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Abstract
There is a long tradition in both philosophy and psychology to
separate process accounts from dependency accounts of causa-
tion. In this paper, we motivate a unifying account that explains
people’s causal attributions in terms of counterfactuals defined
over probabilistic generative models. In our experiments, par-
ticipants see two billiard balls colliding and indicate to what
extent ball A caused/prevented ball B to go through a gate. Our
model predicts that people arrive at their causal judgments by
comparing what actually happened with what they think would
have happened, had the collision between A and B not taken
place. Participants’ judgments about what would have hap-
pened are highly correlated with a noisy model of Newtonian
physics. Using those counterfactual judgments, we can predict
participants’ cause and prevention judgments very accurately
(r = .99). Our framework also allows us to capture intrinsically
counterfactual judgments such as almost caused/prevented.
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Introduction
There has been a longstanding divide in philosophy be-

tween two fundamentally different ways of conceptualizing
causality. According to dependency accounts of causation,
what it means for A to be a cause of B is that B is in some
way dependent on A. Dependence has been conceptualized in
terms of regularity of succession (A is regularly succeeded by
B; Hume, 1748), probabilities (the presence of A increases the
probability of B; Suppes, 1970) or counterfactuals (if A had
not been present B would not have occurred; Lewis, 1970).
For process accounts, in contrast, what it means for A to be
a cause of B is that a physical quantity is transmitted along a
pathway from A to B (Dowe, 2000).

The psychological literature on causal learning and attribu-
tion neatly maps onto the two major accounts in philosophy.
On the one hand, people have been shown to use contingency
information when drawing inferences about whether and how
strongly two events are causally linked (Cheng, 1997). On the
other hand, people display a preference to choose causes that
influence an effect via a continuous causal mechanism over
causes that are connected with the effect through mere depen-
dence (Walsh and Sloman, 2011). A point that has been raised
in favor of process accounts is that they are capable of captur-
ing the semantics of different causal terms. Whereas depen-
dency accounts have mostly focussed on causation and pre-
vention, Wolff (2007) has provided a process account which
not only predicts when people use the terms cause and prevent
but also enable and despite. Following a linguistic analysis of
causation by Talmy (1988) in terms of force dynamics, Wolff
(2007) argues that the aforementioned causal terms can be re-
duced to configurations of force vectors. For example, what

it means for a patient (P) to have been caused by an affector
(A) to reach an endstate (E) is that P did not have a tendency
towards E, A impacted on P in a way that their force vectors
were not pointing in the same direction and P reached E. If,
in contrast, the force vectors of both P and A point towards
E and P reaches E, the model predicts that people will say
“A enabled (rather than caused) P”. Importantly, according to
Wolff’s account, the core dimensions which underlie the dif-
ferent causal terms, such as P’s tendency towards E, are de-
fined in strictly non-counterfactual terms. Hence, “tendency”
is defined as the direction of P’s force rather than whether P
would reach E in the absence of any other forces.

While the force dynamics model has strong intuitive appeal
for interactions between physical entities, it is questionable
how it can be extended to capture causal attributions in situa-
tions involving more abstract entities. For example, one might
legitimately assert that the fall of Lehman Brothers caused the
financial crisis or that Tom’s belief that he forgot his keys
caused him to turn around and go back home. While it is
unclear how these causal relationships could be expressed in
terms of force vectors, they do not pose a problem for the
more flexible dependency accounts. For example, according
to a counterfactual account, Tom’s belief qualifies as cause of
his behaviour if it is true that his behavior would have been
different had the content of his belief been different. Hence,
there appears to be a trade-off between the semantic richness
of process accounts on the one hand and the generality and
flexibility of dependency accounts on the other hand.

Rather than fostering the divide between process accounts
and dependency accounts, we propose a theory of causal attri-
bution that combines the best of both worlds. In the spirit of
Pearl (2000), we model causal attributions in terms of counter-
factuals defined over probabilistic generative models. How-
ever, we agree with Wolff (2007) that people’s causal knowl-
edge is often richer than what can be expressed with a causal
Bayes net. We aim to unify process and dependency accounts
by showing that people have intuitive theories in the form of
detailed generative models, and that causal judgements are
made by considering counterfactuals over these intuitive the-
ories. Here we demonstrate the superiority of our approach
over existing models of causal attribution in a physical do-
main. We show that people use their intuitive understand-
ing of physics to simulate possible future outcomes and that
their causal attributions are a function of what actually hap-
pened and their belief about what would have happened had
the cause not been present.
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Overview of Experiments and Model
Predictions

Before discussing the predictions of our model and the sup-
porting evidence from four experiments, we describe the do-
main to which we applied our model. In all experiments, par-
ticipants saw the same 18 video clips which were generated
by implementing the physics engine Box2D into Adobe Flash
CS5. Figure 1 depicts a selection of the clips.1 In each clip,
there was a single collision event between a grey ball (A) and
a red ball (B) which enter the scene from the right. Colli-
sions were elastic and there was no friction. The black bars
are solid walls and the red bar on the left is a gate that balls
can go through. In some clips B went through the gate (e.g.
clip 18) while in others it did not (e.g. clip 5). In the 18
video clips, we crossed whether ball B went through the gate
given that it collided with ball A (rows in Figure 1: actual
miss/close/hit) with whether B would go through the gate if
A was not present in the scene (columns in Figure 1: counter-
factual miss/close/hit). Participants viewed two clips for each
combination of actual and counterfactual outcome.

In Experiments 1 and 2, the video clips stopped shortly after
the collision event. Participants judged whether ball B will go
through the gate (Experiment 1) or whether ball B would go
through the gate if ball A was not present in the scene (Exper-
iment 2). In Experiment 3, participants saw each clip played
until the end and then judged to what extent ball A caused ball
B to go through the gate or prevented B from going through
the gate. Finally, in Experiment 4 participants chose from a
set of sentences which best describes the clip they have just
seen. All experiments were run online and participants were
recruited via Amazon Mechanical Turk.

In order to model people’s predictions of actual and coun-
terfactual future outcomes, we developed the Physics Sim-
ulation Model (PSM) which assumes that people make use
of their intuitive understanding of physics to simulate what
will or what might have happened. Hamrick et al. (2011)
have shown that people’s stability judgments about towers of
blocks is closely in line with a noisy model of Newtonian
physics. While in their model, the introduced noise captures
people’s uncertainty about the exact location of each block,
the noise in our model captures the fact that people cannot
perfectly predict the trajectory of a moving ball (cf. Figure 1,
clip 1). We introduce noise via drawing different degrees of
angular perturbation from a Gaussian distribution with M = 0
and SD = {1,2, ...,10} which is then applied to B’s actual ve-
locity vector (given that it collided with A, clip 1 bottom left)
or B’s counterfactual velocity vector (given that A was not
present in the scene, clip 1 top left) at the time of collision.

We evaluate the probability that B would go through the
gate when A was present, P(B|A), or absent P(B|¬A) by for-
ward sampling from our noisy versions of Newtonian physics.
For each clip and degree of noise (SD), we ran 1000 noisy rep-

1All clips can be viewed here: http://www.ucl.ac.uk/
lagnado-lab/experiments/demos/physicsdemo.html
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Figure 1: Selection of clips used in the experiment. Solid arrows =
actual paths, dashed arrows = counterfactual paths. Clip 1 depicts an
illustration of the Physics Simulation Model and clip 7 of the Actual
Force Model. Note: actual miss = B clearly misses; actual close = B
just misses/hits; actual hit = B clearly hits; counterfactual miss = B
would have clearly missed; counterfactual close = B would have just
missed/hit; counterfactual hit = B would have clearly hit.

etitions of the original clip and counted the worlds in which
B goes through the gate given that A was present P(B|A) or
absent P(B|¬A).

Experiments 1 & 2: Intuitive Physics
The aim of Experiments 1 and 2 was to evaluate how well

people make use of their intuitive physical knowledge to pre-
dict actual (Experiment 1) or counterfactual (Experiment 2)
future states. Participants saw 18 video clips (see Figure 1 for
some examples) up to the point shortly after the two balls col-
lided (0.1s). After having seen the clip twice, participants an-
swered the question: “Will the red ball go through the hole?”
(Experiment 1, N = 21) or “Would the red ball have gone
through the goal if the gray ball had not been present?” (Ex-
periment 2, N = 20). Participants indicated their answers on a
slider that ranged from 0 (“definitely no”) to 100 (“definitely
yes”). The midpoint was labeled “uncertain”. After having
made their judgment, participants viewed the clip until the end
either with both balls being present (Experiment 1) or with
ball A being removed from the scene (Experiment 2).

Results and Discussion
Participants were accurate in judging whether ball B will go

through the gate (Experiment 1) or would have gone through
the gate (Experiment 2) with a mean absolute difference from
the deterministic physics model (which assigns a value of 100
if B goes in and 0 if B does not go in) of 28.6 (SD = 29.9) in
Experiment 1 and 25.1 (SD = 30.5) in Experiment 2. Figure 2
shows the correlation of the PSM with participants’ judgments
in Experiment 1 (solid black line) and Experiment 2 (dashed
black line) for different degrees of noise. While people’s judg-
ments already correlate quite well with a deterministic Newto-
nian physics model (degree of noise = 0◦), introducing small

http://www.ucl.ac.uk/lagnado-lab/experiments/demos/physicsdemo.html
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Experiment 1: Will B go in?

Experiment 2: Would B have gone in?

Experiment 3: Did A cause/prevent B ...?

Experiment 4: Did A cause/help/almost cause B ...?

Figure 2: Correlation of the Physics Simulation Model with people’s
judgments in all four experiments for different degrees of noise.

degrees of noise results in much higher correlations with a
maximum correlation of r = .95 in Experiment 1 and r = .98
in Experiment 2 for SD = 5◦.

The results of Experiments 1 and 2 show that people are
capable of mentally simulating what will happen (Experiment
1) or what would have happened (Experiment 2). Given that
each clip stopped very shortly after the collision event, partic-
ipants’ accuracy in judging whether ball B will go in or not is
quite impressive.

Experiment 3: Causation and Prevention
In Experiment 3, we wanted to investigate how people use

their intuitive understanding of physics to make judgments
about the extent to which one event caused or prevented an-
other event from happening. Unlike in Experiments 1 and
2, participants (N = 22) saw each clip played until the end.
After having seen each clip twice, participants answered the
question “What role did ball A play?” by moving a slider
whose endpoints were labeled with “it prevented B from go-
ing through the hole” and “it caused B to go through the hole”.
The midpoint was labeled “neither”. The slider ranged from
-100 (prevented) to 100 (caused). Participants were instructed
that they could use intermediate values on the slider to indi-
cate that ball A somewhat caused or prevented B.

Model Predictions
Physics Simulation Model According to the PSM, people
arrive at their cause and prevention judgments by comparing
what actually happened with what they think would have hap-
pened if the cause event had not taken place. More specif-
ically, our model predicts that people compare P(B|A), the
probability that ball B will go through the gate given that it
collided with ball A, with P(B|¬A), the probability that B
would have gone through the gate if A had not been present
in the scene. Since participants in Experiment 3 watch the
clips until the end, the value of P(B|A) is certain: it is either
1 when B goes through the gate or 0 when B misses the gate.

In order to determine P(B|¬A), the PSM assumes that people
use their confidence in the result of their mental simulation of
what would have happened had A not been present.

In general, if P(B|A)− P(B|¬A) is negative, participants
should say that A prevented B from going through the gate.
Intuitively, if it was obvious that B would have gone in had A
not been present (i.e. P(B|¬A) is high) but B misses the gate
as a result of colliding with A (i.e. P(B|A) = 0), A should
be judged to have prevented B from going through the gate.
Similarly, if the difference is positive, participants should say
that A caused B to go through the gate. If the chance that B
would have gone through the goal without A was low but, as a
result of colliding with A, B goes through the gate, A should
be judged to have caused B to go through the gate. Clip 1 in
Figure 1 shows an example for which our model predicts that
participants will say that A neither caused nor prevented B.
P(B|A) is 0 since B does not go through the gate. However,
P(B|¬A) is also close to 0 since it is clear that B would have
missed the gate even if A had not been present in the scene.

Actual Force Model The Actual Force Model (AFM) is our
best attempt to apply Wolff’s (2007) force dynamics model
to our task.2 According to the AFM, participants’ cause and
prevention judgments are a direct result of the physical forces
which are present at the time of collision.

Clip 7 in Figure 1 illustrates how the AFM works. First,
a goal vector (dotted arrow) is drawn from ball B’s location
at the time of collision to an end state (E), which we defined
to be in the center of the gate. Second, the angle α between
the velocity vector that ball B has shortly after the collision
with A (solid arrow) and the goal vector as well as the angle
β between the velocity vector that ball B has shortly before
colliding with A (dashed arrow) are determined. Third, the
model predicts people’s cause and prevention judgments via
comparison of α and β. In general, if ball B goes in and β−α

is greater than 0, the model predicts people will say that A
caused B. Conversely, if ball B does not go in and β−α is
smaller than 0, the model predicts people will say A prevented
B. For situations in which β−α is greater than 0 but B does
not go in or β−α is smaller than 0 but B does go in, we fix
the model prediction to 0. This constraint prevents the model
from predicting, for example, that people will say “A caused
B” when B missed the gate.

Results and Discussion
Figure 3 shows participants’ mean cause and prevention

judgments for the 18 different clips together with the predic-
tions of the PSM and the AFM. For the particular implementa-
tion of the PSM depicted in Figure 3, we directly used partic-
ipants’ judgments from Experiment 2 in which they indicated
whether ball B would have gone through the gate if ball A
had not been present as the values for P(B|¬A). For exam-
ple, in clip 5 the ball misses the gate (hence P(B|A) = 0) and

2While the force dynamics model only makes predictions about
which out of several sentences participants will choose to describe a
situation, the AFM makes quantitative predictions about the extent
to which an event is seen as causal/preventive.
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Figure 3: Z-scored mean cause (green) and prevention ratings (red)
for the different clips denoted on the x-axes. ◦ = predictions of the
Physics Simulation Model (r = .99), � = predictions of the Actual
Force Model (r = .77). Error bars are ± 1 SEM.

participants’ average confidence rating from Experiment 2 of
whether B would have gone through in the absence of A is
97% (hence P(B|¬A) = .97). Thus the PSM predicts that par-
ticipants will indicate that A strongly prevented B in this clip,
because P(B|A)−P(B|¬A) is close to the minimum of -1.

Overall, the PSM predicts participants’ cause and preven-
tion ratings very well with r = .99 and RMSE = 0.02. A high
median correlation across participants of r = .88 with a mini-
mum of r = .61 and a maximum of r = .95 demonstrates that
the good performance of the PSM is not due to a mere aggre-
gation effect. The PSM achieves its high predictive accuracy
without the need for any free parameters. We directly used
participants’ judgments from Experiment 2 to determine the
value of P(B|¬A) for each clip. Figure 2 shows that partic-
ipants’ judgments also correlate highly with the PSM when
we generate P(B|¬A) through the noisy simulations of New-
tonian physics as described above.

The AFM, in contrast, does not predict participants’ judg-
ments equally well with a correlation of r = .77 and RMSE =
0.44. While the AFM predicts people’s judgments for many of
the clips, there are a number of clips for which its predictions
are inaccurate (most notably: clips 2, 5, 9, 11 and 14).

Interestingly, people’s cause and prevention judgments
were not affected by the closeness of the actual outcome. That
is, participants’ cause ratings did not differ between situa-
tions in which B just went through the gate (clips 8, 10, 12:
M = .51, SD = .40) compared to situations in which B clearly
went through (clips 13 - 18: M = .49, SD = .42). Similarly,
prevention judgments were not different between situations in
which B just missed (clips 7, 9, 11: M = −.41, SD = .43)
and situations in which B clearly missed (clips 1-6: M =
−.47, SD = .44).

People’s cause and prevention judgments were very well
predicted by the PSM. In order to judge whether ball A caused
or prevented ball B, participants appear to compare what ac-
tually happened with what they think would have happened
had A not been present. This very high correlation is achieved

without the need for any free parameters in the model. P(B|A)
is determined by the outcome of the clip and P(B|¬A) by
participants’ judgments in Experiment 2. The PSM also
correlates highly with participants’ causal attributions when
P(B|¬A) is treated as a free parameter and estimated via the
noisy Newtonian physics model with a maximum correlation
of r = .99 (cf. Figure 2).

The AFM which assumes that people arrive at their judg-
ments via comparing instantaneous force vectors, rather than
a mental simulation of the full physical dynamics cannot cap-
ture people’s judgments equally well. Clip 14 (see Figure 1)
gives an example in which the AFM gets it wrong. While
participants indicate that A caused B to go through the gate
(see Figure 3), the AFM model cannot predict this. In this
situation, the angle between the velocity vector of B shortly
after the collision and the goal vector α is greater than the
angle between the velocity vector of B shortly before the col-
lision and the goal vector β. Hence, the model predicts that
A is preventing B but since B does in fact go in, the model’s
prediction is fixed to 0. In defense of the AFM, it could be
argued that clip 14 is better thought of as a causal chain in
which A causes B to hit the wall which then causes B to go in.
Whether participants would count the static wall as a cause of
B going through the gate is an empirical question. In any case,
the other problematic clips mentioned above remain. Each of
these clips only involves a single interaction.

Experiment 4: Almost Caused/Prevented

The results of Experiment 3 show that people’s cause and
prevention judgments are only influenced by their degree of
belief about whether the event of interest would have hap-
pened without the cause being present and not influenced by
how close the outcome actually was. However, often the
closeness with which something happened clearly matters to
us, such as when we almost missed a flight to Japan or only
just made it in time for our talk.

As mentioned above, one of the appeals of process accounts
is that they acknowledge the semantic richness of the concept
of causation by making predictions about which out of sev-
eral causal verbs people will choose to describe a particular
situation. In this experiment, we will demonstrate that our
framework is not only capable of capturing the difference be-
tween different causal verbs such as caused or helped but also
predicts when people make use of intrinsically counterfactual
concepts such as almost caused or almost prevented. Current
process accounts (e.g. Wolff, 2007) cannot make predictions
in these situations as they aim to analyze causality without
making reference to counterfactuals.

In Experiment 4, participants (N = 41) had to select from
a set of seven sentences the one that describes the situation
best. The sentences were: A caused / helped / almost caused
B to go in the hole; A prevented / helped to prevent / almost
prevented B from going in the hole; A had no significant effect
on whether B went in the hole or not.



Table 1: Predicted probability of choosing different sentences in Ex-
periment 4.

outcome probability

(1) caused hit 1−P(B|¬A)
(2) helped hit 1−abs(0.5− caused)*

(3) almost caused miss p(almost B|A)−
prevented

(4) prevented miss p(B|¬A)
(5) helped to prevent miss 1−abs(0.5−

prevented)*

(6) almost prevented hit p(almost ¬B|A)−
caused

(7) no effect hit/miss 1−max((1), ...,(6))
*rescaled to range from 0 to 1

Model Predictions
Table 1 gives an overview of the model predictions which

are a function of the outcome, that is, whether B went in
or not, and the probabilities P(B|¬A), P(almost B|A) and
P(almost ¬B|A). For P(B|¬A) we can again use participants’
judgments from Experiment 2 or the predictions of the PSM.

The model’s predictions for caused and prevented are iden-
tical to the predictions in Experiment 3. According to our
model, the difference between caused and helped is an epis-
temic one. People are predicted to select helped when B went
in and when they were uncertain about what would have hap-
pened had A not been present. However, when it was clear
that B would have gone in or would have missed, people
are predicted to select no effect or caused, respectively, and
not helped. Similarly, when B missed and it was uncertain
whether B would have gone in, the model predicts that people
select helped to prevent.

In order to predict when people select almost caused or
almost prevented, we first have to define the probabilities
P(almost B|A) and P(almost ¬B|A). These probabilities ex-
press the closeness of an alternative counterfactual outcome to
the actual outcome. One way to get at the probabilities would
be to have participants judge how closely B hit or missed the
gate. However, here we used a variation of the PSM to gen-
erate these probabilities. For each clip we ran a set of 100
x 10 noisy simulations for different noise levels from SD =
1◦ to 5◦, whereby the noise was again introduced at the time
of collision. If the outcome in the noisy simulations was dif-
ferent from the original outcome in any of the ten repetitions
in each of the 100 simulated worlds, we counted this as a pos-
itive instance. If the outcome in all ten repetitions was the
same as the original outcome, we counted this as a negative
instance. For example, a value of P(almost ¬B|A) = .87 in a
situation in which B goes through the gate in the original clip,
means that in 87 out of the 100 generated worlds, the ball did
not go through the gate in at least one of the ten repetitions
of each of the worlds. For the remaining 13 worlds, the ball
did go in for all ten repetitions. Intuitively, in situations in
which the outcome was close, the chances that the outcome
in the noisy simulation will be different from the outcome in
the original clip in at least one out of ten repetitions are high.
However, if ball B clearly missed, for example, it is unlikely
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Figure 4: Frequencies with which different sentences were selected
in Experiment 4 (bars) and predictions by the Physics Simulation
Model (circles), r = .86. The color of the clip number indicates
whether the ball went in (green) or not (red). Note: c = caused, hc =
helped (to cause), ac = almost caused, p = prevented, hp = helped to
prevent, ap = almost prevented, n = no significant effect.

that there will be a noisy simulation in which the introduced
angular perturbation is sufficient to make B go in.

The model predicts that people will select almost caused
when B just missed (which means that P(almost B|A) is high)
and the probability that it would have gone in given that A was
absent is low. People should select almost prevented when B
just went in (P(almost ¬B|A) is high), and when it was clear
that B would have gone in had A been absent (P(B|¬A) is
high). Finally, if none of these calculations result in a high
value, people are predicted to select that A had no significant
effect on whether B went through the gate.

The model predictions for the 18 different clips can be
seen in Figure 4. We used Luce’s choice rule (Luce, 1959)
to transform the different probabilities into predictions about
the frequencies with which the different sentences will be se-
lected. The model predicts that the modal choice in situations
in which B does not go in changes from prevented for clips
in which it was clear that B would have gone in (clips 5 &
6) to helped to prevent in situations in which it was unclear
whether B would have gone in (clips 3 & 4). The same switch
of the modal response as a function about the certainty of what
would have happened is predicted for caused (clips 13 & 14)
and helped (clips 15 & 16). If there was little uncertainty
about the counterfactual outcome and it matches the actual
outcome, people are predicted to select had no effect (clips 1,
2, 17, 18). For clip 7 in which B just misses, people are pre-
dicted to select almost caused since it was clear that B would
have missed but for A. Conversely, for clip 12, the model pre-
dicts that people will select almost prevented: B just goes in
and it was clear that it would have gone in without A being
present.

Results and Discussion
The model predicts the frequencies with which participants

select the different sentences very well, r = .86 (cf. Figure 4).



Figure 2 shows the correlation when we generate P(B|¬A)
through noisily perturbing the vector rather than taking par-
ticipants’ ratings from Experiment 2. It predicts the modal
choice correctly in 12 out of 18 clips. While participants’
modal response does not change between clips 5 & 6 and clips
3 & 4 as predicted by the model, the proportion of helped
to prevent selections clearly increases. A similar shift is ob-
served between clips 13 & 14 and 15 & 16 for which par-
ticipants’ selection of helped increases as a function of the
uncertainty over what would have happened.

As predicted by the model, participants’ modal response in
clip 7 is almost caused and in clip 12 almost prevented. The
variance in responses within a clip is greater for the clips in
which the actual outcome was close (middle row) compared
to when it clearly missed (top row) or clearly hit (bottom
row). For example, in clip 10 in which B just goes in and the
counterfactual outcome is close the majority of participants
selected caused or helped while a minority of participants
selected almost prevented. This pattern closely matches the
predictions of our model. Whether a participant is expected
to select caused or almost prevented depends on the partici-
pant’s subjective belief about the counterfactual outcome. If a
participant thought that B would have missed she will say A
caused or helped it. However, if a participant thought that B
would have gone in but for A he will select almost prevented
because B barely goes in.

The close fit between our model prediction and partici-
pants’ selection of sentences demonstrates that our model is
capable of capturing some of the richness of people’s causal
vocabulary. Our model not only allows to distinguish cases of
causing/preventing from helping but also accurately predicts
people’s almost caused/prevented judgments. Process theo-
ries that analyze different causal concepts without the use of
counterfactuals (e.g. Wolff, 2007) cannot make predictions
about when people will say that something almost happened.

General Discussion
In this paper, we developed a framework for understand-

ing causal attributions that aims to break the longstanding di-
chotomy between process accounts and dependency accounts
of causation. We showed that people’s quantitative cause and
prevention judgments (Experiment 3) as well as people’s use
of different causal verbs (Experiment 4) can be very well pre-
dicted by assuming that people compare what actually hap-
pened when the cause was present, with what they think would
have happened in the absence of the cause. We provided evi-
dence that people use their intuitive understanding of physics
to simulate possible outcomes (Experiments 1 & 2). Under-
standing causal attributions in terms of counterfactuals de-
fined over probabilistic generative models sidesteps the pre-
sumed trade-off between flexibility and richness described
above. Our model retains the generality of dependency ac-
counts while the use of a generative model based on New-
tonian physics allows us to capture some of the richness of
people’s concept of causation.

According to our account, causal attributions are subjective.
Two observers with a different understanding of the underly-
ing generative model are predicted to reach different causal
verdicts for the same clip when their beliefs about what would
have happened in the absence of the cause event differ. The
noisy Newtonian physics model predicted participants’ judg-
ments well in our experiments. However, we are not commit-
ted to this particular generative model – indeed, our account
predicts that the ways in which people’s intuitive understand-
ing of physics is biased will be mirrored in their causal attri-
butions.

While our framework shares some of the key insights of
Wolff’s (2007) force dynamic account, such as the need for
a richer specification of people’s causal representations, our
proposals are different in critical respects. Most importantly,
our accounts differ in the role that counterfactuals play. Wolff
(2007) aims to reduce causal attributions to configurations
of force vectors and argues that these force representations
(which are primary) can then be used for the simulation of
counterfactual outcomes (which are secondary). Our account,
in contrast, does not try to explain causal attributions in terms
of non-causal representations but postulates that causal attri-
butions are intimately linked with the simulation of counter-
factuals. Hence, we claim that in order to say whether A
caused B, it is necessary to consider what would have hap-
pened to B in the absence of A and not sufficient to only
consider what forces were present at the time of interaction
between A and B.

In future experiments, we will investigate how our account
can handle more complex physical interactions and interac-
tions between intentional agents.
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