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ABSTRACT

Smart cities of the future will be full of autonomous cars, and therefore, roads that are adapted to autonomous
behavior. One feature of current roads that will soon be obsolete is the traffic light. With our Mutual Consensus
Interaction Management Model (MCIM), we explore how autonomous vehicles interact with intersections in the
absence of a centralized authority. Our model determines traffic flow by assigning each vehicle an acceleration or
deceleration at each time step, determined by a look-ahead strategy and a cost function that penalizes collisions,
time delays, and rapid changes in a vehicle’s speed. We additionally simulate a traditional intersection governed
by traffic lights as a baseline to compare average time delays and utilities and find significant improvements
across each measure.
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1. INTRODUCTION

Advancements in autonomous vehicles have inspired discussion on how roads will adapt to these agents. One
such vision is the demise of human-centered navigation signals such as the traffic light. Traditional traffic light
systems are designed for human drivers and are the source of several inefficiencies. A 2015 study by the Texas
A & M Transportation Institute found that Americans annually spend 3 billion gallons of fuel and 7 billion
hours idling due to traffic congestion. Nationally, that amounts to $160 billion in costs and is only projected to
increase to $192 billion by 2020. However, a future with autonomous vehicles may drastically reduce these costs.
We are interested in exploring how autonomous vehicles can interact with intersections if they no longer have
a centralized authority such as a traffic light to tell them what to do. An analogy to illustrate what we hope
to achieve is TCAS for cars: Can cars decide amongst themselves how to safely cross an intersection without a
collision while minimizing their delay?

Assuming a fixed trajectory, an autonomous vehicle has one key decision to make when approaching an
intersection: how much to accelerate or decelerate at the current point in time. This decision must incorporate
several utility functions and restraints, however. The vehicle will want to keep the ride comfortable for its
passengers, so the acceleration should not be abrupt. In addition, the vehicle will want to reach its destination
as quickly as possible, while also minimally delaying other cars and not breaking traffic laws. Lastly and most
importantly, the autonomous vehicle will need to minimize the chance of a collision.

This problem has many sources of uncertainty. Since there is no central authority, other autonomous cars
arriving at the intersection will have uncertain behavior and be operating under their own set of priorities. A
given vehicle at an intersection will need to predict the current and future speed of other cars, their current
locations, and their future trajectories.

2. RELATED WORK

The promise of autonomous vehicles combined with the legacy infrastructure of traffic lights yields a space ripe
for innovative solutions to tackle these inefficiencies. Many researchers have imagined alternate systems with a
variety of environmental variables, from a mixed world of human and autonomous drivers to a complete world of
fully autonomous vehicles. We look at a few studies that focus on a world with universally autonomous vehicles.
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In their work on multiagent intersection management, Dresner and Stone assume that each vehicle acts as an
autonomous agent with the goal of exceeding the efficiency of traffic lights. However, in place of the traffic light,
they introduce a substitute centralized authority that manages reservations from incoming autonomous vehicles
requesting to cross the intersection. Akin to booking a hotel reservation, vehicles may call ahead and book an
intersection crossing. This requires the overhead of a smart agent for every single intersection, which can be
costly. We seek to improve this model by removing the need for a centralized authority and having vehicles
self-sufficiently communicate amongst themselves.

A study by Carlino, Boyles, and Stone also imagines a world of fully autonomous vehicles and introduces a
decentralized system governed by market forces to handle intersection congestion. Each vehicle makes a bid to
cross the intersection and can submit higher bids if they have greater wealth or greater urgency to get to their
destination (for example, if the vehicle’s passenger is late). The auction results in an orderly queue of traffic,
which is individually based. However, we want to allow for simultaneous movement across the intersection that
considers the incoming vehicles collectively and supports compatible crossing trajectories. Their model focuses
on financial bids as the arbiter of intersection flow, while we seek to incorporate vehicle acceleration, deceleration,
and crossing time in determining flow.

Another paper by Bashiri, Jafarzadeh, and Fleming similarly proposes an intersection management system for
autonomous vehicles. Their decentralized model uses a cost function focused on reducing time delay, a measure
we also incorporate in ours. However, they singularly focus on time, whereas we hope to not only minimize time
across the intersection, but also minimize acceleration and deceleration for a more natural flow and comfortable
passenger experience.

3. THE MODEL

Problem: Determine a policy π(s) for each car i, which is the acceleration that car i should take from a given
state s.

State and Action Space: To discretize our state space, we imagine an r × c grid with cars travelling
in the four cardinal directions (north, south, east, west), where each direction of travel has l lanes. Each
car has a position (x,y) in the grid, a speed from v = {0, 1, 2, 3, 4, 5}, and a direction of travel that remains
constant (ie, for simplicity, we assume that cars cannot turn). The action space is defined by accelerations from
a = {−2,−1, 0, 1, 2}.

Initialization of State Space

1. Initialize rows × columns grid with one set of perpendicular roads in the middle of the grid. Define the
roads to have lanes number of lanes in each direction.

2. Randomly place numCars cars on the grid, such that the cars are evenly distributed between the 4 cardinal
directions and that the cars are distance d ∼ Uniform[r/4, r/2] or d ∼ Uniform[c/4, c/2] away from the
intersection, depending on whether the cars are facing north/south or east/west, respectively.

3. Set all cars to have an initial speed sv = vmax

In our final simulations, we use rows = columns = 10, lanes = 1, and numCars = 10

Transitions: At each time step, the position of each car will advance deterministically according to its speed,
direction, and chosen acceleration. For cars moving in the east and west directions, the transition function is as
follows, where s is the state, sp is the future state, sx is the x position value, sy is the y position value, and sv
is the current speed: {

T (s, sp, a) = 1 spx = sx + sv + a
2 , spy = sy, spv = sv + a

T (s, sp, a) = 0 otherwise
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For cars moving in the north as south directions, the transition function is similarly:{
T (s, sp, a) = 1 spx = sx, spy = sy + sv + a

2 , spv = sv + a

T (s, sp, a) = 0 otherwise

These transition equations are identical to the mechanics equations in Newtonian physics.

Rewards: We define our reward by the following, where sx indicates the x-position of the state, sy indicates
the y-position of the state, cc = −10000 indicates the collision cost, ca = −10 indicates the acceleration cost,
and ct = −5 indicates the time cost:

Reward(s, a) = numCars(sx, sy) ∗ cc + |a| ∗ ca + |vmax − sv| ∗ ct

We use numCars(sx, sy) in the reward equation to make the collision cost proportional to the number of cars
in the collision; in addition, the magnitude of cc is very large compared to ca and ct to make collisions highly
discouraged. We chose ca and ct values such that the maximum possible time cost ||vmax − sv| ∗ ct| at a given
timestep t is roughly the same value as the maximum possible acceleration cost ||a| ∗ ca|.

4. THE STOPLIGHT IMPLEMENTATION

To serve as a baseline model and a point of comparison to our mutual consensus intersection management model
(MCIM), we implemented a simulation of an intersection using stoplights. The stoplight model is designed such
that we can compare the expected utility and travel time of a car under the stoplight model of an intersection
compared to that of a car with our MCIM model of an intersection. In this stoplight implementation, the
transition function, state space, and action space are identical to those in our mutual consensus model.

The reward function is nearly identical to that in MCIM, except that we underestimate the time cost and
collision cost. We underestimate the time cost to be 0 in all instances except when a car is waiting at a stoplight,
and we underestimate the collision cost by assuming that collisions are impossible under the stoplight model.

We see that under these assumptions, the reward in MCIM for the same state and action pair is always lower
than the reward in the stoplight model, where sx and sy are the x and y positions, sv is the current speed, a is
the acceleration, cc = −10000 is the collision cost, ct = −5 is the time cost, and ca = −10 is the acceleration
cost:

RewardMCIM (s, a) = numCars(sx, sy) ∗ cc + |vmax − sv| ∗ ct + |a| ∗ ca
<= [|vmax − sv| ∗ ct]Isv=0 + |a| ∗ ca

= Rewardstoplight(s, a) <= 0

Therefore, if the expected utility of cars in the stoplight model is lower than the expected utility of cars in
MCIM, we are able to conclude that MCIM implementation is strictly more optimal.

To simulate red and green lights, we assume that at any given timestep, only cars moving in the north and
south directions or in the east and west directions can go through the intersection. Every tinterval seconds, the
stoplight will change and allow cars in the other two directions to proceed through the intersection. In the initial
state for the simulation, the seconds remaining before a stoplight change, to either red or green, is a random
integer between 0 and tinterval, inclusive.

All other simulation parameters, such as the initialization of car locations, are identical to our MCIM model.

5. THE CONSENSUS ALGORITHM

Given that there aren’t central authorities, such as traffic lights, to coordinate among the autonomous cars, it
is imperative that any algorithm coordinating their actions rely upon consensus. Computing the optimal policy
that each car follows (to optimize some global utility metric), however, is computationally unfeasible. Since
the state space described is exceptionally large, solving the optimally policy for a large number of cars, in a
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large number of lanes, in a large intersection will be extremely computationally expensive. Furthermore, this is
complicated by the stochastic arrival and departure of new cars in the intersection the arrival of any new car
will immediately change the optimal policy and require a full re-computation of the optimal policy. Finally, it
is important to realize that time is of the essence here since all these cars are likely travelling at high speeds,
quick computation and coordination is of the essence for safety.

Given that an optimal solution is unfeasible, we turned our attention to heuristics that could approximate
near optimal behavior; given the deeply practical need that such an algorithm would fulfill, we believe that any
such algorithm must also have the following properties:

1. Fairness: any algorithm that requires wide adoption must contain some guarantees on fairness. This is not
to say that everyone must have equal utility at all times, but rather that the algorithm will try to ensure
that no participant is excessively penalized for the greater good. Under such constraints, if the optimal
solution (to maximize global utility) was to have one car slow to a crawl while everyone else sped by, the
algorithm would not pick this solution; rather a solution in which everyone got through the intersection in
a moderate amount of time would be chosen.

2. Consensus: since there is no centralized authority to dictate policy, it is vital that all cars be able to agree
on how they would collectively navigate the intersection.

3. Scalability: in a practical scenario, for safety considerations, we would need this to work for a large number
of cars simultaneously (≥ 30). Thus, any solution in which the runtime of the algorithm is exponential in
the number of cars is simply unacceptable.

4. Speed: Since all these cars are constantly moving, and at risk of crashing into each other, we would need
every decision to be arrived at in under 0.1 seconds.

Below, we will describe the consensus algorithm that we designed, that satisfies all the properties above.

5.1 Description

The consensus algorithm works by repeatedly allowing the lowest utility participant to selfishly modify their
own actions until we arrive at convergence. The algorithm begins by assuming that every participant takes no
action for the next LOOKAHEAD steps. Assuming that there are no crashes, this is the unique action that
maximizes both individual and collective utility (since taking any other action can only give you negative utility).
Thus, if there are no crashes, the algorithm immediately terminates, and each car simply continues at its current
speed. However, in the case that a crash is detected in the next LOOKAHEAD steps, the iterative section of
the algorithm begins.

The iterative section of the algorithm works as follows. First every car calculates the utility of every other
car (assuming that each car takes no action). Next, the car that suffers from the lowest utility is allowed to
change its action vector for any of the next LOOKAHEAD steps it modifies this in such a way that maximizes
its own utility. Since the car with lowest utility could only have received this initial negative utility because
of a detected crash, the new action (of accelerating or decelerating) could only be to avoid a crash. However,
this small change could result in other cars being forced to crash. Hence, every car recomputes every other cars
utility with this new action vector, and now the new car with the lowest utility is allowed to selfishly maximize
its own actions. This process of identifying the lowest utility car, allowing it to maximize its own utility, and
then recomputing the utility of every car, is repeated until no further changes can be made. At this point, a
consensus is deemed to have been achieved, and each car executes the action that it agreed upon. Then, at the
next timestep, the algorithm is run again.

5.2 Pseudocode

As we can see, the GetBestActions method forms the core of the Consensus Algorithm. Line 2 initializes the
initial action vector to 0 for all cars. Lines 4 - 7 then repeatedly update the action vector, breaking out of the
loop on line 6 if convergence has been detected.
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Algorithm 1 The Consensus Algorithm

1: procedure GetBestActions

2: actions← [0 . . . number of cars]× LOOKAHEAD

3: loop

4: utils← CalculateAllUtilities(actions)

5: newActions← UpdateActions(utils, actions)

6: if newActions == actions then break

7: actions← newActions

8: return actions

1: procedure UpdateActions(utils, actions)
2: minUtilityCar← argmin(utils)
3: possibleActions← []
4: for timestep in range(LOOKAHEAD) do
5: for singleAction in actionSet do
6: if singleAction is not valid then continue

7: possibleAction← singleAction in position timestep
8: utility← CalculateAllUtilities(possibleAction)
9: possibleActions append (utility, possibleAction)

10: return possibleAction in possibleActions with largest utility

UpdateActions is a subfunction for one iteration of the algorithm. Line 2 identifies the car with the current
lowest utility, and then lines 4 - 9 iterate over every possible action that it could take for each timestep, and
calculates the utility the car would enjoy if it chose that action. Line 10 finally picks the action that resulted in
the highest utility.

6. RESULTS AND DISCUSSION

intersection type avg time per car avg utility per car ca ct cc vehicle length
MCIM 18.074 -1.575 -10 -5 -10000 1
MCIM 17.995 -1.3 -5 -10 -10000 1
MCIM 18.182 -169.06 -10 -5 -10000 3
MCIM 18.1 -128.59 -5 -10 -10000 3

traffic lights 19.153 -112.5 -10 -5 -10000 1
traffic lights 19.15 -150.0 -5 -10 -10000 1
traffic lights 19.153 -112.5 -10 -5 -10000 3
traffic lights 19.15 -150.0 -5 -10 -10000 3

From our results, we see that when a vehicle is interpreted as the length of half of a 2 × 2 grid intersection
(ie, similar to the length of a car) the MCIM model performs drastically better than the stoplight model for
both average trip time and average utility per car, with respective average utilities of -1.575 and -112.5 and trip
times per car of 18.074 and 19.153, for the case where ca = −10 and ct = −5. The reason that the utility is
significantly lower with MCIM in this case is that the cars can apply minimal acceleration to slightly change
their speed and narrowly avoid a collision; in comparison, the cars in the stoplight model cars that hit a red light
have no choice but to completely decelerate to a speed of 0, incurring both a time and acceleration cost. For the
same reason, cars in the stoplight model have a greater trip time compared to those in the MCIM model.

When vehicles are treated as having a significant length, such as 1.5 times the length of a 2×2 grid intersection
(ie, similar to the length of a long RV), the MCIM model does worse than the stoplight model in terms of utility
but still better in terms of average trip time per vehicle. For ca = −10 and ct = −5, MCIM had an average
utility and trip time of -169.06 and 18.182, compared to -112.5 and 19.153 for vehicles in the stoplight model.
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Figure 1. Expected utility of a single vehicle using the MCIM and traffic light models, for varying time cost constant ct.
The acceleration cost constant ca = −5, collision cost constant cc = −10000, and vehicle length = 3 are fixed.

We see that this difference can be explained by the increased magnitude of the acceleration cost in the MCIM
model, as longer vehicles will need to more drastically slow down to avoid collisions.

If we weight time cost higher than acceleration cost, then the MCIM model performs better in terms of
average utility than the stoplight model even with vehicles of long lengths. For ca = −5 and ct = −10, we see
that the expected utility of a vehicle in MCIM is -128.59 compared to -150.0 in the stoplight model; this shows
how the cost in the stoplight model is caused more from time cost, whereas the cost in MCIM comes more from
acceleration cost.

7. CONCLUSION

In scenarios with short vehicle lengths, our model achieves greater efficiency in moving vehicles across an in-
tersection than the traditional traffic light model while also considering the passenger experience by avoiding
abrupt accelerations and decelerations.

In addition, our study shows that the utility in MCIM is highly influenced by the vehicle length. The MCIM
model performs worse than the traffic light model in terms of utility in scenarios with both long vehicle lengths
and a low time cost constant. In scenarios with either a short vehicle length or high time cost constant, MCIM
always performs better, in terms of both expected utility and trip time.

As for future work, we can consider modifications to the cost function such as squared acceleration cost to
more heavily penalize larger changes in acceleration. We can also incorporate priorities of each car, such as
giving higher priority to ambulances, in determining intersection flow.

8. CONTRIBUTIONS

Todd Macdonald worked on the Intersection Management class (getting next states and actions, incorporating
car lengths, simulating traffic light baseline) as well as creating the tables and graphs. Ashwin Sreenivas worked
on formulating and coding the MCIM algorithm (getting best actions and executing them). Jessica Zhao worked
on the Intersection Management class (initializing state, reward function, calculating utilities) and researching
related work. All team members worked on brainstorming the MCIM algorithmic approach and writing the
paper.
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