
1 

Comparing Pluralities 

 

Gregory Scontras (scontras@fas.harvard.edu) 

Department of Linguistics, Harvard University 

Peter Graff (graff@mit.edu) 

Department of Linguistics and Philosophy, Massachusetts Institute of Technology 

Noah D. Goodman (ngoodman@stanford.edu) 

Department of Psychology, Stanford University 

 

Abstract 

What does it mean to compare sets of objects along a scale, for example by saying “the 

men are taller than the women”? We explore comparison of pluralities in two 

experiments, eliciting comparison judgments while varying the properties of the members 

of each set. We find that a plurality is judged as “bigger” when the mean size of its 

members is larger than the mean size of the competing plurality. These results are 

incompatible with previous accounts, in which plural comparison is inferred from many 

instances of singular comparison between the members of the sets (Matushansky and 

Ruys, 2006). Our results suggest the need for a type of predication that ascribes 

properties to plural entities, not just individuals, based on aggregate statistics of their 

members. More generally, these results support the idea that sets and their properties are 

actively represented as single units. 
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1. Introduction 

When we think and talk about groups of individuals—pluralities—do we represent the 

collection as a single entity with its own properties? For example, when we say “the red 

dots are big” is there an aggregate size for the group of red dots to which we refer? In this 

paper we investigate this question by studying plural comparison—e.g. “the red dots are 

bigger than the blue dots”.  Given two individuals, there is little question of how to 

proceed with comparison of, e.g., size: find the degree of size for the first and compare it 

to the degree of size for the second. In situations where pluralities of entities are 

compared, this is less straightforward: each member of the plurality has a degree 

associated with it and it is not clear whether these degrees should be used together for 

comparison. 

 

  
 Figure 1: Every red dot is bigger Figure 2: Every red dot is bigger 
 than every blue dot. than some blue dot and every 
  blue dot is smaller than some 
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  red dot. 
 

 Some instances of plural comparison can be relatively unambiguously translated 

into single-entity comparisons. In Figure 1, every member of the red dots is bigger than 

every member of the blue dots, and one concludes that the red dots are bigger. However, 

Matushansky and Ruys (2006) point to cases like Figure 2, where they claim that “the red 

dots are bigger than the blue dots”, yet it is not the case that every single red dot is bigger 

than every single blue dot. To account for this intuition, they propose a semantics for 

plural comparison that imposes a categorical condition stating that for the sentence “the 

red dots are bigger than the blue dots” to be true, the biggest red dot must be larger than 

the biggest blue dot, the second-biggest red dot larger than the second-biggest blue dot, 

and so on. This reduces plural comparison to a condition on singular comparisons 

between the two pluralities. 

 

  
 Figure 3: one blue dot is bigger than Figure 4: one red dot is smaller than 
 every red dot. every blue dot. 
 

 Scontras (2008) claims that there are cases where we may judge the red dots as 

bigger, even though single-entity comparison fails. For example, there could be one blue 
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dot that is larger than all red dots, or one red dot that is smaller than all blue dots (Figures 

3 and 4), and still intuitions, which we explore experimentally below, suggest that the red 

dots are bigger. Based on this observation, Scontras (2008) claims that the semantics of 

plural comparison should not be viewed as many instances of singular comparison, but 

rather as a single comparison of collective properties of each plurality.   

 These conflicting theories for plural comparison expose a deeper theoretical issue.  

Under a point-wise approach (Matushansky and Ruys, 2006), only the properties of the 

members of the competing pluralities are relevant to the outcome of plural comparison—

the plurality need not be represented as an entity with its own properties. Collective 

approaches (Scontras, 2008) treat the pluralities as complex individuals with properties 

derived from the members of their corresponding pluralities, and crucially these derived 

properties need not be true of any individual member (for instance, no single red dot in 

Figure 4 has the mean size). Linguistic theories of plurality differ on whether a plural 

definite description such as the red dots refers to a single, complex individual, which may 

possess properties independently of its members, or whether it must refer to the many 

individuals that make up the plurality (see, e.g., Landman, 1996; Schwarzschild, 1996 for 

discussion). The debate centers on the ontological commitments of the two approaches, 

with the complex individual approach requiring an augmented ontology containing 

complex individuals corresponding to every plurality (Landman, 1989). Critics of a 

complex individual approach argue that such an expansion of the ontology is not 

empirically justified, and that we can make do simply with pluralities in our logical 

representations of language (Schwarzschild, 1996). 
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 In the experiments presented below, we use plural comparison as a window into 

this ontological question, and thus inform the linguistic debate on complex individuals 

while initiating a psychological study of the representation of pluralities. If we find that 

plural comparison proceeds in terms of collective properties associated with the 

pluralities being compared, we may conclude that plural entities are represented as 

individuals with their own properties (derived from their members).  Such a finding 

would suggest that our ontology of the plural domain should include structure rich 

enough to derive these complex individuals from their corresponding plural sets. 

A further question surrounds ways that aggregate degrees can be constructed: 

Scontras’s (2008) account necessitates representation of an average degree of a plurality. 

This claim is unexpected given traditional views of collective predication (e.g., Link, 

1983; Scha, 1984), which have been proposed to account for sentences such as “the boxes 

are heavy” describing situations in which the weight of many light boxes sums to a large 

total weight. The traditional view of collective predication thus predicts that the 

aggregate sum of individual sizes is the collective property predicated.  

In this paper, we experimentally investigate plural comparison among concrete 

sets of objects for the first time. Experiment 1 shows that people compare inferred 

collective properties of pluralities.  Experiment 2 shows that the best predictor of the 

outcome of plural comparison in our setting is the difference in mean degree (and not the 

sum).  These results provide evidence both for representations of definite descriptions in 

terms of complex individuals and for collective predication in terms of averages.  
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2. Models of Plural Comparison 

 

In this section we elaborate testable mathematical models of plural comparison based on 

the linguistic theories presented above. The models come in two families: (a) point-wise 

models, which perform singular comparisons between the individual members within the 

pluralities; and (b) collective models, which infer collective properties from the relevant 

pluralities and compare those inferred properties.  Since both linguistic theories compared 

are formulated to make categorical predictions about judgments, we include a 

probabilistic version of each model to allow for better approximation of judgments 

averaged across subjects and items.  

 

2.1. Point-wise Models 

 

The first model we consider is the categorical version of the point-wise model.  This 

model is based on the semantics given in Matushansky and Ruys (2006), which states 

that a plurality X is bigger than a plurality Y just in case there exists a bijective function f 

from the members of X to the members of Y such that each member x of X wins its 

comparison with f(x).  

The probabilistic version of the point-wise model computes the expectation of a 

given point-wise comparison coming out in favor of plurality X: that is the probability 

that a random element of X is bigger than a random element of Y. The model is 

formulated as follows:  

! 

P(X >Y ) =
xi > y j

| X |* |Y |i, j
"  
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One should note that the probabilistic point-wise model is not a direct translation from 

Matushansky and Ruys’s (2006) semantics. Given the overall poor performance of the 

categorical point-wise model (see below), we relaxed its conditions on comparison to get 

a more naturalistic probabilistic model, while remaining consistent with the theoretical 

motivation for point-wise comparisons. 

 

2.2. Collective Models 

 

The categorical collective mean model is based on Scontras’s (2008) semantics: a 

plurality X is bigger than a plurality Y if the average size of X is larger than the average 

size of Y. 

In the probabilistic version, we account for potential response variation by 

assuming normally distributed noise around the estimate for the mean size of each 

plurality. Thus, X is bigger than Y if the estimated mean of X is bigger than that of Y. 

The probability of this event is described by the cumulative distribution function (CDF)1 

of a normal distribution, or error function erf (Temme, 2010) on the difference in 

means. That is: 

! 

P(X >Y ) =
1
2
1+ erf (µ(X) " µ(Y ))[ ]  

 In addition to collective mean models, in Experiment 2 we also consider a 

collective model based on a comparison of total size. Like the mean-based models, this 

                                                
1 For a value x of a random variable X distributed according to some probability 
distribution, the CDF returns the probability of X assuming a value smaller than or equal 
to x. 
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sum-based model first infers an aggregate statistic (here sum of sizes), and then compares 

this statistic assuming noisy measurements. 

 

 

3. Experiment 1 

 

In order to test the predictions of point-wise vs. collective models, we asked subjects to 

provide judgments on comparison for 32 images with 5 red and 5 blue dots each. Because 

difference-in-mean and difference-in-sum strategies give the same predictions when the 

cardinalities of the two pluralities are equal, we only consider the mean models for these 

data.  That is, we consider the predictions of the categorical and probabilistic mean 

models, as well as the categorical and probabilistic point-wise models. 

 

3.1. Participants 

 

We recruited 50 subjects through Amazon.com’s Mechanical Turk Crowdsourcing 

Service, a marketplace tool for gathering behavioral data. Subjects were compensated for 

their participation. 

 

3.2. Stimuli 

 

We selected 32 instances of plural comparison with five red dots and five blue dots for 

which the predictions of the models differed maximally. Dot size varied between 1 and 
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7.2  Instances of comparison varied continuously for the predicted outcome of 

comparison according to the four models and were composed in such a way as to 

minimize the correlation between the models’ predictions. The average absolute 

difference in mean sizes was 2.5. Placement of the dots on the screen was randomly 

chosen with the constraint that no red dot ever appeared to the right of any blue dot. This 

constraint was used to ensure that the compared pluralities were visually separable to 

further facilitate the identification of the groupings according to color. An example 

stimulus is given in Figure 5. 

 

 

Figure 5: Sample stimulus; 100% of subjects consider the red dots bigger. 

 

3.3. Design 

 

We generated 4 different random orders for the 32 instances of comparison. Each list was 

posted as a single Human Intelligence Task to Amazon’s Mechanical Turk 

                                                
2 Actual area on the screen as measured in pixels is computed as follows: 2/3•((400(dot-
size))2). 
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crowdsourcing platform. Ten subjects were assigned to each list, except for the fourth 

list, which was run twice due to technical error. Whether or not we include the extra 

subjects run for the fourth list does not affect the results we report. 

For each image, subjects responded to the question, “Are the red dots bigger than 

the blue dots?” They chose between the answers YES and NO. Before seeing the images, 

subjects were asked to indicate their native language.  Seven subjects were excluded 

because they indicated a native language other than English and/or failed to answer all 

questions. Our results are not affected by their exclusion. Data from 43 subjects was 

analyzed. 

 

3.4. Results 

 

 

Figure 6: Average deviations from human data, calculated by comparing the models’ 

predictions for each stimulus to the average judgment for that stimulus. Models 
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considered: categorical point-wise (Cat PW), probabilistic point-wise (Prob PW), 

categorical collective mean (Cat Coll), and probabilistic collective mean (Prob Coll). 

 

The results are summarized in Figure 6, where we report the mean difference of each 

model from the human data. We find that the collective models outperform the point-wise 

models, and that the probabilistic models outperform the categorical models; the model 

with the best fit is the probabilistic collective mean model.  

To understand the success of the collective models, Figure 7 plots the difference 

in mean size between red and blue dots against the percent of YES answers to the 

question “Are the red dots bigger than the blue dots?”. Note the clear trend. 

 

 
Figure 7: Difference in mean size plotted against average responses. 

 

The patterns in Figure 6 are substantiated by mixed logit model analysis, predicting 

human responses, including random intercepts for subject and item and random slopes for 

the predictions of the probabilistic and categorical collective models grouped by subject 

(i.e., the maximal random effects structure justified by the data). Neither categorical 
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model significantly improves data-likelihood (χ2(1)=.08, p=.78, collective; χ2(1)=.22, 

p=.64, point-wise).  The probabilistic collective model explains significant variance 

(χ2(1)=7, p<.01).3 Residual variance is accounted for by the probabilistic point-wise 

model (χ2(1)=5.27, p<.05).  A look at the predictions of the four models compared with 

the judgment data (Figure 8) confirms that the probabilistic collective model outperforms 

the other models.  As expected, the predictions of the probabilistic mean model 

significantly improve data-likelihood compared to the null-model (χ2(1)= 87.57,p<.001), 

which guesses the majority outcome for all comparisons. 

 

  

                                                
3 Given that the erf function approximates a normal CDF, which has a free parameter for 
standard deviation, it is possible that our probabilistic collective model could achieve a 
better fit once this parameter is optimized. Simulated annealing reveals that the best value 
of this parameter for our data is 0.47, as opposed to 0.50 (the default value used by erf). 
However, the optimized value does not affect the results we report, and so we continue to 
use 0.50 as the value for standard deviation in our probabilistic collective models. 
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Figure 8: Average judgments (in blue) plotted against models’ predictions (in 
red); X axis: instances of plural comparison in order of percent YES answers; Y 
axis: percent YES answers to the question “Are the red dots bigger than the blue 
dots?” (A) probabilistic collective (mean) model; (B) probabilistic point-wise 
model; (C) categorical collective (mean) model; (D) categorical point-wise model. 

 

 

3.6. Discussion 

 

We have shown evidence that collective models outperform point-wise models, and that 

probabilistic models are better than categorical ones. The probabilistic collective model 

performs the best; the probabilistic point-wise model does less well, but still accounts for 

residual variance. When we compare the model predictions to the data (Figure 8), we see 

that the probabilistic collective model makes most of its errors when the means of the two 

pluralities are very close. This raises the possibility that a point-wise strategy arises in 

cases where collective comparison is too difficult. The next experiment follows up on this 

result by testing scenarios where we expect more graded responses—ones in which the 

means of the compared pluralities differ by a smaller margin; if the probabilistic point-

wise model outperforms the collective model in these cases of graded judgments, we 
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expect it to account for more variance in Experiment 2 where the comparisons are more 

difficult in terms of a mean strategy. 

 Another issue raised by our results is whether the collective interpretation people 

demonstrate is driven by the fact that the dots are filled in with color, potentially allowing 

people to compute the amount of blue versus red on the screen, and thus facilitating a 

collective comparison strategy. Our intuitions suggest that such a strategy is less 

available when the dots appear as unfilled circles, and so in the next experiment we vary 

between subjects whether dots are filled with color or unfilled.  Assuming filled dots 

privilege a sum-based collective strategy (cf. Scha, 1984), we would expect to find an 

interaction such that difference-in-sum is a better predictor of judgments when the dots 

are filled. 

 Finally, having found that collective strategies are at play in plural comparison, 

we must next determine which collective strategy is relevant: difference-in-mean or 

difference-in-sum.  

 

4. Experiment 2 

 

In this experiment, we compare the predictions made by the probabilistic mean model 

and the probabilistic sum model.  Additionally, we follow up on the results of the 

previous experiment by testing the predictions of the probabilistic point-wise model with 

novel stimuli. We used similar methods from Experiment 1 to test situations of plural 

comparison in which the two pluralities being compared differ in cardinality. We also 

decrease the difference in means between the competing pluralities. Lastly, we vary 
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whether dots are filled with color or unfilled between subjects to assess the likelihood of 

the sum interpretation.  

 

4.1. Participants 

 

We recruited 35 subjects through Amazon.com’s Mechanical Turk. Subjects were 

compensated for their participation. 

 

4.2. Stimuli 

 

Stimuli consisted of ten instances of plural comparison, seven with differing cardinalities 

between the compared pluralities (between 3 and 5 dots) and three filler scenarios with 

equal cardinality (5 dots). The seven differing cardinality instances were chosen so that 

the values of difference-in-mean and difference-in-sum were always of different signs. 

The average value of difference-in-mean was smaller than in Experiment 1; before, 

stimuli had a mean value of 2.5 for absolute difference-in-mean; here 0.8.  As before, the 

predictions of our models varied continuously across target items. 

 All ten scenarios were presented in two configurations, reversing the sizes of the 

red and the blue dots.  Both comparison configurations were displayed in two random 

spatial organizations. Stimulus composition was identical for both filled and unfilled dots 

between subjects. 

  

4.3. Design 
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Images were presented in a different random order for each subject. As before, subjects 

responded to the question, “Are the red dots bigger than the blue dots?” and chose 

between the answers YES and NO. The filled and unfilled conditions were posted 

separately to Mechanical Turk, with 20 subjects recruited for each condition. Only native 

English speakers who responded to all questions and who did not take part in Experiment 

1 were included in the analysis. Six subjects were excluded because they completed both 

the filled and the unfilled version of the experiment; no other subjects were excluded. 

Data from 34 subjects (17 from each of the fill conditions) was analyzed. 

 

4.4. Results 

 

Because the predictions of the difference-in-sum and the difference-in-mean strategies 

differ only when the cardinalities of the pluralities differ, we analyze the responses to 

these scenarios only. 
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Figure 10: Average deviations from human data, calculated by comparing the models’ 

predictions for each stimulus to the average judgment for that stimulus. Models 

considered: probabilistic collective sum (Prob Coll (sum)), probabilistic point-wise (Prob 

PW), and probabilistic collective mean (Prob Coll (mean)). 

 

Figure 10 reports the mean difference of each model from the human data. Based on this 

measure, we find that the collective mean model performs the best, and the collective 

sum model performs the worst.  This measure also shows that the probabilistic point-wise 

model performs slightly worse than the probabilistic mean model. Figures 11 and 12 plot 

the difference in mean size and difference in sum size against the human responses; we 

see a clear trend in the predicted direction between difference-in-mean and average 

response, and no such trend with difference-in-sum. 

 

  

 Figure 11: Difference in mean size Figure 12: Difference in sum size 
 plotted against average response. plotted against average response. 

 

 We fit a mixed logit model including the predictions of the probabilistic point-

wise model, the difference in the mean sizes, the difference in the sum of sizes, the 
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difference in cardinality, as well as dot fill and interactions with dot fill as fixed effects.  

The model also included random intercepts for subjects and items, as well as a random 

slope for difference in mean grouped by subject and a random for the predictions of the 

probabilistic point-wise model grouped by item (i.e., the maximum random effects 

structure justified by the data). The results of the respective χ2 likelihood tests are given 

Table 1. 

 

Predictor d.f. χ2 p 
Mean  
    + interaction with Fill 2 6.09 0.048 * 

Point-wise 
    + interaction with Fill 2 2.55  0.279 

Sum 
    + interaction with Fill 2 0.83 0.660 

Cardinality 
    + interaction with Fill 2 0.87 0.649 

Fill 
    + all interactions 5 2.54 0.770 

 
Table 1: Predictors and their contribution to data likelihood. 

 

The difference in mean size is the only significant predictor in terms of improvement of 

data-likelihood (χ2(2)=6.09,p<.05) in addition to the other models. As expected, the 

difference in mean size also significantly improves data-likelihood compared to the null-

model (χ2(1)= 6.45,p<.05), which guesses the majority outcome for all comparisons. 

 

4.5. Discussion 
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As subjects perform plural comparison, the difference in sums is not relevant; the 

deciding factor is the difference in means.  Of particular interest is the lack of interaction 

of dot fill with difference-in-sum. Filling in the dots makes the total amount of red vs. 

blue on the screen more salient, and so we might expect a bias in favor of a difference-in-

sum strategy. The lack of interaction provides evidence against the possibility of 

difference-in-sum being a viable strategy for plural comparison in our setting. Lastly, the 

probabilistic point-wise model does not account for any residual variance; here we 

perform a more detailed test of the collective (mean) vs. probabilistic point-wise 

strategies by decreasing the difference in mean size between the compared pluralities. 

Thus, we provide further evidence against the role of point-wise strategies in plural 

comparison. 

 

5. General Discussion 

 

We have presented evidence that the comparison of pluralities along the size dimension 

proceeds in terms of a comparison of the means of the relevant sizes inferred from each 

plurality.  We have shown that models of plural comparison that operate on individual 

comparisons perform less well. Even in Experiment 1, where the probabilistic point-wise 

model captures some variance, the collective model based on difference-in-mean 

performs better in terms of data likelihood. These results suggest the need for a richer 

kind of plural predication that treats pluralities as complex individuals with properties 

inferred from the members of the plurality; here, the relevant property is a degree inferred 

by averaging over individual degrees.   
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 While these results suggest the need for a plural ontology that includes complex 

individuals, additional work will be needed to determine when such complex individual 

interpretations are available. For example, if we assume that complex individual 

interpretations are always available for definite descriptions, then a term like the red dots 

and the blue dots should be multiply ambiguous such that it may behave as a single 

individual, as two, or as many. The potential availability of these readings requires 

empirical study. 

 We have shown that average is one function used to aggregate individual 

properties into a collective property, but there remains the possibility that the relevant 

aggregation function may itself be contextually determined. For instance, the assertion 

that plurality X beats plurality Y in a given comparison could be true when a contextually 

specified aggregation function f (determined by property, discourse goals, etc) is such 

that f(X) is greater than f(Y). We hope future research will shed light on this possibility. 

 Finally, the results of the current experiments invite follow-ups to tease apart the 

nature of the psychological processes and representations involved in this judgment task. 

In the tasks discussed here, subjects were given concrete, perceptually available sets 

(grouped by color), and asked about perceptually salient properties of these sets. Previous 

work on the extraction of set properties (e.g., Halberda, 2007) has shown that different 

grouping characteristics affect the ease with which subjects infer properties of collections 

of objects. Future work will explore whether people can infer appropriate aggregate 

values without the availability of salient sets by manipulating the grouping characteristics 

of the sets, and similarly, whether the concreteness of the property being considered 

affects the way in which plural comparison can proceed. 
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Appendix A: Experiment 1 comparison scenarios 

Red dot sizes Blue dot sizes 
1,1,1,1,3 1,1,2,2,7 
1,1,1,1,3 1,1,2,7,7 
1,1,1,1,3 1,5,5,5,7 
1,1,1,1,3 1,5,5,7,7 
1,1,1,1,3 3,6,6,6,7 
1,1,1,1,3 4,4,4,6,7 
1,1,1,1,3 5,6,7,7,7 
1,1,2,2,4 3,3,4,4,6 
1,1,2,2,7 1,1,1,1,3 
1,1,2,2,7 1,2,2,3,3 
1,1,2,2,7 5,5,5,5,6 
1,1,2,2,7 6,6,7,7,7 
1,1,2,7,7 1,1,1,1,3 
1,1,2,7,7 6,6,7,7,7 
1,2,2,3,3 1,1,2,2,7 
1,2,2,5,6 2,3,3,6,7 
1,2,3,3,4 4,5,6,6,7 
1,2,3,4,6 2,2,2,3,7 
1,5,5,5,7 1,1,1,1,3 
1,5,5,7,7 1,1,1,1,3 
2,3,4,7,7 1,3,4,4,4 
2,4,5,7,7 1,3,4,6,6 
3,5,5,5,6 5,6,7,7,7 
3,6,6,6,7 1,1,1,1,3 
4,4,4,6,7 1,1,1,1,3 
4,5,5,7,7 1,3,4,6,6 
4,5,5,7,7 4,5,5,7,7 
4,5,6,6,7 1,2,3,3,4 
5,5,5,5,6 1,1,2,2,7 
5,6,7,7,7 1,1,1,1,3 
6,6,7,7,7 1,1,2,2,7 
6,6,7,7,7 1,1,2,7,7 
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Appendix B: Experiment 2 comparison scenarios 

Red dot sizes Blue dot sizes 
1,2,2,3,6 2,3,4,4,4 
1,2,3,4,5 2,3,4,5,6 
1,3,4,5,6 2,3,3,4,4 
2,2,3,3,4 3,4,4 
2,3,3,4,4 1,3,4,5,6 
2,3,4,4,4 1,2,2,3,6 
2,3,4,5,6 1,2,3,4,5 
3,3,3,3,5 3,3,4,5 
3,3,3,5 4,4,5 
3,3,4,5 3,3,3,3,5 
3,4,4 2,2,3,3,4 
3,4,4,5 5,5,5 
3,4,5,5,7 4,5,6,7 
4,4,4,4,6 5,5,6 
4,4,5 3,3,3,5 
4,4,5,5,6 5,6,6 
4,5,6,7 3,4,5,5,7 
5,5,5 3,4,4,5 
5,5,6 4,4,4,4,6 
5,6,6 4,4,5,5,6 
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