sui generis, but are
defined in terms of the concepts that agents use to reason about their own and others’
actions and motivations.

The key technical idea is that the intuitive theory of mind provides for each person a
distribution over worlds. Rather than reifying worlds directly, we can represent beliefs
as mappings from expressions (the question of interest, QOI) to values. Thus Bob’s
beliefs, (beliefs ‘bob), will be a function from expressions to values, and
((beliefs ‘bob) ‘(sky-is ‘blue)) represents (the probability that) Bob believes the sky is
blue. The belief function for a rational Bayesian agent can be written:

1 (define (beliefs person)
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2 (λ (QOI)
3 (query
4 ... intuitive theories...
5 (eval QOI)
6 (observations person))))

That is, the agent conditions on their observations in the context of their intuitive
theories (prior knowledge) to form a posterior distribution over the question of interest.
We do not assume that all agents have rational beliefs, however, only that their beliefs
can be represented as a similar distribution.

Using this core notion of belief, we can understand the semantics of believes as:
[[believes]]= (λ (person expr) (all (repeat theta (λ () ((beliefs person) expr))))).

That is, Bob believes expr is a scalar construction, much like generics in section 4.0.8,
that requires Bob’s degree of belief in expr to be above a (semantics free variable)
threshold. (Here we have implemented the threshold by taking theta samples from Bob’s
belief distribution and requiring that expr be true for each.) When the literal listener,
L0, conditions on a belief statement, it places a constraint on the belief distribution of
the agent in question.

The intuitive theory of mind is not propositional in any important way: it describes
beliefs as a generative distribution on worlds (given observations, etc). However, the
semantics of X believes Y constructs a constraint on this belief distribution out of the
proposition Y. In this way, belief language is propositional, while belief representations
themselves are non-propositional—providing an interesting take on the question of
propositional attitudes in theory of mind.

We propose to explore and extend this semantics of belief terms, and to integrate
it with our previous work on epistemic modals (plausible/likely/certain/...) [54]. We
further plan to explore modals of desire (e.g. wants), and the embedding of these
modals in each other—capturing the meanings of statements like 3a-c, above.
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