
Path Planning with Dynamic Obstacle Avoidance for a
Jumping-Enabled Robot

Peggy (Yuchun) Wang∗ and Caitlin Hogan†

Department of Computer Science, Stanford University

Robotic navigation is an important concern for any autonomous project, and for robots
with specialized modes of movement, it can be especially difficult to conduct path planning. In
this work, the authors evaluate a path planning model for the Stanford Doggo, a quadruped
robot unique in its compliant gait and ability to jump variable heights. Implementation of
multiple common noisy sensors used in robotics, as well as particle filtering, allows for a
somewhat realistic model of navigation. The difficulty of path planning in three dimensions
can be avoided for this robot via use of a "jump-capability" overlay, indicating whether the
robot can traverse to a tile at a certain height. While the model presented is grid-based, its
insights into autonomous motion can be applied to this robot.

I. Introduction

A. Background
Path planning is integral to any autonomous robotic navigation system. The Stanford Robotics Extreme Mobility

team has recently developed a jumping-capable four legged robot (nicknamed "Doggo") which can be controlled
manually (Figure 1). In order to autonomously navigate the terrain, it requires a variety of sensors and a path planning
system. Inspired by this problem, we focus on developing a platform to test a path planning algorithm for this specific
robot. By incorporating the constraints of its jumping capabilities, a simulation model can be used to test methods of
dynamic obstacle avoidance, with the eventual goal of implementing the algorithm on the robot.

Fig. 1 Stanford Extreme Mobility Four Legged Jumping Robot aka "Doggo"
∗peggy.yuchun.wang@cs.stanford.edu
†cahogan@stanford.edu

1



Planning in continuous spaces is usually computationally intensive and may be intractable. Discretizing the
continuous two-dimensional world into a grid speeds up computation and is better able to represent obstacle beliefs in
different states [1]. Some 2D path planning algorithms which work well with grid-based worlds include the Dynamic
Window Approach [2], Dijkstra’s Algorithm, and A* [3]. Recently, variations of A* were implemented successfully
for path planning for autonomous vehicles in the DARPA Urban Challenge [4]. A* works well with planning around
stationary obstacles [5]. Since we have dynamic obstacles in addition to static obstacles, we can re-plan with A* at
every timestep. We assume that at every node, if the dynamic obstacle probabilities are above a certain threshold, there
is a static obstacle in that space. We then formulate the environment as a graph, with adjacent nodes being connected in
a 2D space.

B. Sources of Uncertainty
One of the biggest sources of uncertainty in autonomous navigation for a physical robot is noisy sensor data [6].

This sensor uncertainty leads to observation uncertainty, especially as to whether there is an obstacle nearby, which then
impacts path planning decisions. One way to represent observation uncertainty is through a Hidden Markov Model
(HMM) [7]. A common way to represent obstacle uncertainty is through belief vectors for every state based on sensor
observations [8]. Each sensor contributes some information about the state, with some level of confidence. Based on
the belief vectors and an online planning algorithm, we are able to compute the probability of obstacles being in the next
states and plan our path accordingly.

II. Methods and Approach

A. Framework
In order to develop a model for a three-dimensional grid world, in which an agent (representing the robot) makes

use of realistically noisy sensor data to navigate an unknown environment, we will be extending the Driverless Car
simulation developed by Chris Piech for the Stanford CS221 "driverless car" assignment.

Fig. 2 Small Environment in Autonomous
Driving Simulation. The agent vehicle is in
black. Stationary Obstacles are in blue, true
positions of dynamic obstacles in light gray, be-
lief states of dynamic obstacles in green, purple,
and cyan. The deeper the color of the belief
state the higher the probability of there being
an obstacle in that state. The goal is in dark
green.

Specifically, we modified the 2D simulation to include the height of obstacles, included state uncertainty due to
sensor noise, and implemented collision avoidance with dynamic obstacles alongside online path planning, taking partial
observability into account. We also implemented the contribution of several additional noisy sensors - specifically radar
and Lidar. The world is modeled as a Hidden Markov Model, with each tile having a belief probability of having a
dynamic obstacle, such as another vehicle. We decided to make use of the existing, robust codebase of this simulation,
since it already shared several commonalities with our goal. Additionally, it had already included a form of graphical
interface, which is useful for both debugging and illustration of our work. We particularly liked the visual representation
of the agent’s belief about the location of dynamic obstacles.

2



Fig. 3 Lombard Simulation Environment

B. Implementation
The existing codebase provides us with the ground truth of the positions of the agent, dynamic obstacles, and goal

positions in a two-dimensional grid world. We first simulated observation of the noisy sensor data, and then created
a belief probability of dynamic obstacles based on the sensor data fusion. Next, we updated the beliefs for all the
states using particle filtering, and used a path planning algorithm with heuristics inspired by A*. We performed online
planning from the current position, taking into account the probability of there being an obstacle in adjacent states.

1. Sensor Simulation and Fusion
There are many techniques available for sensor fusion in simulation environments [9] . Since we are given the

ground truth of the position of the obstacles through the simulation codebase, we implemented simulations of radar and
Lidar sensors by providing to the robot a randomly generated sample from a Gaussian distribution (corresponding to
sensor noise) over the true distance to the obstacles. We then performed data fusion for both the radar and Lidar sensors
by combining the probabilities of the noisy sensor data using Bayes’ Rule [10]. Values for sensor noise were taken from
leading real-world sensors, then slightly exaggerated to ensure that the agent would err on the side of low confidence.
Absolute knowledge of the agent’s motion relative to its past location was also provided to the agent. This is physically
realistic, as the Doggo makes use of quadrature encoders and can use the offset alongside knowledge of motor ability
to compute the physical distance traversed. When the radar and Lidar data were combined on the agent, the agent’s
confidence was very high, usually localizing other obstacles to within two tiles on the simulation.

3



2. Particle Filtering
We built up a distribution of beliefs about the probability of obstacles nearby the robot using particle filtering [11].

Rather than keeping a complete and exhaustive list of the belief state for every obstacle and every tile in the environment,
particle filtering allows us to only keep a constant number of beliefs and updates them based on the importance of
knowing the state of a certain tile. We first initialize a random number of particles over all the states, and then randomly
update which states the particles will be assigned to based on a weighted probability built from observations [12]. We
then use the number of particles in each state to create a belief distribution of whether there are any obstacles in any
particular state, to be used for the next iteration of the algorithm. Changing the number of particles helps to identify a
balance between knowledge and computational difficulty; with an increasingly high number of sensors, a lower number
of particles was needed, as the locations of obstacles was localized with higher certainty.

3. Path Planning with Dynamic Obstacle Avoidance
We model the grid world as a graph, with each grid state as a node, and adjacent grids being connected with edges.

First, we considered the A* algorithm for path planning. Initial attempts to use this algorithm resulted in the robot
consistently undervaluing the importance of avoiding static obstacles; avoidance of dynamic obstacles was considered
far more important. Since maintaining and update belief states for all static obstacles in reality is often computationally
intractable, we changed focus to a path planning algorithm which takes advantage of more local data and belief states.
Then, for every time step, we use the planning algorithm with a heuristic of "node distance to goal" in order to perform
online path planning. The heuristic formula is based on the Manhattan distance to the goal node, and the weighted
probability of there being an obstacle in the node. After receiving the belief vector of the obstacle probability for
adjacent states, we avoid areas above a certain threshold by using the next best node. Best in this case would mean one
that has the shortest distance to agent, and a belief below the obstacle probability threshold. If none of the adjacent
nodes have a belief below the threshold, we choose the adjacent node with the lowest obstacle probability and re-plan
from there for the next time step. Pseudocode for the path planning algorithm is given in Algorithm 1 (shown below).

Algorithm 1 Online Path Planning Algorithm
1: procedure OnlinePlanning(currentNode, currentBeliefs, graph)
2: nextNodes = graph.getAdjacentNodes(currentNode)
3: initialize pq = [] . Priority Queue, where lower values get higher priority
4: for node ∈ nextNodes do
5: heuristicVal = calculateHeuristic(n)
6: pq.add((node, heuristicVal))
7: end for
8: return pq.pop() . Returns the node with the highest priority
9: end procedure

4. 3D Jump-Capable Overlay
After testing the addition of a complete z-axis to the simulation, the results were not what the authors had hoped; the

extra information and sensor noise "confused" the agent, rendering its path-planning subpar (nearly nonexistent) and its
runtime extremely slow, due to the addition of another dimension to the search space. Upon further testing, it became
apparent that the most important feature of this additional axis was simply whether it encoded a height the robot could
not reach, or one it could. To incorporate this information into the model, an additional property was added to each tile
instead, tracking whether the robot could traverse to that tile (and by which adjacent tiles) or not. The schematic is
shown below in Figure 4.

This overlay proved to be far more computationally tractable than the addition of a complete z-axis, and was
also more compatible with the noisy sensor data. A high threshold of confidence was required to set a given tile as
"jumpable," which we believe reflects the real-world reluctance to damage expensive hardware. One limitation of the
overlay is that it cannot be used to constrain or otherwise govern the motion of the dynamic obstacles, which is not
reflective of reality. All obstacles were treated like infinitely tall columns, capable of crashing into the robot at any
height.

4



Fig. 4 Jump-Capable Overlay Schematic. In this image, the black numbers represent the ground-truth height
of different areas, and the orange numbers represent the jump-capable overlay, where 0 indicates that the robot
cannot traverse from one tile to another, and 1 indicates that it can. The jumping ability of the robot has been
set to two for this example.

C. Codebase
Our Python code implementation can be found in the Github repository:

www.github.com/PeggyYuchunWang/RobotPathPlanningProj .

III. Results
We compared our path planning algorithm to a baseline algorithm in two different simulation environments: the

Small Environment (Figure 2) and the Lombard Environment (Figure 3). Our baseline algorithm consisted of a choosing
a random next node and stopping at the current node if the belief of there being an obstacle in the next tile is above a
certain threshold. As seen in Table 1, our path planning algorithm is better able to avoid the obstacles in the Lombard
simulation environment and also is able to find a path to the goal faster than the baseline. The raw data for the results
may be found in the Appendix section.

Name Success Rate Average Number of Successful Iterations

Small Baseline 60% 48.50
Small Planning Algorithm 60% 32.33

Lombard Baseline 40% 169.0
Lombard Planning Algorithm 50% 70.60

Table 1 Results. "Name" refers to the simulation environment (Small and Lombard) as well as the algorithm
used (Baseline or our improved planning algorithm). "Success Rate" refers to the number of times the simulated
vehicle is successfully able to reach the goal without colliding with obstacles. "Average Number of Successful
Iterations" refers to the average number of timesteps needed to reach the goal if the vehicle was successful.

IV. Future Work
The most significant improvement that we would like to make to our simulation would be to incorporate state

uncertainty into our model. Currently, the robot decides deterministically which tile it is in by calculating which tile the
majority of its "body" is within. Incorporating state uncertainty would necessitate granting the robot a belief distribution
of its location, either by using additional sensor data, such as GPS, or by intrinsically keeping track of actuated motion
from a known starting position. Adding state uncertainty would help to account for the real-world lack of absolute

5



position knowledge, and make any path-planning paradigm a better reflection of the needs of the real robot. We also
intend to make the simulation environment more realistic, by incorporating specific constraints into our model such as
the presence of the ground, the robot’s turning radius, and impediments to lateral motion. Then, we would like to extend
our model to use additional sensors and compensate for uncertainties in the local terrain.

Another major area for future development is transferring algorithms designed and evaluated in simulation to the
actual robot. This is an ongoing area of research, made more complicated by the variation between any two different
robots, and the high cost of failure: if a robot uses an inadvertently unsafe algorithm, delicate and expensive hardware
could be damaged by misactuation and crashes. Implementing an algorithm on the Stanford Doggo would require
careful and rigorous testing of simple "sim2real" test cases, to assure all researchers that the final autonomous path
planning algorithm would adequately tranfer to safe torques and modes of motion on the real robot.

V. Conclusion
This grid-based model is a useful tool in developing and testing autonomous modes of motion for jumping-enabled

robots such as the Stanford Doggo quadruped. The model is moderately reflective of the robot’s physical and navigational
properties, although the true robot currently lacks most of the sensors currently used for path planning in this model (as
the robot is not autonomous). The way which sensor fusion was implemented for the model supports the modular addition
or removal of any other sensors, which is an important feature for any testing environment to have. The computational
difficulty of path planning in three dimensions was largely avoided for this robot due to the "jump-capability" overlay;
however, the limitations of only indicating whether the robot can traverse to a tile at a certain height are seen primarily
in the descriptiveness of the model for the robot’s environment. This could potentially limit any learned policy, as
possibly-important height features of obstacles are not represented. Computational models such as this one can be an
effective means of generating autonomous robotic navigation, especially for robots with unusual means of movement.

VI. Contributions

A. Peggy
• path planning, results, particle filtering, literature review

B. Caitlin
• sensor simulation and fusion, particle filtering, 3D jump-capable overlay

VII. Appendix

A. Small Baseline
Simulation Number Result (Success/Fail) Number of Iterations
1 Success 36
2 Success 88
3 Fail 35
4 Fail 19
5 Fail 27
6 Success 42
7 Success 49
8 Fail 190
9 Success 35
10 Success 41

6



B. Small Planning
Simulation Number Result (Success/Fail) Number of Iterations
1 Success 34
2 Fail 4
3 Success 33
4 Success 31
5 Fail 4
6 Fail 5
7 Success 30
8 Success 33
9 Fail 4
10 Success 33

C. Lombard Baseline
Simulation Number Result (Success/Fail) Number of Iterations
1 Fail 41
2 Fail 58
3 Fail 19
4 Success 91
5 Success 84
6 Fail 24
7 Fail 27
8 Fail 24
9 Success 109
10 Success 392

D. Lombard Planning
Simulation Number Result (Success/Fail) Number of Iterations
1 Fail 32
2 Fail 10
3 Success 67
4 Success 65
5 Success 67
6 Success 70
7 Fail 32
8 Fail 37
9 Success 84
10 Fail 11

References
[1] Blackmore, L., Li, H., and Williams, B., “A probabilistic approach to optimal robust path planning with obstacles,” 2006

American Control Conference, 2006, pp. 7 pp.–. doi:10.1109/ACC.2006.1656653.

[2] Fox, D., Burgard, W., and Thrun, S., “The dynamic window approach to collision avoidance,” IEEE Robotics & Automation
Magazine, Vol. 4, No. 1, 1997, pp. 23–33.

7



[3] Sakai, A., Ingram, D., Dinius, J., Chawla, K., Raffin, A., and Paques, A., “PythonRobotics: a Python code collection of robotics
algorithms,” , 2018.

[4] Dolgov, D., Thrun, S., Montemerlo, M., and Diebel, J., “Path Planning for Autonomous Vehicles in Unknown Semi-
structured Environments,” The International Journal of Robotics Research, Vol. 29, No. 5, 2010, pp. 485–501. doi:
10.1177/0278364909359210, URL https://doi.org/10.1177/0278364909359210.

[5] Larson, J., Bruch, M., and Ebken, J., “Autonomous navigation and obstacle avoidance for unmanned surface vehicles,”
Unmanned Systems Technology VIII, Vol. 6230, International Society for Optics and Photonics, 2006, p. 623007.

[6] Thrun, S., Burgard, W., and Fox, D., Probabilistic robotics, MIT press, 2005.

[7] Zhu, Q., “Hidden Markov model for dynamic obstacle avoidance of mobile robot navigation,” IEEE Transactions on Robotics
and Automation, Vol. 7, No. 3, 1991, pp. 390–397. doi:10.1109/70.88149.

[8] Kochenderfer, M. J., Amato, C., Chowdhary, G., How, J. P., Reynolds, H. J. D., Thornton, J. R., Torres-Carrasquillo, P. A., Üre,
N. K., and Vian, J., Decision Making Under Uncertainty: Theory and Application, 1st ed., The MIT Press, 2015.

[9] Pohanka, P., Hrabovskỳ, J., and Fiedler, M., “Sensors simulation environment for sensor data fusion,” Information Fusion
(FUSION), 2011 Proceedings of the 14th International Conference on, IEEE, 2011, pp. 1–8.

[10] Kubrak, D., Le Gland, F., He, L., and Oster, Y., “Multi—sensor fusion for localization. Concept and simulation results,”
Proceedings of the 2009 ION Conference on Global Navigation Satellite Systems, Savannah 2009, 2009, pp. 767–777.

[11] Thrun, S., “Particle filters in robotics,” Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence,
Morgan Kaufmann Publishers Inc., 2002, pp. 511–518.

[12] Fearnhead, P., Papaspiliopoulos, O., Roberts, G. O., and Stuart, A., “Random-weight particle filtering of continuous time
processes,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 72, No. 4, 2010, pp. 497–512.

8

https://doi.org/10.1177/0278364909359210

	Introduction
	Background
	Sources of Uncertainty

	Methods and Approach
	Framework
	Implementation
	Sensor Simulation and Fusion
	Particle Filtering
	Path Planning with Dynamic Obstacle Avoidance
	3D Jump-Capable Overlay

	Codebase

	Results
	Future Work
	Conclusion
	Contributions
	Peggy
	Caitlin

	Appendix
	Small Baseline
	Small Planning
	Lombard Baseline
	Lombard Planning


