AA228 - FINAL PAPER

Decision Making Under Uncertainty for Urban
Driving

Philippe Weingertner, Arnaud Autef, Simon Le Cleac’h

Abstract—In this work we examine the problem of Motion
Planning for Autonomous Driving - AD. We must plan in a
stochastic environment with several sources of uncertainties:
imperfect sensors, occlusions, unpredictable behaviour of external
agents. We focus on sensor uncertainties and model the AD
problem as a Partially Observable Markov Decision Process -
POMDP - with a discrete action space and continuous state and
observation spaces. We propose improvements to a traditional
online algorithm used for such large POMDPs: the POMCP
algorithm. The goal is to make our motion planner a safer
autonomous driver. OQur proposed solutions include: a “’safe”
discretization of the observation space, importance sampling
techniques and an offline preprocessing of the state space to
limit the planner’s behaviour to ’safe” actions. We implemented
and tested our methods on two AD environments: a Custom
Anti-Collision Test Environment - CACTE - and the Urban
Driving Environment - UDE - from Stanford’s Intelligent Systems
Laboratory - SISL.

I. PROBLEM STATEMENT

We consider the problem of determining a sequence of
optimal actions for a Urban Driving Motion Planner. The
autonomous driving pipeline consists of a two modules with
distinct roles: a sensors fusion and localization to produce a
probabilistic model of the environment’s dynamics, decision
making module in charge of defining a driving policy. The
decision making module can be further subdivided into three
modules:

1) Route planner: to define a long term driving goal.

2) Behavioral planner: to define a list of short term
objectives, typically going from A to B with a mixture
of efficiency (time taken) comfort (minimizing jerk) and
safety (avoiding collisions and keeping safety distances)
objectives.

3) Motion planner: to complete the motion tasks submit-
ted by the behavioral planner.

Sensors Behavioral
Fusion Planner

Fig. 1: Autonomous Driving Pipeline

Route
Planner
Long-Term

Motion
Planner
Short-Term

Motion
Control

We focus on the Motion planner, which can be thought
as a module taking sequential decisions, in the form of a
discrete set of actions (acceleration or deceleration) that will
then be converted to a sequence of continuous actions by
a command and control module (usually a simple Model
Progressive Controller - MPC).

The motion planner has to deal with several sources of uncer-
tainties that are not directly observable: sensors uncertainties,
occlusions and drivers intentions. Linking driving decisions
to a proper handling of those sources of uncertainties is of
paramount importance.

In this paper we study how POMDP models can be applied to
an AD motion planner, and emphasize on the safety objective
of the Motion Planner: our proposed algorithm should succeed
in their objective of going from position A to B with the strict
requirement of avoiding any collision with other agents
When dealing with huge states spaces, as it is the case in our
urban driving setting, online methods are usually preferred
over offline methods and our work starts from there. “A
Survey of Motion Planning and Control Techniques for Self-
driving Urban Vehicles” [9], reveals that most motion planning
techniques somehow boil down to an online graph search. In
the paper, we study how uncertainty can be properly modeled
and handled during this online graph search process to improve
safety, and also consider offline methods to guide this graph
search and improve safety.

II. RELATED WORK

The Partially Observable Monte Carlo Planning - POMCP
- algorithm [10] was proposed in 2010 to deal with large
POMDPs, it is the starting point of our work. It was initially
limited to discrete actions and observations space. In [1],
an AD task is solved using a POMDP modeling of the
environment along with an online POMCP solver. In order
to deal with continuous state and continuous observation
spaces a Progressive Widening technique was used. How-
ever, their work does not emphasize on safety in AD. A
recent improvement to POMCP, POMCPOW [11] lets POMCP
deal with continuous actions and observations. The proposed
method is strongly tied to particle filters within the search
tree. According to its author, the particle filters inside of
the tree could be customized, but it’s not immediately clear
how to integrate a Kalman Filter. The Kalman Filter is the
filter we decided to use because it is simple, fast and has
no particle deprivation issue. In [5] the idea of a lossless
partitioning, with respect to the policy, of the continuous
observation space is introduced but the proposed approach is
limited to discrete states and relies on point-based backups
(PBVI, Perseus). The underlying idea is appealing to us and
we decided to explore how to take advantage of the structure
of our problem to come up with such a lossless partitioning
of the continuous observation space. In addition to POMCP,
DESPOT is another online POMDP solver that is providing

AA228 - FINAL PAPER

state of the art results: it has been used in conjunction with
Importance Sampling in [7]]. Dealing with huge states spaces,
as it is the case in urban autonomous driving, online methods
are usually preferred over offline methods. But using an online
method based on sparse sampling may lead to safety issues.
Rare events with critical consequences may not be sampled
leading to sub-optimal and potentially dangerous decisions.
That is why using Importance Sampling in conjunction with
POMCEP or DESPOT is important. In addition to the sampling
of observations, we bring another contribution to POMCP. We
modify the action selection phase to add a safety criterion
so that the car can only take actions that will not result in a
collision, with a chosen level of confidence. This approach has
been developed and tested in the AD setting in [2]. We use
the same formulation for the offline computation of the safe
actions, and we extend this approach to the POMDP setting,
while [2] applied it to a fully observable MDP. We build upon
the work referred to previously and we will be using the Julia
POMDP framework from [4] for experimentation.

ITII. PROPOSED APPROACH

First, we describe the modelling of our two simulation
environments by a POMDP

A. POMDP Models
1) Custom Anti-Collision test environment: State space S

and observation space O are continuous, they correspond to
position and speed information for each car:

{((E, Y, Vg, vy)egoa (:C, Y, Vg, Uy)objlun}

The action space A is discrete with 4 actions corresponding
to acceleration levels along a straight line:

ac{—4ms 2 —-2ms 2,0 ms %2 ms %}

The transition and observation models are linear Gaussian
with Pr(PI*t | P!) = N(TP!,Q) and Pr(O! | P!) =
N(HOLR).

The belief updater is a Kalman Filter.

The reward model accounts for efficiency, comfort and safety
objectives. Total reward is the sum of the following terms:

o r_efficiency = a as we target full speed

o r_comfort = —1 for hard breaking a = —4 ms~2 0
otherwise

o r_safety_ttc = (10 — smallest Time To Collision) * 10 if
tte < 10

« r_safety_collision= —1000 in case of a collision

2) Urban Driving Environment: The UDE is a 2D repre-
sentation of an AD task: the ego vehicle has to perform a left
turn at a T-shaped intersection while avoiding two other cars
driving on the main road. It is described in more details in
part IV.

The state space S includes, for each car:
o The Cartesian coordinates of the car in the environment
x, y, 0. 0 being the orientation of the car around its center.
o The Frenet coordinates of the car in the environment
s, t, ¢, where s and ¢ are the tangent and the normal
coordinates of the car on its current lane.

o The norm of the car’s speed vector v.

o The dimensions (width, length) of the car.

o The car’s driver model, determining the car’s driving
behaviour (for the ego it is instead the motion planning
algorithm selected).

The action space A is discretized and limited to 4 actions.
The ego vehicule is following a predetermined curve on the T-
shaped intersection of the UDE, it is not allowed to drift from
this curve and its actions are acceleration levels of the vehicle
along the curve at every time-step. The 4 actions correspond
to the following acceleration levels:

{—4m/s™2, —2m/s™ 2, Om/s 2% 2m/s %}

The observation space O choice has been crucial, as we
selected what our agent would be able to “’see” during simu-
lations. Observations are vectors of size 4 X n.q-s. They are
obtained by concatenating vectors (dego,!,s,v) for each car,
where d. 4, is the Euclidian distance (in meters) between the
car and the ego vehicle, [is the lane of the car, s its tangent
coordinate on the lane and v its speed (in meters / second).
The state — state’ transition model is based on simple
point mass dynamics. We added a transition noise to transition
dynamics of (s, v) for each car, in the form of a gaussian
distribution with mean 0 and variance 02 = 0.25 m?,02 =
0.25 m2.s72.

The state — observation observation model correspond to
picking up the (dego, !, s,v) values from the state and adding
an observation noise to (s, v), in the form of a gaussian
distribution with mean 0 and variance 02 = 1.0 m? 02 =
1.0m?2.s72.

The belief updater is a Kalman Filter.

The reward model if simple: a reward of +1.0 is granted
when the agent reached the end of the intersection, any
collision ends the simulation and yields a reward of —1.0.
The discount factor for rewards is set at v = 0.95.

B. POMCP algorithm

The POMCP algorithm [10] is an extension of the traditional
Monte Carlo Tree Search algorithm to Partially Observable
Markov Decision Processes. In our attempt to solve the two
POMDP models specified previously, we start from a variant
of this algorithm, which maintains a belief b in observation
nodes of the search tree. The core of the algorithm is presented
in Algorithm [I] and the rollout routine in Algorithm

C. Safe variants of POMCP

Then, we make some modifications to this basic POMCP
algorithm to improve performances of our policies in terms of
safety, where safety corresponds to the collision rate of our ego
vehicle with other agents and should be as close as possible
to 0.

1) Safe discretization of observations: In the CACTE and
UDE, the observation space is continuous, and very hard
to discretize. In CACTE for instance, when considering a
scene with 10 objects, observations are vectors of 40 real
coordinates. Therefore, With POMCP, for every tree query,
a previously unseen observation will be sampled. If this

AA228 - FINAL PAPER

Algorithm 1 POMCP algorithm
1: function SELECTACTION(b, d)
2 h+0
loop
SIMULATE(b, h, d)

3

4

5 return arg max, Q(h,a)
6: function SIMULATE(D, h, d)
7

8

9

if d =0 then
return 0
: a < arg max, Q(h,a)+c lﬁ’(]}\f(:))
10: s~b 7
11 (s',0,7) ~ G(s,a)
12: if hao ¢ T then
13: for a € A(s) do
14: (N (h,a), Q(h,a)) < (No(h, a), Qo(h, a))
15: T =T U {hao}
16: return ROLLOUT(b, d, ()
17: b’ + UPDATEBELIEF(b,a,0)

18: q + 7+ X SIMULATE(Y , hao,d — 1)
19: N(h) < N(h)+1
20: N(h,a) + N(h,a)+1
. —Q(h,a)
2. Q(h,a) « Q(h,a) + 5557
22: return q

Algorithm 2 Rollout evaluation

1: function ROLLOUT(b, d, m)

2: if d = 0 then

return 0

a ~ W()(b)
s~b
(s',0,7) ~ G(s,a)
b «+ UPDATEBELIEF(b,a,0)
return » + A\ RoLLOUT(V,d — 1, mp)

AN

observation does not belong to the tree, a new node will
added. By using POMCP with continuous observations, the
probability of sampling identical observations is zero, and the
end result is a shallow tree, see figure [2] Technically POMCP
will execute without error but will return a significantly sub-
optimal solution.

After considering potential use of POMCP with DPW or
POMCPOW to deal with continuous observations, we devel-
oped our own POMCP variant by taking advantage of the
structure of our AD problem. Ideally we would like to be
able to limit the number of observation nodes in the tree so
that we can explore the tree in depth and keep the capability to
do belief updates during the rollout evaluation with continuous
observations.

When aggregating observations, we would like grouped
observations to correspond to similar utilities. The utility
function is highly safety-dependent. In the CACTE, it also
depends on efficiency and comfort, but both are action rather
than observation dependent. Therefore, grouping together ob-
servations according a safety criteria looked reasonable, and
a good way to improve safety, let us describe the procedure

with both environments:

o In CACTE, for every single observation, we evaluate the
smallest Time To Collision to the 10 objects observed
and create 11 observations classes corresponding to a
TTC ranging from less than 1, to less than 10, with any
other smallest TTC value above 10 being aggregated into
the lowest collision risk category. We create observations
classes that should correspond to same safety utility or a
somewhat more pessimistic safety value.

o In the UDE, we create classes of observations based on
the distance between the ego car and the closest car in the
scene. We define 20 observations classes corresponding
to distances between 0 and 10 meters (the last class
containing all distances above 10m).

Fig. 2: With safe clusterization of observations (right)

In both settings, for every observation class node, we keep
track of the most recent raw observation. This raw observation
value is used to update the belief node with a Kalman Filter.

While this solution is taking advantage of the structure
of our problem it highlights some more general ideas that
could be re-used to apply POMCP algorithm to problem with
continuous observations:

o Observations nodes are aggregated per Utility class

o« We have a dual capability to use a discretized version
of the observation when handling MCTS tree expansion
while still using a continuous observation for BeliefUp-
date in a way that would be adapted to elaborate Impor-
tance Sampling approach, where we want to prioritize the
sampling of collision scenarios in the tree to efficiently
avoid them.

The proposed modification of POMCP algorithm is presented
in Algorithm [3] and Algorithm [4]

For rollout evaluation we keep on using continuous observa-
tions to update our belief with a Kalman Filter and we sample
continuous states. The discretization of observations was used
only during the tree expansion phase: to limit the tree width
extension so that we can explore the tree in depth.

2) Reward shaping: The base reward used to guide our
policies is a sparse reward where we get a large penalty in
case of collision. To improve safety, we propose to shape this
reward according to safety metrics. In the CACTE, reward
shaping takes the form of reward that is proportional to the
smallest computed Time To Collision w.r.t. any other cars
detected. In the UDE, we explore increased reward penalties
for collisions.

3) Safe exploration with constrained actions: The last
technique we propose to enforce safety is to adapt the work
of Bouton and al. in [2] to the partially observable setting.
In their work, they propose an interesting offline method to

AA228 - FINAL PAPER

Algorithm 3 Modified POMCP Tree Search
1: function SELECTACTION(b, d)

2: h<0
3: loop
4: SIMULATE(D, h, d)
5: return arg max, Q(h,a)
6: function SIMULATE(D, h, d)
7: if d = 0 then
8: return 0
9: a < arg max, Q(h,a)+c %
10: s~b
11: (s',0,7) ~ G(s,a)
12: Oclass, ttc <= CLUSTERIZEOBSERVATION(s’,0)
13: if haocass ¢ T then
14: for a € A(s) do
15: (N(h,a),Q(h,a)) — (N()(hv a)vQO(hva))
16: Oi(liass = Oclass OZESS = ttC, O:'laau;e =0
17: T=TU {haocgass}
18: return ROLLOUT(b, d, ()
19: else if ttc < o'f¢ _ then
20: Ozgss = ttC7 02;1@1.2’5 =0
21: b + KALMANUPDATER(b,a,0)
22: q < 7+ A SIMULATE(V, haogiqss,d — 1)
23: N(h)« N(h)+1
24: N(h,a) + N(h,a) +1
25 Qhya) & Q(h,a) + L)
26: return ¢
Algorithm 4 Clusterize observation
1: function CLUSTERIZEOBSERVATION(s', 0)
2: ttc + SMALLESTTIMETOCOLLISION(s’,0)
3: Oclass = floor(min(ttc, 11))
4: return o5, ttc

ensure safety in an AD setting, they use a fully observable
model of the AD task, discretize the state space, and apply a
Value Iteration algorithm to compute:

Pcollision(s7a), VS, acSxA

Where those collision probabilities are obtained performing
”safe Bellman updates” until convergence:

k : k
Pc:illision(s’ Cl) = Z T(S/|S, Cl) 1’1’(111/11 Pc;’zllision(sl’ a/)
S/

Vs,a € § x A, with Peoyision(s) = 1 for collision states,
Peoltision(s) = 0 for terminal and non-colliding states,
Peottision(s) initialized to O for other states. Then, a threshold
for safety 0 < ¢ < 1 is selected, and the AD car is restricted
in the actions a it can take by the condition Peojiision (s, a) <
1 — ¢. For instance, with a safety level t = 0.999, Pcoitision
must be below 0.1%. If ming Peoyision(s,a) > 1 — t, agent
must select a*(s) = arg min, Peorision (S, a)

In our work, we adapted this work to the Partially Observable
setting, where we work with beliefs b rather than states. Our
approach is the following:

1) Compute the same offline safety preprocessing on a
discretized version of S and get Peoyision (s, a), Vs,a €
SxA

2) Set a safety threshold ¢

3) When agent is in belief b, make the approximation:

IP>collision(b7 a) ~ /b(s)Pcollision(Saa)dS

This approach allowed us to transfer this safety improvement
technique to the partially observable setting, and interesting
remarks can be made:

o The approximation above is similar to the one made with
the QMDP approach to POMDPs: for the approximation
to be valid, the environment should fully observable after
an intial sampling from the belief b.

e We have two external cars in our environment, which
would have made value iteration two expensive on a
discretized version of the state space with two cars.
We solve value iteration on a state space with a single
external car, and take the following utility decomposition
approach:

ACt(b) = ACt(b)first_car N ACt(b)second_car

Where Act(b)cqr is the set of available actions using
our above approximation when looking at potential col-
lisions only with this car. If Act(b) = (), we compute
ming Peoiiision (bear, @) for the two cars, take the maxi-
mum (i.e look at the most dangerous car), and select the
according safest action arg min, Peoiision (bear, @)-

D. Other possible approaches

a) Exhaustive online forward search: We also consider
what it would take to perform an exhaustive online for-
ward search. By using the observation discretization scheme
proposed previously, the complexity of an exhaustive online
Forward Search would be: O(|A|¢|O|?).With |A| = 5 and |O)|
being reduced to 10, we would be able to consider a forward
search up to a depth of 5. With a time step of 250 ms, this
corresponds to a 1.250 seconds horizon.

b) Exact solution with Linear Gaussian dynamics and
quadratic reward: One very interesting point to consider
here, is that we have a linear-Gaussian dynamics model:
T(z | s,a) = N(z | Tss + Tya,X). As long as we consider
a state vector of the form s = [z,y,v,,v,] and a discrete
action that corresponds to an acceleration or deceleration
command this condition is fulfilled. If we could express the
reward function with a quadratic form, then it can be shown
that the optimal policy can be computed exactly offline. We
refer to the “Decision Making under Uncertainty” book in [6]]
sections 6.4.6 and 6.2.2 for more details. The reward should
be expressed in a form R(s,a) = s” Rys + a’ Rya where
R, = RST < 0,R, = Rf < 0. This is a very interesting
property that we should take advantage of. This would require
further investigations.

AA228 - FINAL PAPER

IV. EXPERIMENTAL SETUP
A. Custom Anti-Collision Test Environment

While the SISL Urban Driving environment is great, build-
ing the CACTE was a good way to learn and better under-
stand some details in the process of using and interfacing
the juliaPOMDP framework. This environment is useful for
tests in unstructured environments without lanes and roads
constraining the traffic of other cars, see figure [3]

This environment can be downloaded from: /Anti-collision
Tests Link. It depends on a very limited number of packages
and allows to experiment with a complex high dimensional
POMDP with 1 egovehicle and 10 moving objects in the scene
(more can be easily added). It enables to benchmark perfor-
mances both in terms of runtime and various performance
metrics: efficiency, comfort and safety. It is lightweight tool
to create challenging anti-collision tasks.

150

vT\Z 1m.s-1

____-—%21'4 m.s-1
v=22.1 m.s:1
100 |- e
8.7 -1
=11.3 m.s-1

50~ (f‘x

Vz;gm.‘ v=12.1 ms-1

Iv=15 6 m.s-1
0 L L : y
0 50 100 150 200

Fig. 3: The anti-collision test environment, the ego car (blue
dot) has to avoid 10 other vehicles (red dots).

B. SISL Urban Driving environment

To evaluate our safe variants of POMCP, we rely on the
SISL Urban Driving environment that is used in [2]. We
focus on the intersection setting shown in figure @ In this
environment there are always two cars in the scene in addition
to the ego car. The ego car has to make a left turn to reach the
goal while avoiding any collision. All three cars are following
a predetermined route and always stays in the middle of their
lanes. For the ego car, we are controlling the acceleration a
of the vehicle along the predefined trajectory. We restrict our
action space A to a € [—4,-2,0,2]. The two other cars
follow a rule-based policy: they give the priority to other
vehicles when turning left and use the time to collision to
make a crossing decision. Otherwise they are following the
Intelligent Driver Model [12]. In this environment, we test
the POMCP algorithm with observation clustering and action
selection safety criterion (Safe RL). For comparison we also
test the version without the action selection safety criterion
(Regular RL).

To apply Safe RL, we discretize the state space containing
all the possible configurations of the ego car and another car in
the scene. We discretize the longitudinal velocities of both cars
and their positions along the lanes present in the scene. We
obtain a discretized state space of 330.000 states and apply the

value iteration algorithm described in to get the safety
criterion. We set the safety threshold to ¢ = 0.9999.

)

-

B Ego Vehicle

E Othertraffic
participants

Fig. 4: The ego vehicle have to perform a left turn at an
unsignalized intersection while avoiding the other vehicles.
Figure taken from [2].

V. RESULTS
A. Results on the Custom Anti-Collision Test Environment

1) Processing time and exploration depth results: In the
below tests, the max_depth is set to 20. The tree_queries
parameter is increased and we check the maximum exploration
depth i.e. how deep we can explore and exploit the search tree.
We use a time step of 200 ms in our Transition Model. So an
exploration depth of 10 corresponds to an exploration up to a
2 seconds time horizon.

As a reminder without our POMCP modification, as obser-
vations are continuous, the exploration depth is 1.

Results have been obtained on a 7th generation intel core 17
processor, without any specific optimization or multithreading.

TABLE I: POMCP results

tree_queries runtime max exploration depth
100 35 ms 5
500 160 ms 10
1000 320 ms 12
2000 640 ms 14

2) Accuracy results: The scenario is quite challenging and
default policies generally fail. The Time To Goal and Number
of hard breaking decisions performance metrics are averaged
over the scenarios that did not result in a collision.

We run exactly the same set of tests with the different
policies.

e policy_v0 is the default one (pomcp legacy and sparse

reward).

e policy_v1 is based on pure predicted time to collision.
This is our real baseline. Not making use of the POMDP
model.

o policy_v2 is based on reward reshaping based on time to
collision with legacy POMCP (pomcp legacy + reshaped
reward)

https://github.com/PhilippeW83440/ACT
https://github.com/PhilippeW83440/ACT

AA228 - FINAL PAPER

¢ policy_v3 is with the modified pomcp. It is the policy
that is POMDP based (with exploration depth > 1) with
a modified POMCP.
Policy_v1 and policy_v2 yield exactly the same results, which
is expected as using POMCP with policy_v2 does not give
improvements: observations are continuous and we do not
explore the tree at all.

TABLE II: Benchmark results

% Collisions Time To Goal = Hard Breaking

policy_v0 80% I1's 8
Baseline policy_v1 60% 11.8 s 10
policy_v2 60% 11.8 s 10
policy_v3 0% 12.8 s 10

As expected, we get clearly better safety results with pol-
icy_v3.

B. Results on SISL Urban Driving environment

1) Offline Computation of the safe actions: To determine
the set of safe actions for a given a belief, we compute the
value iteration described in [II=C3| with a discretized state
space of size 330.000. This value iteration takes 2 hours to
run on a i-core7 platform without any specific optimization
or multithreading. At the end of the optimization, we get a
Bellman Residual of 10~°. Which means that our computation
of Peoiision (s, a) through value iteration is precise up to the
fourth digits. This is consistent with the threshold value that we
selected to ensure safety: ¢ = 0.9999. We visualize in figure
] the repartition of the tuples of discretized states and actions
(s,a) according to their safeties defined by Poiision (s, @).

1200000 -

1000000 -

800000 +

600000 +

Counts

400000

200000 4

0- T T u T
-10 -8 —6 —4 -2 1]
logipPrma*(s, a)

Fig. 5: Histogram presenting the repartition of the state-action
pairs (s, a) according to their safety values. The safest states
are on the left of the chart.

2) Exploration with constrained actions: This problem has
two conflicting objectives: efficiency which we define as the
time required to reach the objective, and safety. We compare
the Regular RL and Safe RL algorithms for different reward
settings. We vary the collision cost between 0.5 and 8 for
both solution methods and estimate their performance. The
performance is defined by computing the mean number of
timesteps needed to reach the goal (efficiency criterion) and
the collision rate (safety criterion). We perform 20 rollouts of

each algorithm for each value of the collision cost. The tree
exploration is parameterized by the number of tree queries
of 100 at each time step, ad the exploration parameter ¢ =
0.1. Based on these simulations, we draw the Pareto frontiers
shown in figure [f]

On this chart the optimal region is in the bottom-left corner.
We can see that Regular RL can reach points that are more
efficient than those obtained with Safe RL. However, the chart
shows that Safe RL can outperform Regular RL on the safety
criteria while having an efficient policy. This indicates that the
Safe RL algorithm can generate policies with performances
that could not be reached by applying reward shaping to
Regular RL.

20 A

® RL
® SafeRL
L 15
8
©
< 101
RS
K
S 51
0 -
260 265 270 275 280 285 290
Time steps

Fig. 6: Pareto frontiers obtained using the Safe RL and regular
RL algorithms. These frontiers corresponds to different behav-
iors in terms of safety and efficiency induced by variations in
the collision cost in the reward function.

VI. CONCLUSION

We came up with a detailed POMDP formulation of the
problem of Motion Planning for an Autonomous Driving
car dealing with sensors uncertainty and proposed several
improvements to the legacy POMCP solver to enforce safety.
We handled the issue of continuous observations in a high
dimensional POMDP and proposed several safety improve-
ment techniques. We provided reference implementations and
benchmark results on a set of tests to validate the proposed
ideas. Further work could involve:

o The ego vehicle is currently constrained to longitudinal
accelarations on a curve, we could explore more complex
2d scenarios, and include pedestrians in the environment.

o Using value iteration on a discretized belief rather than
state space to compute the safe actions. It would improve
safety and let us avoid a "QMDP-like” assumption. Belief
space discretization could be driven by safety criteria, in
the same line than our modification of POMCP to handle
continuous observations.

o Pure offline methods similar to the ones used for aircraft
collision avoidance [3] could be considered as well.

o Finally, it would be interesting to explore online safety
methods to constrain actions compared to an offline
preprocessing of the discretized state space.

AA228 - FINAL PAPER

(1]
(2]

(3]

(4]

[5]

(6]

(71
(8]

9]

[10]

(1]

[12]

REFERENCES

Maxime Bouton, Akansel Cosgun, and Mykel J. Kochenderfer. Belief
state planning for autonomously navigating urban intersections. 2017.
Maxime Bouton, Jesper Karlsson, Alireza Nakhaei, Kikuo Fujimura,
Mykel J. Kochenderfer, and Jana Tumova. Reinforcement learning with
probabilistic guarantees for autonomous driving. In Workshop on Safety
Risk and Uncertainty in Reinforcement Learning,, 2018.

Hugh Durrant-Whyte, Nicholas Roy, and Pieter Abbeel. Unmanned
Aircraft Collision Avoidance Using Continuous-State POMDPs. 2012.
Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A. Wheeler,
Jayesh K. Gupta, and Mykel J. Kochenderfer. POMDPs.jl: A framework
for sequential decision making under uncertainty. 18(26):1-5, 2017.
Jesse Hoey and Pascal Poupart. Solving pomdps with continuous or large
discrete observation spaces. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence, IICAI’05, pages 1332-1338,
San Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc.
Mykel J. Kochenderfer. Decision Making Under Uncertainty: Theory
and Application. MIT Press, 2015.

Yuanfu Luo, Haoyu Bai, David Hsu, and Wee Sun Lee. Importance
sampling for online planning under uncertainty. 2017.

Yuanfu Luo, Panpan Cai, Aniket Bera, David Hsu, Wee Sun Lee, and
Dinesh Manocha. Autonomous driving among many pedestrians: Models
and algorithms. CoRR, abs/1805.11833, 2018.

B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli. A survey of
motion planning and control techniques for self-driving urban vehicles.
IEEE Transactions on Intelligent Vehicles, pages 33-55, March 2016.
David Silver and Joel Veness. Monte-carlo planning in large pomdps.
In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and
A. Culotta, editors, Advances in Neural Information Processing Systems
23, pages 2164-2172. Curran Associates, Inc., 2010.

Zachary N. Sunberg and Mykel J. Kochenderfer. Online algorithms for
POMDPs with continuous state, action, and observation spaces. 2018.
Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic
states in empirical observations and microscopic simulations. Physical
Review E, 62:1805-1824, 02 2000.

	Problem Statement
	Related Work
	Proposed Approach
	POMDP Models
	Custom Anti-Collision test environment
	Urban Driving Environment

	POMCP algorithm
	Safe variants of POMCP
	Safe discretization of observations
	Reward shaping
	Safe exploration with constrained actions

	Other possible approaches

	Experimental Setup
	Custom Anti-Collision Test Environment
	SISL Urban Driving environment

	Results
	Results on the Custom Anti-Collision Test Environment
	Processing time and exploration depth results
	Accuracy results

	Results on SISL Urban Driving environment
	Offline Computation of the safe actions
	Exploration with constrained actions

	Conclusion
	References

