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Abstract

Probabilistic programming languages allow modelers to specify a stochastic pro-
cess using syntax that resembles modern programming languages. Because the
program is in machine-readable format, a variety of techniques from compiler de-
sign and program analysis can be used to examine the structure of the distribution
represented by the probabilistic program. We show how nonstandard interpreta-
tions of probabilistic programs can be used to craft efficient inference algorithms:
information about the structure of a distribution (such as gradients or dependen-
cies) is generated as a monad-like side computation while executing the program.
These interpretations can be easily coded using special-purpose objects and oper-
ator overloading. We implement two examples of nonstandard interpretations in
two different languages, and use them as building blocks to construct inference
algorithms: automatic differentiation, which enables gradient based methods, and
provenance tracking, which enables efficient construction of global proposals.

1 Introduction
Probabilistic programming simplifies the development of probabilistic models by allowing modelers
to specify a stochastic process using syntax that resembles modern programming languages. These
languages permit arbitrary mixing of deterministic and stochastic elements, resulting in tremendous
modeling flexibility. The resulting programs define probabilistic models that serve as prior distribu-
tions: running the (unconditional) program forward many times results in a distribution over execu-
tion traces, with each trace being a sample from the prior. Examples include BLOG [13], Bayesian
Logic Programs [10] IBAL[18], CHURCH [6], Stochastic MATLAB [28], and HANSEI [11].

The primary challenge in developing such languages is scalable inference. Inference can be viewed
as reasoning about the posterior distribution over execution traces conditioned on a particular pro-
gram output, and is difficult because of the flexibility these languages present: in principle, an
inference algorithm must behave reasonably for any program a user wishes to write. Sample-based
MCMC algorithms are the state-of-the-art method, due to their simplicity, universality, and compo-
sitionality. But in probabilistic modeling more generally, efficient inference algorithms are designed
by taking advantage of structure in distributions. How can we find structure in a distribution de-
fined by a probabilistic program? A key observation is that some languages, such as CHURCH and
Stochastic MATLAB, are defined in terms of an existing (non-probabilistic) language. Programs in
these languages may literally be executed in their native environments—suggesting that tools from
program analysis and programming language theory can be leveraged to find and exploit structure
in the program for inference, much as a compiler might find and exploit structure for performance.

Here, we show how nonstandard interpretations of probabilistic programs can help craft efficient
inference algorithms. Information about the structure of a distribution (such as gradients, dependen-
cies or bounds) is generated as a monad-like side computation while executing the program. This
extra information can be used to, for example, construct good MH proposals, or search efficiently
for a local maximum. We focus on two such interpretations: automatic differentiation and prove-
nance tracking, and show how they can be used as building blocks to construct efficient inference
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algorithms. We implement nonstandard interpretations in two different languages (CHURCH and
Stochastic MATLAB), and experimentally demonstrate that while they typically incur some addi-
tional execution overhead, they dramatically improve inference performance.

2 Background and Related Work Alg. 1: A Gaussian-Gamma mixture
1: for i=1:1000
2: if ( rand > 0.5 )
3: X(i) = randn;
4: else
5: X(i) = gammarnd;
6: end;
7: end;

We begin by outlining our setup, following [28]. We de-
fine an unconditioned probabilistic program to be a pa-
rameterless function f with an arbitrary mix of stochas-
tic and deterministic elements (hereafter, we will use the
term function and program interchangeably). The func-
tion f may be written in any language, but our running
example will be MATLAB. We allow the function to be
arbitrarily complex inside, using any additional functions,
recursion, language constructs or external libraries it wishes. The only constraint is that the func-
tion must be self-contained, with no external side-effects which would impact the execution of the
function from one run to another.

The stochastic elements of f must come from a set of known, fixed elementary random primitives,
or ERPs. Complex distributions are constructed compositionally, using ERPs as building blocks. In
MATLAB, ERPs may be functions such as rand (sample uniformly from [0,1]) or randn (sample
from a standard normal). Higher-order random primitives, such as nonparametric distributions, may
also be defined, but must be fixed ahead of time. Formally, let T be the set of ERP types. We assume
that each type t ∈ T is a parametric family of distributions pt(x|θt), with parameters θt.

Now, consider what happens while executing f . As f is executed, it encounters a series of ERPs.
Alg. 1 shows an example of a simple f written in MATLAB with three syntactic ERPs: rand,
randn, and gammarnd. During execution, depending on the return value of each call to rand,
different paths will be taken through the program, and different ERPs will be encountered. We call
this path an execution trace. A total of 2000 random choices will be made when executing this f .

Let fk|x1,··· ,xk−1
be the k’th ERP encountered while executing f , and let xk be the value it returns.

Note that the parameters passed to the k’th ERP may change depending on previous xk’s (indeed,
its type may also change, as well as the total number of ERPs). We denote by x all of the random
choices which are made by f , so f defines the probability distribution p(x). In our example, x ∈
R2000. The probability p(x) is the product of the probability of each individual ERP choice:

p(x) =
K
∏

k=1

ptk(xk|θtk , x1, · · · , xk−1) (1)

again noting explicitly that types and parameters may depend arbitrarily on previous random choices.
To simplify notation, we will omit the conditioning on the values of previous ERPs, but again wish
to emphasize that these dependencies are critical and cannot be ignored. By fk, it should therefore
be understood that we mean fk|x1,··· ,xk−1

, and by ptk(xk|θtk) we mean ptk(xk|θtk , x1, · · · , xk−1).

Generative functions as described above are, of course, easy to write. A much harder problem, and
our goal in this paper, is to reason about the posterior conditional distribution p(x|y), where we
define y to be a subset of random choices which we condition on and (in an abuse of notation) x
to be the remaining random choices. For example, we may condition f on the X(i)’s, and reason
about the sequence of rand’s most likely to generate the X(i)’s. For the rest of this paper, we
will drop y and simply refer to p(x), but it should be understood that the goal is always to perform
inference in conditional distributions.
2.1 Nonstandard Interpretations of Probabilistic Programs
With an outline of probabilistic programming in hand, we now turn to nonstandard interpretations.
The idea of nonstandard interpretations originated in model theory and mathematical logic, where it
was proposed that a set of axioms could be interpreted by different models. For example, differential
geometry can be considered a nonstandard interpretation of classical arithmetic.

In programming, a nonstandard interpretation replaces the domain of the variables in the program
with a new domain, and redefines the semantics of the operators in the program to be consistent
with the new domain. This allows reuse of program syntax while implementing new functionality.
For example, the expression “a ∗ b” can be interpreted equally well if a and b are either scalars or
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matrices, but the “∗” operator takes on different meanings. Practically, many useful nonstandard
interpretations can be implemented with operator overloading: variables are redefined to be objects
with operators that implement special functionality, such as tracing, reference counting, or profiling.

For the purposes of inference in probabilistic programs, we will augment each random choice xk

with additional side information sk, and replace each xk with the tuple 〈xk, sk〉. The native inter-
preter for the probabilistic program can then interpret the source code as a sequence of operations
on these augmented data types. For a recent example of this, we refer the reader to [24].

3 Automatic Differentiation
For probabilistic models with many continuous-valued random variables, the gradient of the like-
lihood ∇xp(x) provides local information that can significantly improve the properties of Monte-
Carlo inference algorithms. For instance, Langevin Monte-Carlo [20] and Hamiltonian MCMC [15]
use this gradient as part of a variable-augmentation technique (described below). We would like
to be able to use gradients in the probabilistic-program setting, but p(x) is represented implicitly
by the program. How can we compute its gradient? We use automatic differentiation (AD) [3, 7],
a nonstandard interpretation that automatically constructs ∇xp(x). The automatic nature of AD is
critical because it relieves the programmer from hand-computing derivatives for each model; more-
over, some probabilistic programs dynamically create or delete random variables making simple
closed-form expressions for the gradient very difficult to find.

Unlike finite differencing, AD computes an exact derivative of a function f at a point (up to machine
precision). To do this, AD relies on the chain rule to decompose the derivative of f into derivatives
of its sub-functions: ultimately, known derivatives of elementary functions are composed together to
yield the derivative of the compound function. This composition can be computed as a nonstandard
interpretation of the underlying elementary functions.

The derivative computation as a composition of the derivatives of the elementary functions can be
performed in different orders. In forward mode AD [27], computation of the derivative proceeds by
propagating perturbations of the input toward the output. This can be done by a nonstandard inter-
pretation that extends each real value to the first two terms of its Taylor expansion [26], overloading
each elementary function to operate on these real “polynomials”. Because the derivatives of f at c
can be extracted from the coefficients of ε in f(c + ε) , this allows computation of the gradient. In
reverse mode AD [25], computation of the derivative proceeds by propagating sensitivities of the
output toward the input. One way this can be done is by a nonstandard interpretation that extends
each real value into a “tape” that captures the trace of the real computation which led to that value
from the inputs, overloading each elementary function to incrementally construct these tapes. Such
a tape can be postprocessed, in a fashion analogous to backpropagation [21], to yield the gradient.
These two approaches have complementary computational tradeoffs: reverse mode (which we use in
our implementation) can compute the gradient of a function f : Rn → R with the same asymptotic
time complexity as computing f , but not the same asymptotic space complexity (due to its need
for saving the computation trace), while forward mode can compute the gradient with these same
asymptotic space complexity, but with a factor of O(n) slowdown (due to its need for constructing
the gradient out of partial derivatives along each independent variable).

There are implementations of AD for many languages, including SCHEME(e.g., [17]), FORTRAN
(e.g., ADIFOR[2]), C (e.g., ADOL–C [8]), C++ (e.g., FADBAD++[1]), MATLAB (e.g., INTLAB [22]),
and MAPLE (e.g., GRADIENT [14]). See www.autodiff.org. Additionally, overloading and AD
are well established techniques that have been applied to machine learning, and even to application-
specific programming languages for machine learning, e.g., LUSH[12] and DYNA[4]. In particular,
DYNA applies a nonstandard interpretation for ∧ and ∨ as a semiring (× and +, + andmax, . . .) in
a memoizing PROLOG to generalize Viterbi, forward/backward, inside/outside, etc. and uses AD to
derive the outside algorithm from the inside algorithm and support parameter estimation, but unlike
probabilistic programming, it does not model general stochastic processes and does not do general
inference over such. Our use of overloading and AD differs in that it facilitates inference in com-
plicated models of general stochastic processes formulated as probabilistic programs. Probabilistic
programming provides a powerful and convenient framework for formulating complicated models
and, more importantly, separating such models from orthogonal inference mechanisms. Moreover,
overloading provides a convenient mechanism for implementing many such inference mechanisms
(e.g., Langevin MC, Hamiltonian MCMC, Provenance Tracking, as demonstrated below) in a prob-
abilistic programming language.
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(define (perlin-pt x y keypt power)
(* 255 (sum (map (lambda (p2 pow)
(let ((x0 (floor (* p2 x))) (y0 (floor (* p2 y))))
(* pow (2d-interp (keypt x0 y0) (keypt (+ 1 x0) y0) (keypt x0 (+ 1 y0)) (keypt (+ 1 x0) (+ 1 y0))))))

powers-of-2 power))))

(define (perlin xs ys power)
(let ([keypt (mem (lambda (x y) (/ 1 (+ 1 (exp (- (gaussian 0.0 2.0)))))))])
(map (lambda (x) (map (lambda (y) (perlin-pt x y keypt power)) xs)) ys)))

Figure 1: Code for the structured Perlin noise generator. 2d-interp is B-spline interpolation.

3.1 Hamiltonian MCMC
Alg. 2: Hamiltonian MCMC
1: repeat forever
2: Gibbs step:
3: Draw momentumm ∼ N (0,σ2)
4: Metropolis step:
5: Start with current state (x,m)
6: Simulate Hamiltonian dynamics to give (x′,m′)
7: Accept w/ p = min[1, e(−H(x′,m′)+H(x,m))]
8: end;

To illustrate the power of AD in proba-
bilistic programming, we build on Hamil-
tonian MCMC (HMC), an efficient algo-
rithm whose popularity has been some-
what limited by the necessity of comput-
ing gradients—a difficult task for com-
plex models. Neal [15] introduces HMC
as an inference method which “produces
distant proposals for the Metropolis algo-
rithm, thereby avoiding the slow explo-
ration of the state space that results from the diffusive behavior of simple random-walk proposals.”
HMC begins by augmenting the states space with “momentum variables” m. The distribution over
this augmented space is eH(x,m), where the Hamiltonian function H decomposed into the sum of
a potential energy term U(x) = − ln p(x) and a kinetic energy K(m) which is usually taken to
be Gaussian. Inference proceeds by alternating between a Gibbs step and Metropolis step: fixing
the current state x, a new momentum m is sampled from the prior over m; then x and m are up-
dated together by following a trajectory according to Hamiltonian dynamics. Discrete integration
of Hamiltonian dynamics requires the gradient of H , and must be done with a symplectic (i.e. vol-
ume preserving) integrator (following [15] we use the Leapfrog method). While this is a complex
computation, incorporating gradient information dramatically improves performance over vanilla
random-walk style MH moves (such as Gaussian drift kernels), and its statistical efficiency also
scales much better with dimensionality than simpler methods [15]. AD can also compute higher-
order derivatives. For example, Hessian matrices can be used to construct blocked Metropolis moves
[9] or proposals based on Newton’s method [19], or as part of Riemannian manifold methods [5].

3.2 Experiments and Results
We implemented HMC by extending BHER [28], a lightweight implementation of the CHURCH
language which provides simple, but universal, MH inference. We used used an implementation of
AD based on [17] that uses hygienic operator overloading to do both forward and reverse mode AD
for Scheme (the target language of the BHER compiler).

The goal is to compute ∇xp(x). By Eq. 1, p(x) is the product of the individual choices made by
each xi (though each probability can depend on previous choices, through the program evaluation).
To compute p(x), BHER executes the corresponding program, accumulating likelihoods. Each time
a continuous ERP is created or retrieved, we wrap it in a “tape” object which is used to track gradient
information; as the likelihood p(x) is computed, these tapes flow through the program and through
appropriately overloaded operators, resulting in a dependency graph for the real portion of the com-
putation. The gradient is then computed in reverse mode, by “back-propagating” along this graph.
We implement an HMC kernel by using this gradient in the leapfrog integrator. Since program states
may contain a combination of discrete and continuous ERPs, we use an overall cycle kernel which
alternates between standard MH kernel for individual discrete random variables and the HMC ker-
nel for all continuous random choices. To decrease burn-in time, we initialize the sampler by using
annealed gradient ascent (again implemented using AD).

We ran two sets of experiments that illustrate two different benefits of HMC with AD: automated
gradients of complex code, and good statistical efficiency.

Structured Perlin noise generation. Our first experiment uses HMC to generate modified Perlin
noise with soft symmetry structure. Perlin noise is a procedural texture used by computer graphics
artists to add realism to natural textures such as clouds, grass or tree bark. We generate Perlin-
like noise by layering octaves of random but smoothly varying functions. We condition the result
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Figure 2: On the left: samples from the structured Perlin noise generator. On the right: convergence
of expected mean for a draw from a 3D spherical Gaussian conditioned on lying on a line.

on approximate diagonal symmetry, forcing the resulting image to incorporate additional structure
without otherwise skewing the statistics of the image. Note that the MAP solution for this problem is
uninteresting, as it is a uniform image; it is the variations around the MAP that provide rich texture.
We generated 48x48 images; the model had roughly 1000 variables.

Fig. 2 shows the result via typical samples generated by HMC, where the approximate symmetry is
clearly visible. A code snippet demonstrating the complexity of the calculations is shown in Fig. 1;
this experiment illustrates how the automatic nature of the gradients is most helpful, as it would be
time consuming to compute these gradients by hand—particularly since we are free to condition
using any function of the image.

Normal distribution noisily condi-
tioned on line (2D projection)
1: x ∼ N (µ,σ)

2: k ∼ Bernoulli(e−
dist(line,x)

noise )
3: Condition on k = 1

!1.5 !1.0 !0.5 0.5 1.0 1.5

!2

!1

1

2

Complex conditioning. For our second example, we
demonstrate the improved statistical efficiency of the
samples generated by HMC versus BHER’s standard
MCMC algorithm. The goal is to sample points from a
complex 3D distribution, defined by starting with a Gaus-
sian prior, and sampling points that are noisily condi-
tioned to be on a line running through R3. This creates
complex interactions with the prior to yield a smooth, but
strongly coupled, energy landscape.

Fig. 2 compares our HMC implementation with BHER’s
standard MCMC engine. The x-axis denotes samples,
while the y-axis denotes the convergence of an estimator
of certain marginal statistics of the samples. We see that
this estimator converges much faster for HMC, implying
that the samples which are generated are less autocorrelated – affirming that HMC is indeed making
better distal moves. HMC is about 5x slower than MCMC for this experiment, but the overhead is
justified by the significant improvement in the statistical quality of the samples.

4 Provenance Tracking for Fine-Grained Dynamic Dependency Analysis

One reason gradient based inference algorithms are effective is that the chain rule of derivatives
propagates information backwards from the data up to the proposal variables. But gradients, and the
chain rule, are only defined for continuous variables. Is there a corresponding structure for discrete
choices? We now introduce a new nonstandard interpretation based on provenance tracking (PT). In
programming language theory, the provenance of a variable is the history of variables and computa-
tions that combined to form its value. We use this idea to track fine-grained dependency information
between random values and intermediate computations as they combine to form a likelihood. We
then use this provenance information to construct good global proposals for discrete variables as
part of a novel factored multiple-try MCMC algorithm.

4.1 Defining and Implementing Provenance Tracking
Like AD, PT can be implemented with operator overloading. Because provenance information is
much coarser than gradient information, the operators in PT objects have a particularly simple form;
most program expressions can be covered by considering a few cases. Let X denote the set {xi}
of all (not necessarily random) variables in a program. Let R(x) ⊂ X define the provenance of a
variable x. Given R(x), the provenance of expressions involving x can be computed by breaking
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down expressions into a sequence of unary operations, binary operations, and function applications.
Constants have empty provenances.

Let x and y be expressions in the program (consisting of an arbitrary mix of variables, constants,
functions and operators). For a binary operation x - y, the provenance R(x - y) of the result is
defined to be R(x- y) = R(x) ∪R(y). Similarly, for a unary operation, the provenance R(-x) =
R(x). For assignments, x = y ⇒ R(x) = R(y). For a function, R(f(x, y, ...)) may be computed
by examining the expressions within f ; a worst-case approximation is R(f(x, y, ...)) = R(x) ∪
R(y) · · · . A few special cases are also worth noting. Strictly speaking, the previous rules track a
superset of provenance information because some functions and operations are constant for certain
inputs. In the case of multiplication, x ∗ 0 = 0, so R(x ∗ 0) = {}. Accounting for this gives tighter
provenances, implying, for example, that special considerations apply to sparse linear algebra.

In the case of probabilistic programming, recall that random variables (or ERPs) are represented as
stochastic functions fi that accept parameters θi. Whenever a random variable is conditioned, the
output of the corresponding fi is fixed; thus, while the likelihood of a particular output of fi depends
on θi, the specific output of fi does not. For the purposes inference, therefore, R(fi(θi)) = {}.

4.2 Using Provenance Tracking as Part of Inference
Provenance information could be used in many ways. Here, we illustrate one use: to help construct
good block proposals for MH inference. Our basic idea is to construct a good global proposal by
starting with a random global proposal (which is unlikely to be good) and then inhibiting the bad
parts. We do this by allowing each element of the likelihood to “vote” on which proposals seemed
good. This can be considered a factored version of a multiple-try MCMC algorithm [16].

The algorithm is shown in Fig. 3. Let xO be the starting state. In step (2), we propose a new state
xO′ . This new state changes many ERPs at once, and is unlikely to be good (for the proof, we require
that xO′

i 0= xO
i for all i). In step (3), we accept or reject each element of the proposal based on a

function α. Our choice of α (Fig. 3, left) uses PT, as we explain below. In step (4) we construct a
new proposal xM by “mixing” two states: we set the variables in the accepted set A to the values of
xO′

i , and we leave the variables in the rejected set R at their original values in xO. In steps (5-6) we
compute the forward probabilities. In steps (7-8) we sample one possible path backwards from xM

to xO, with the relevant probabilities. Finally, in step (9) we accept or reject the overall proposal.

We use α(xO, xO′

) to allow the likelihood to “vote” in a fine-grained way for which proposals
seemed good and which seemed bad. To do this, we compute p(xO) using PT to track how each
xO
i influences the overall likelihood p(xO). Let D(i;xO) denote the “descendants” of variable xO

i ,
defined as all ERPs whose likelihood xO

i impacted. We also use PT to compute p(xO′

), again
tracking dependentsD(i;xO′

), and letD(i) be the joint set of ERPs that xi influences in either state
xO or xO′ . We then use D(i), p(xO) and p(xO′

) to estimate the amount by which each constituent
element xO′

i in the proposal changed the likelihood. We assign “credit” to each i as if it were the
only proposal – that is, we assume that if, for example, the likelihood went up, it was entirely due to
the change in xO

i . Of course, the variables’ effects are not truly independent; this is a fully-factored
approximation to those effects. The final α is shown in Fig. 3 (left), where we define p(xD(i)) to be
the likelihood of only the subset of variables that xi impacted.

Here, we prove that our algorithm is valid MCMC by following [16] and showing detailed balance.
To do this, we must integrate over all possible rejected paths of the negative bits xO′

R and xMI
R :

p(xO)P (xM |xO) = p(xO)

∫

xO′

R

∫

xMI
R

QO′

A QO′

R PM
A PM

R QMI
R min

{

1,
p(xM )

p(xO)

QMI
A PMI

A PMI
R

QO′

A PM
A PM

R

}

=

∫

xO′

R

∫

xMI
R

QO′

R QMI
R min

{

p(xO)QO′

A PM
A PM

R , p(xM )QMI
A PMI

A PMI
R

}

= p(xM )

∫

xO′

R

∫

xMI
R

QMI
A QMI

R PMI
A PMI

R QO′

R min

{

1,
p(xO)QO′

A PM
A PM

R

p(xM )QMI
A PMI

A PMI
R

}

= p(xM )P (xO|xM )

where the subtlety to the equivalence is that the rejected bits xO′

R and xMI
R have switched roles. !
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Alg. 3: Factored Multiple-Try MH
1: Begin in state xO . Assume it is composed of individual ERPs xO =

{

xO
1 , · · · , x

O
k

}

.
2: Propose a new state for many ERPs. For i = 1, · · · , k, propose xO′

i ∼ Q(xO′

|xO) s.t. xO′

i "= xO
i .

3: Decide to accept or reject each element of xO′

. This test can depend arbitrarily on xO and xO′

, but must
decide for each ERP independently; let αi(x

O, xO′

) be the probability of accepting xO′

i . Let A be the set
of indices of accepted proposals, and R the set of rejected ones.

4: Construct a new state, xM =
{

xO′

i : i ∈ A
}

⋃
{

xO
j : j ∈ R

}

. This new state mixes new values for the
ERPs from the accepted set A and old values for the ERPs in the rejected set R.

5: Let PM
A =

∏

i∈A αi(x
O, xO′

) be the probability of accepting the ERPs in A, and let PM
R =

∏

j∈R(1 −

αj(x
O, xO′

)) be the probability of rejecting the ERPs in R.
6: Let QO′

A =
∏

i∈A Q(xO′

i |xO) and QO′

R =
∏

j∈R Q(xO′

j |xO).
7: Construct a new state xMI . Propose new values for all of the rejected ERPs using xM as the start state,
but leave ERPs in the accepted set at their original value. For j ∈ R let xMI

j ∼ Q(·|xM ). Then,
xMI =

{

xO
i : i ∈ A

}
⋃

{

xMI
j : j ∈ R

}

.
8: Let PMI

A =
∏

i∈A αi(x
M , xMI), and let PMI

R =
∏

j∈R(1− αj(x
M , xMI)).

9: Accept xM with probabilitymin
{

1, (p(xM )QMI
A PMI

A PMI
R )/(p(xO)QO′

A PM
A PM

R )
}

.

Alg. 4: A PT-based Acceptance Test
1: The PT algorithm implements αi(x, x′).
2: Compute p(x), tracking D(xi;x)
3: Compute p(x′), tracking D(xi;x′)
4: Let D(i) = D(xi;x) ∪D(xi;x′)

5: Let αi(x, x′) = min
{

1,
p(x′

i)p(x
′

D(i))

p(xi)p(xD(i))

}

!"#$%$#&'()*+,- .//0120#)-02
+030/20#)-02

42'52
-2'20

,5616-0#
-2'20

7$80#
-2'20 +0%05-0)1'29

Figure 3: The factored multiple-try MH algorithm (top), the PT-based acceptance test (left) and an
illustration of the process of mixing together different elementary proposals (right).

4.3 Experiments and Results
We implemented provenance tracking and in Stochastic MATLAB [28] by leveraging MATLAB’s
object oriented capabilities, which provides full operator overloading. We tested on four tasks: a
Bayesian “mesh induction” task, a small QMR problem, probabilistic matrix factorization [23] and
an integer-valued variant of PMF. We measured performance by examining likelihood as a function
of wallclock time; an important property of the provenance tracking algorithm is that it can help
mitigate constant factors affecting inference performance.

Alg. 5: Bayesian Mesh Induction
1: function X = bmi( base mesh )
2: mesh = base mesh + randn;
3: img = render( mesh );
4: X = img + randn;
5: end;

Bayesian mesh induction. The BMI task is simple:
given a prior distribution over meshes and a target im-
age, sample a mesh which, when rendered, looks like the
target image. The prior is a Gaussian centered around a
“mean mesh,” which is a perfect sphere; Gaussian noise
is added to each vertex to deform the mesh. The model
is shown in Alg. 5. The rendering function is a custom
OPENGL renderer implemented as a MEX function. No
gradients are available for this renderer, but it is reasonably easy to augment it with provenance
information recording vertices of the triangle that were responsible for each pixel. This allows us to
make proposals to mesh vertices, while assigning credit based on pixel likelihoods.

Results for this task are shown in Fig. 4 (“Face”). Even though the renderer is quite fast, MCMC
with simple proposals fails: after proposing a change to a single variable, it must re-render the image
in order to compute the likelihood. In contrast, making large, global proposals is very effective.
Fig. 4 (top) shows a sequence of images representing burn-in of the model as it starts from the initial
condition and samples its way towards regions of high likelihood. A video demonstrating the results
is available at http://www.mit.edu/˜wingated/papers/index.html.
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Figure 4: Top: Frames from the face task. Bottom: results on Face, QMR, PMF and Integer PMF.

QMR. The QMR model is a bipartite, binary model relating diseases (hidden) to symptoms (ob-
served) using a log-linear noisy-or model. Base rates on diseases can be quite low, so “explaining
away” can cause poor mixing. Here, MCMC with provenance tracking is effective: it finds high-
likelihood solutions quickly, again outperforming naive MCMC.

Probabilistic Matrix Factorization. For the PMF task, we factored a matrix A ∈ R1000x1000 with
99% sparsity. PMF places a Gaussian prior over two matrices, U ∈ R1000x10 and V ∈ R1000x10,
for a total of 20,000 parameters. The model assumes that Aij ∼ N (UiV

T
j , 1). In Fig. 4, we see

that MCMC with provenance tracking is able to find regions of much higher likelihood much more
quickly than naive MCMC. We also compared to an efficient hand-coded MCMC sampler which
is capable of making, scoring and accepting/rejecting about 20,000 proposals per second. Interest-
ingly, MCMC with provenance tracking is more efficient than the hand-coded sampler, presumably
because of the economies of scale that come with making global proposals.

Integer Probabilistic Matrix Factorization. The Integer PMF task is like ordinary PMF, except
that every entry in U and V is constrained to be an integer between 1 and 10. These constraints
imply that no gradients exist. Empirically, this does not seem to matter for the efficiency of the
algorithm relative to standard MCMC: in Fig. 4 we again see dramatic performance improvements
over the baseline Stochastic MATLAB sampler and the hand-coded sampler.

5 Conclusions
We have shown how nonstandard interpretations of probabilistic programs can be used to extract
structural information about a distribution, and how this information can be used as part of a vari-
ety of inference algorithms. The information can take the form of gradients, Hessians, fine-grained
dependencies, or bounds. Empirically, we have implemented two such interpretations and demon-
strated how this information can be used to find regions of high likelihood quickly, and how it can
be used to generate samples with improved statistical properties versus random-walk style MCMC.
There are other types of interpretations which could provide additional information. For example,
interval arithmetic [22] could be used to provide bounds or as part of adaptive importance sampling.

Each of these interpretations can be used alone or in concert with each other; one of the advantages
of the probabilistic programming framework is the clean separation of models and inference algo-
rithms, making it easy to explore combinations of inference algorithms for complex models. More
generally, this work begins to illuminate the close connections between probabilistic inference and
programming language theory. It is likely that other techniques from compiler design and program
analysis could be fruitfully applied to inference problems in probabilistic programs.
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