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Reinforcement learning (RL) is able to produce effective policies in environments with

small discrete state and action spaces but has significant limitations when the state-action

space is continuous. Discretization techniques can solve the issue of continuous state-action

spaces, however this often results in intractable state spaces or a poor approximation of the

continuum.In this paper, we discuss a reinforcement learning strategy for t Super Smash Bros

Melee, a video gamewith a continuous state and action space by applying global approximation

in the Q-learning algorithm. We train the algorithm on progressively harder opponents and

show improvement in the agents metrics over time.

I. Introduction
Reinforcement learning (RL) is an area of research focusing on finding an action that will maximize a reward

function given the state of an agent. Finding the optimal state action value requires large amounts exploration of the

environment. The ability to gather reliable data is crucial to the learning process because this provides the learning

algorithm with an accurate representation of how the state evolves with a given action.

RL has recently become a topic of interest due to its ability to solve problems without knowledge of the underlying

dynamics.This model free approach is used over a large set of applications including control theory, natural language

processing, image recognition, and medical diagnoses. A very popular model-free reinforcement learning algorithm is

Q-learning which operates by applying incremental estimation to the Bellman equation[1].

Q(s, a) ← Q(s, a) + α(r + γmax
a′

Q(s′, a′) −Q(s, a)) (1)

The game we would like to investigate, Super Smash Bros Melee, presents an environment complex dynamics an

a continuous state space that would be infeasible to represent as discrete values. A model-free approach eliminates

the need for a state transition model and generalization allows the agent to approximate the optimal action at a given

state. Given the nature of the problem, we chose to implement a perceptron Q-learning algorithm. In this algorithm, a

set of weights for each action θa is trained on a basis function β(s), such that the state-action value can be globally

approximated as Q(s, a) = θTa β(s). The action weights are trained in a batch learning process after each game.

θa ← θa + α(r + γmax
a′

θTa′β(s
′, a′) − θTa β(s, a))β(s, a) (2)
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Super Smash Bros Melee is a platform based fighting game in which the goal is to knock your opponent off of

the stage. Damage dealt to the opponent increases the distance they fly when hit. A winning strategy in the game

involves dealing damage to the opponent and subsequently knocking them off the stage while simultaneously avoiding

the opponents attempts to do the same. While the game has many available characters and stages, we limited the project

to a single stage (Final Destination) and character (Captain Falcon) for convenience of training, although the work done

is general and allows for training of any character and stage combination.

Fig. 1 Super Smash Brothers Melee game environment.

To interact with the game environment, we leverage the open-source game emulator Dolphin and an python library

libmelee which provides an interface for reading state values and sending controller inputs to the agent.

II. Related Work
Q-learning is a popular reinforcement learning strategy for discrete state and actions, however the state space and

action spaces are often continuous and cannot be represented in tabular form. In [2], Gasket et al implemented a novel

interpolator to approximate the Q-function with state and action generalization. In addition to a continuous state space,

applying reinforcement learning in an adversarial environment can prove to be difficult because the environment is

working against the agent. In [3], a generalized reinforcement learning algorithm is applied to an agent in an adversarial

environment. Both [2] and [3] show that applying generalization to reinforcement learning is viable solution to dealing

with continuous state-action spaces and adversarial environments. In a recent advancement in generalization for

reinforcement learning, Emigh et al applied a nearest neighbor local approximation reinforcement learning algorithm

in [4] to Frogger, allowing generalization of the state space based on state proximity. This proves to be an effective

strategy in environments with limited data and large similarity between optimality in nearby states.

Another difficulty in reinforcement learning is assigning credit to the action the led to the reward in cases of large

delay. Take for example winning the lottery, there is a large delay between when we but the lottery ticket and when we

get the reward. If we are drinking coffee right before we find out we win the lottery, the reward of winning the lottery
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should still be assigned to buying the ticket and not to drinking coffee. Sutton et al developed a method in [5] to properly

assign credit to the action or sequence of actions that lead to a reward. This can become increasingly difficult to address

as the dimensionality of the problem increases.

III. Applications to Super Smash Bros Melee

A. Discretized actions

The controller for the Nintendo game cube can be thought of as a continuous action space for Super Smash Brothers

Melee. There are two analog control sticks which can be placed at any value from -1 to 1 in both the x and y direction,

two analog shoulder buttons which are functionally identical and range from 0 to 1, as well as four digital face buttons.

To reduce the number of potential actions, repetitive combinations of buttons were discarded and the analog inputs

were discretized. We represented seven buttons (A,B,X ,Xs ,L,Z , and �) as binary variables, where a value of one maps

to pressed and zero maps to not pressed, and the analog stick as a variable with three possible values for both the x

direction (left, middle, and right) and the y direction (down, middle, and up). To create an action, a single button and

a value for the main analog sick is selected. This results in an action space A with seven possible buttons and nine

possible analog stick values, for a total of 63 total possible actions.

B. Basis Functions

We designed a set of basis functions to span the state space in Super Smash Brothers Melee and allow for perceptron

based global approximation of state action values. Our beta function, β, contains the following elements.

• A set of normal distributions along the x and y axes to approximate the positions

• A set of normal distributions for the relative distance between the agent and the opponent

• A flag for the direction the agent is facing and a flag for the direction the opponent is facing

• A set of flags for the agent and a set of flags for the opponent to represent unique animations

• A set of normal distributions for the agent and opponents damages

• A set of flags for the number of jumps left

Additionally, the state space is discretized into three "super-states", being off the stage to the left, on the stage, and

off the stage to the right. A zero padded vector βp = [ 0 |β |, 0 |β |, 0 |β |], where 0 |β | is a zero vector of length |β |, is then

created. The base β function replaces 0 |β | in the appropriate index. The need and justification for this technique is

discussed in the novel approaches section.

C. Reward Functions

In order to apply perceptron Q-learning to to SSBM, a reward function was defined. As described in the introduction,

the goal of the game is to ultimately knock your opponent off the stage, which becomes easier as their damage increases
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since the damage causes them to fly further. This indicates a careful balance between accumulating damage to facilitate

a knock out move and taking an action that knocks the opponent back far to knock them out (deferring accumulating

more damage in favor of knocking the opponent out). The reward function is then designed to favor dealing damage to

the opponent while they are at low damage, with the reward decaying exponentially for damage dealt to opponents at

higher damage. Additionally, the agent receives a penalty for taking damage in the same fashion. To prevent the agent

from jumping off the stage and prematurely dying, a reward was also given when the agent managed to move from being

off of the side of the stage in state s, to on the stage in state s′. Rewards are also assigned for kills and penalties imposed

for dying.

Denoting the opponents damage as do, the agents damage as da, and the on stage parameter of the agent as a true -

false flag ON , the reward function becomes:

R = (d ′o − do)e−.01∗do − (d ′a − da)e−.01∗da + rjumpδ0,ON δ1,ON ′ + rkill + rdeath (3)

The reward assignment was not straight forward due to the lag in state-evolution and delay between actions and

resulting kills and deaths. The methods in which we handle these issues is described in the next section.

IV. Unique Approaches
To apply perceptron Q-learning to Super Smash Brothers Melee, we apply unique techniques to deal with

discontinuities in optimal behavior, state-evolution, and large delays between an action and its result.

A. Discontinuity in Optimal Behavior

In Super Smash Brothers Melee, the optimal action largely depends on the current state. An issue arises in

global-approximation techniques when states that produce similar basis function outputs should have dissimilar optimal

actions. An example of this is the case of an agent standing on the edge of the stage, in which its goal is to deal damage

to the opponent, and an agent being slightly off of the stage (about to fall to its death unless some preventative action is

taken), in which it should make an effort to navigate back to the stage and avoid dying.

To prevent generalization from nearby but dissimilar states, we discretize the environment into an additional three

"super-states": off the stage to the left, on the stage, and off the stage to the right. These super-states represent different

situations in which the optimal behavior of the agent should be unique from a nearby position that is in a different

super-state. As discussed in the applications section, the padded beta vector results in differently trained perceptron

weights in different super-states for each map partition. This improves the agents ability to survive after being knocked

off of the stage because the agent learns to jump back towards the stage in an effort to survive (and avoid penalties for

dying).
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B. State Evolution

Another issue we address was the impact of ”action-lockout”, in which an action taken may have no impact on the

agents transition to the next state. An example of this is when the agent selects an action with a long wind-up animation

that cannot be canceled by inputting other actions. To address this, actions that are taken during an "action-lockout" are

ignored during the training process of the basis function weights.

While performing batch learning, this is taken into account. In the weight update process, θaβ(s) of the last action

take is used for each update, while the state s′ is taken as usual. The rewards are computed at each state step and

assigned back to the last action taken. The result is that the original state action pair is rewarded for the state evolution

that occurs, rather than rewarding the action at intermediate states of the evolution.

at at+1

Beta
evaluation

Reward
calculation

S1S0 SnSn-1 S1S0

Fig. 2 State evolution diagram

Figure 2 is a representation a state evolution. All the green states indicate a single state evolution with action-lockout

occurring at each new state St . The transition to the red states are when an action is taken that affect the transition to the

next state, starting a new state evolution. We can see the how the reward is calculated from St to St+1 while the beta

function is evaluated from S0 to St+1.

C. Action Impact Delay

Dealing with rewards for kills and deaths is not straight forward due to a large time delay between an action that

results in one of these events and the event occurring. To assign rewards to killing the opponent, the last action the agent

take that deals damage is recorded as a "last damaging action". When the opponent dies, a large reward is assigned to

this "last damaging action". This is necessary to avoid assigning large rewards to actions that do not cause the opponent

to die, and is equivalent to knowing immediately after the action is taken if it will result in the death of the opponent.

V. Results
The agent was initialized with no prior against a level 1 CPU and was allowed to train overnight, training the weights

between each match. For training, we used a learning rate of α = 0.01, a discount factor of γ = 0.95, and a non-fixed

soft-max exploration parameter λ. The agent was trained against progressively harder opponents while using priors

from the previous training, until we reached a level 4 CPU.
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In Figure 3, we see that the uninformed agent with a high exploration bias quickly achieves an approximately 80

percent win-rate against the base level 1 opponent. When this agent is then given a lower exploration bias, that win-rate

quickly converges to 100%. The first real challenge faced is against the level 3 opponent, were the agent undergoes a

difficult period, having its win-rate fall to near 50% before recovering back to 100% over a period of approximately 100

games. A similar trend is observed when the agent faces off with a level 4 opponent. We can also see similar trends in

Figures 4, and 5 where the stock differential and the damage differential slowly improve as the agent trains.

In addition to the quantitative performance metrics observed in the Figures, the agents behavior also improved

qualitatively. Against the level 1 opponent, the agent learned basic behaviors that lead to a win. The agent would simply

repeat the same attacking move that the level 1 opponent was unable to deal with. As the agent faced progressively

more difficult opponents (level 3 and 4), this behavior would sometimes work but would often result in the agent taking

damage. The agent was able to determine states in which this learned "spamming" behavior was optimal and which

states it should avoid taking this action in, developing new strategies depending on the state.

An interesting trend in the data is the increase in games required for the agent to learn an effective policy against

its opponents. Against the level 1 CPU, we see that the winning strategy can be learned in approximately 85 games.

Against the level 3, this process takes 85 games, and against the level 4 CPU we were only able to achieve an 85%

winrate after 245 games.

VI. Conclusion
Applying perceptron Q-learning for Super Smash Brothers Melee was successful. Given enough time, the agent

learned to progressively beat higher level default CPUs, die less, and take less damage. One severely limiting factor

of the project was the need to run the agent in real time against a CPU in order to train. This caused iteration on the

basis functions, reward functions, hyper parameters as well as progression through CPU difficulty to be slow. On the

other hand, the combination of our achieved performance and low iterations on parameters and functions shows the

robustness of perceptron Q-learning in this environment.

We believe that with improvement to the reward functions and careful detail to to hyper parameters, as well as more

time, the agent could learn to beat significantly higher level CPUs than demonstrated here. Additionally, while the agent

has only ever played as captain falcon against captain falcon, the agent should be able to learn to play any matchup and

on any stage. This could be done by storing different basis function weights for each situation.

Our group plans to continue the project by both continuing to play against higher level agents with the existing

perceptron Q-learning approach, as well as extending the bots capabilities by implementing DQN. We believe DQN will

provide a higher level of performance as it is able to represent non-linear basis functions, while perceptron Q-learning is

limited to linear relationships. We are also looking to explore different characters and stages.
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Appendix

Fig. 3 25 game moving average of winning percentage.

Fig. 4 25 game moving average of stock differential at end of game (higher is better).
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Fig. 5 25 game moving average of difference in total damage dealt in each game (higher is better).
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