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Abstract—This project develops an online decision maker for
the persistent surveillance problem by applying Monte Carlo
Tree Search. The problem includes stochasticity in battery usage.
The solution incorporates parameter learning to estimate the
probability of experiencing a disturbance that affects battery
life. The implementation builds off of previous work that used
a greedy, deterministic approach in an attempt to account for
uncertainty in battery usage while maintaining computation time
that is reasonable for online execution. MCTS and a modified
version were tested in simulation.

I. INTRODUCTION

Quadrotors can be very useful in many tasks but have one
major limitation: battery life. When discussing their capabil-
ities, it is important to keep in mind that they simply can
not fly for very long periods without charging or replacing
their batteries. A motivating example is persistent surveillance,
where a quadrotor may be able track targets or monitor a
region very well but not for an extended period. In order to
maintain constant coverage for periods on the order of days,
weeks, or months, there must be some autonomous method
for deciding where to send the agents and when the transfers
should happen. It is not feasible to have people standing
by at all times to decide when swaps are necessary even if
humans were capable of calculating the best actions to take in
a reasonable amount of time.

II. BACKGROUND
A. Prior Work

Prior to this class, I worked on a greedy solution method for
a deterministic version of the persistent surveillance problem.
The method uses the Hungarian method [1] to find the optimal
perfect matching between a set of agents and a set of tasks
by assigning costs to each possible assignment. Costs are
generated every time step and can be based on battery levels,
distances, or rules put in place by the designer. This method
can run very quickly, with solutions taking small fractions of
a second for even very large systems (tests up to 100 agents).
The method can accommodate tasks that might suddenly
change by simply changing the cost functions. It can also
account for uncertainty by modifying the cost functions.

The main drawback is that it does not look ahead in time
very well as it solves for the best matching using only the
immediate costs. Cost functions can be designed to try to look
ahead but this does not always help. A common occurrence
is an agent waiting to take an action without considering that

the cost to perform that action will increase at subsequent
time steps. This is where MCTS has room to improve the
decision making process. There are few realistic systems
where decisions have to be made every tenth of a second,
meaning that there is time to explore the action space more
thoroughly. A couple example simulations of this algorithm
are included in Section VIII. One performs well but still has
non-ideal transfers. The other is too greedy, demonstrating a
system that is not sustainable.

For this project, this algorithm was modified to consider a
stochastic system and fit in with the requirements for MCTS.

B. Related Work

The task assignment problem is a combinatorial optimiza-
tion problem that can grow quite quickly with the number
of agents and tasks. Several methods exist for solving task
assignments, including the Hungarian method [1] and Auction
algorithms [2], which minimize costs (or maximize rewards)
for a single assignment. Solving optimally for several se-
quential assignments proves difficult computationally for all
but the simplest systems because the branching factor leads
to many possible assignments. One attempt to approximately
solve the multi-step problem is [3]. It tests a subset of possible
sequences to reduce the computational complexity.

There has been some work that approaches the persistent
surveillance problem from an optimal control perspective as
well [4,5,6]. These use dynamic programming to solve for
a policy that is proactive toward possible disturbances. The
results are policies that anticipate disturbances in battery usage
and random failures by sending replacements early or having
redundant agents on important tasks. The downside is the
balance between computation time and system complexity.
These papers use discrete positions that are distances from
the base. The policy in [4] deals with a very small state
space. There are only 3 agents, 3 possible positions, and 16
possible battery states, yet the policy took 36 hours to compute
with exact dynamic programming. The computation speed was
improved in [5] by using approximate dynamic programming
that can adjust the policy as the model might change during
a test but there is still an issue with dimensionality when
using offline methods. [6] extends the problem but changes the
solution strategy to accommodate larger systems that would be
essentially impossible to solve using dynamic programming.
The problem is decomposed into several MDPs with a hierar-
chy to help limit the required computation time, scaling with



the number of agents in the components rather than the total
number of agents.

Monte Carlo Tree Search has proven successful at playing
some games. Famously, AlphaGo [7] beat a professional Go
player in 2015, the first computer player to do so. Go did
demonstrate an issue, which is that MCTS may not find
branches that lead to wins or losses if there are very few of
them. MCTS is also used in the 2014 game Total War: Rome
II [8], where the Al decides its next moves with MCTS.

ITII. MODEL

The state space and action space of the system is a com-
bination of the possible states and actions for each individual
agent. The state-action space of one agent is independent of
the other agents.

A. State

The state of an agent consists of the position and battery
level. The position is a two-dimensional vector containing the
x and y displacement from the charging station. Any position
that is not at the origin is flying. Denote the position of agent
i at time t as pi. The battery level is a timer that gives the
flight time remaining assuming a nominal discharge rate with
no disturbances. Denote the battery level of agent 7 at time ¢
as bi. The state s of the agent is a vector that concatenates
the position and battery level.
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The state of the system with [N agents at time ¢ is a concate-
nation of the individual agent states.
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B. Action

The action at a time step is the assignment for each agent.
The assignments can be to charge, to replace a task, or to stay

on a task.
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The action space has some restrictions

o An agent that is currently charging may stay on the
charger or replace a task.

o An agent that is on the way to replace a task must not
change goals until it has reached the task.

o An agent that is on a task may stay on the current task
or return to a charger.

o If a replacement arrives at a task, the agent performing
that task must leave the task.

o Agents may leave tasks without replacement if needed in
the case of low battery.

The replacement tasks are mainly for bookkeeping conve-
nience. These assignments are equivalent to the tasks but kept
separate to more easily maintain one robot per task and should
have no impact on the solution. The other restrictions act to
reduce the action space by removing actions that are definitely
inferior to others. Without these restrictions, agents could be
directed to any station at any time. This would force the solver
to consider actions that send many agents to one task or have
agents switch directions every time step. It can be shown
using the triangle inequality and intermediate value theorem
that changing assignments partway to a station wastes flight
time, and therefore battery charge, so forcing the agents to
reach a station before switching is not restrictive in terms of
performance. There may be edge cases where these restrictions
leave out the best action. However, this possibility is not as
impactful as reducing the size of the action space by orders
of magnitude to make the solution computationally feasible.

C. Transition Model

Since all agents independently follow the same transition
model, consider the transitions for a single agent over a time
step of At. Assume that At is 1 since all distances and battery
life can be scaled to match this.

The position is deterministic. If there is a disturbance, the
agent uses more energy to maintain the desired trajectory. The
agent is given a goal by the action and moves toward the goal
at speed v during each time step. Assume v = 1 with scaling
similar to At. For goal g
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The battery transitions are stochastic as the agent maintains
its desired trajectory even when there is a disturbance such
as a gust of wind. For this problem, a disturbance during a
time step doubles the nominal battery discharge. Additionally,
assume the charge and nominal discharge rates are both equal
to 1 time step of nominal flight unit per time step. Similar
to other constants, time and maximum battery levels can be
scaled to match this value. Using a probability of disturbance
P(gust) and maximum battery level by, the transition of the
battery level is given by

if [lg — pil| > 1
llg — pi| 3)

otherwise

min{b + 1,bn.} charging
max{bi — 1,0}  flying, P =1— P(gust) (4)
max{bi — 2,0}  flying, P = P(gust)
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It may be unrealistic to assume equal charge and discharge
rates as quadrotors discharge faster than they charge. The ratio
of discharge rate to charge rate mainly serves to increase the
required number of agents, as will be discussed in Section 1V,
which increases the computational complexity with minimal
effect on the insight a solution to the problem might provide.



D. Reward Model

The reward model acts to impose the following logic on
the system. First, it is bad to waste flight time, so penalize
flight time. It is worse to leave required stations unattended,
so penalize empty stations with higher weights than those for
flight time. Finally, an agent should leave its station if the
alternative is dying, so weight dead agents the highest of all
three.

|Wﬂy| < |Wempty| < |Wdead‘ (5)

At a given time step, the reward/penalty is calculated by
counting the number of flying agents, the number of empty
task stations, and the number of dead agents.

r= _WﬁyNﬂy - WemptyNempty — Weead Vdead (6)

A minor modification involves only counting the number of
flying agents that exceeds the number required for tasks.
Practically, this makes no difference as it raises all well-
performing systems equally. It does have an effect on systems
that leave task stations empty, but the penalty for that should
be sufficiently high to negate any meaningful effect.

IV. TEAM SIZING

Before introducing the solution methods, it is worthwhile to
briefly discuss how the number of agents on the team impacts
the performance of the system as it provides justification for
the rewards and what should be considered optimal. For the
moment, consider a very simple system of N agents and NV
chargers where the task is to hover at some finite altitude h
directly above the charger. At any given time, there must be at
least M agents hovering at altitude h. This means that before
an agent can descend to the charger, another agent must ascend
to h. The batteries charge and discharge deterministically at
rates r. and r4 per time step, respectively. Altitude changes
by 1 unit per time step when commanded.

This system removes any requirement for an intelligent
decision maker since when an agent needs to return, the
charging agent with the highest battery level ascends. Thus, the
only factor on performance for given paremeters is the team
size N. Note that dead agents (i.e. b* = 0) can be considered
to decrease NN rather than being considered separately.

A simple performance metric that has shown itself to be
useful is the sum of all individual agent batteries, denoted B.
From time step to time step, B changes by
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This is not in a particularly useful form. Consider the idea
that for every discharging agent, there must be ra/r. charging
agents to balance the B gains and losses. Since there must be
at least M discharging agents at a given time, a lower bound

on N is M (1 + ra/r.) to maintain a balanced B. Introduce a
term Nexyra that represents the difference between N and the
lower bound. This is the design parameter for the team size.
Note that unlike the other counts, Nera does not need to be
an integer if 74, 7., and M lead to a non-integer. Continue Eq
(7) using the above

AB
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This final form gives insight into the team sizing and decision
making. First, it is clear that N, must be positive because
otherwise AB can never recover from losses. It also shows
diminishing returns on increasing Nexr, because every agent
with a full battery cancels out one of the extra agents. Finally,
it shows that agents that are moving between stations, in this
case the ground and the desired altitude, have the strongest
negative impact on B. Having many full batteries may be
wasteful but sending an agent into the air just because it is full
would be a bad decision. Plots showing how the total battery
evolves in cases with and without enough agents are shown in
Fig. 1 and 2. The animations of the simulations that produced
these plots are included in Section VIII.
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Fig. 1. Total battery versus time in a test with enough agents to be sustainable

(Nextra = 1). After an initial settling period, the system reaches steady state
oscillations.
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Fig. 2. Total battery versus time in a test without enough agents to be
sustainable (Nexira = 0). The system has no way to increase its battery level.



Of course, the problem can be made easier by having many
more agents than required but this is not realistic when it
comes to implementing a real system. Quadrotors are not free
and having many extra is wasteful.

The above demonstrates the main goal of the decision maker
in the surveillance problem. The decisions should work to
maintain surveillance coverage and prevent agents from dying
while minimizing the amount of time spent moving between
stations. The optimal policy will leave no stations unattended,
keep all agents alive, and have the minimum amount of flight
time.

It is important to distinguish between the number of trans-
fers and the total time spent transferring from station to station.
Many short transfers could very well be better than fewer long
transfers when considering the total battery capacity of the
team.

V. MONTE CARLO TREE SEARCH

The state space for this problem is very large. Consider a
system with 100 battery levels and 6 agents. There are 102
states without even considering the agents’ positions. However,
from any individual system state, there are relatively few states
that the system can reach in one time step. The positions
change deterministically and each battery can only transition
to 1 or 2 levels depending on whether the agent is charging or
flying. Additionally, with the restrictions on the action space
described previously, the number of possible actions from any
given state is much smaller than the space of all actions. This
means that the problem lends itself to using online methods.

Monte Carlo Tree Search is an anytime online algorithm [9].
It searches future states by sampling, returning an action after
a set amount of time. As the search progresses, the values at
station-action pairs are updated to provide an estimate for how
well an action or series of actions will perform. The search
balances exploration and exploitation to simulate actions based
on an estimate for the upper bound of performance.

A. Search

When searching the action space, the system chooses the
action with the highest value of
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where (s, a) is the estimated value of taking action a at state
s, N(s,a) is the number of times (s, a) has been visited, and
c is a parameter that controls how much to value exploration
versus exploitation. This balances exploiting the best action
found (highest (s, a)) and exploring unvisited regions (low
N(s,a)). When a new value ¢ resulting from a simulation is
returned, the relevant counter increments and the estimate of
the value function updates with

q— Q(Sa a)
N(s,a)

This update method proved to be quite troublesome so the
final system used a modified update method.

Q(s,a) + Q(s,a) + (10)

B. Modification

In this problem, most of the actions from a given state
result in poor performance. Unfortunately, this means that the
update method that averages the discounted rewards can have
a negative influence on the few good nodes that exist. Since
most of the children from a given node are bad, their scores
can easily overwhelm the scores from the good paths down
the tree. Using discount factors helped to some degree but the
problem remained. An alternative to the averaging method that
proved helpful was to use the maximum value seen instead
of an expected value while also increasing the exploration
parameter. The search still uses Eq (9) to traverse the tree
and the rollout is identical but the (s, a) values are the best
q values seen after taking action a from state s. The g value
may still be discounted if desired.

Q(s, a) < max {Q(s, a), ¢} (11

Increasing the exploration parameter was important because
the downside of using the best values seen is that getting
trapped in exploitation is very easy after a single good run.

C. Rollout

The rollout is used to estimate values by executing a
default policy to some depth. This system uses the previously
developed greedy method to quickly evaluate many time steps
into the future. In this case, the costs are based on calls for
help and battery level. An agent performing a task needs a
replacement when its battery level reaches the point where a
replacement agent will reach the task just before the agent
needs to leave for the charger. In the rollout, an agent that
needs replacing sends out a distress signal to call for the other
agents to help. When this happens, the agents that are charging
submit costs based on their battery level, favoring those with
higher charges. The rollout returns rewards (penalties) based
on the previously described reward model, adding a discount
factor to weight the score toward earlier states.

D. Parameter Learning

In addition to making the decisions about where to send
the agents, the system estimates the probability of an agent
experiencing a disturbance during a time step. The system uses
a beta distribution with uniform prior. After each executed
step, the system gathers the observations from all of the
agents and updates the counts. The system then uses the
maximum likelihood estimate over the resulting probability
density function as the next probability to use in simulation.

P(gust) = arg max Beta(P | 1+ gusts, 1 + flight-gusts) (12)
P

Note that the estimate and counts are not updated during
the simulation phase of the search. The simulations use a
constant probability when applying the transition model to
steps through the tree or the rollout policy.

Another possibility for the estimate could have been an
upper confidence bound such as the probability where the
cumulative density function is 0.75. This would generally give



a higher estimate for the probability. Using a higher value
would make the search slightly more cautious about allowing
agents to have lower battery levels since it would expect faster
battery drain. In reality, the beta distribution quickly converges
to a spike at the true gust probability so any difference caused
by the estimation method is negligible.

VI. RESULTS

The algorithm was implemented in MATLAB. For my tests,
I used 6 robots with 2 moving stations. The batteries nominally
lasted 500 time steps but the real battery life was somewhat
reduced by the gust probability of 0.1. The estimate for the
gust probability started at 0.5 but the initialization had very
minimal effect beyond the first time step. The search was
not allowed to start a new simulation after 2 seconds had
passed. I had some tests with much longer computation times
on the order of minutes but the results were not different
enough to justify the infeasible computation time required
for thousands of executed time steps. Additionally, at some
point, the algorithm can no longer be reasonably considered
as a feasible online method as far as actual implementation is
concerned. Animations from sample simulations can be found
in Section VIII.

As mentioned in the previous section, the base version of
MCTS performed poorly. Since most actions lead to agents
moving stations, the search tended to result in an action that
results in a transfer. Upon inspecting the values after every
calculation, the following pattern emerged in cases where the
agents performing tasks did not need replacing. After one pass,
the solver would tend to like the one action that did not send
any replacements. As such, it moved its search toward that
action. Unfortunately, there is only one action that does not
send any replacements at the next level down. After expanding
the descendants of the initially favored action, most of the
scores come back very negative, overwhelming the initial
positive score. These negatives actually pushed the Q(s,a)
value below some other actions that were definitely worse.

As seen in the animations, the base MCTS implementation
has far too many transfers, which leads to reduced charging
times and dead batteries. Changing parameters had little effect
on the results. Even increasing the allowed computation time
did not help very much. This result is not wholly unexpected
in hindsight. MCTS relies on sampling the space to find the
best expected value. If there is only one good path, in this case
one that does not waste battery, out of the many possibilities,
it is difficult to find without scores being corrupted by nearby
bad paths. MCTS also relies on the idea that neighboring states
are similar, which is often not true in this problem.

The version of the search with modified value updates per-
formed better but it still had some obvious flaws. There were
far fewer transfers, which was a very important difference.
However, the transfers did not have very good timing and
the choice of agents to send out as replacements was not
always ideal. As can be seen in the animation, there were
as many transfers over a long distance as there were over
shorter distance, leading to the conclusion that the system did

not adequately consider travel distance when deciding when
to send replacements. Additionally, the replacement agent was
frequently not the agent with the highest battery level. I suspect
that this could be improved by looking to a longer horizon
because when agents with less charge were sent out, they had
high enough charge that the effects would not be seen until
well past the horizon. Unfortunately, looking further ahead
would limit how many samples could be considered before a
decision is required.

The performance of the parameter learning was always very
good, as shown in Fig. 3. Note that the resolution of the pdf
used to esimate the probability was 0.01, so jumps of 0.01
are easily possible from a single time step with or without a
disturbance.
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Fig. 3. Estimate of P(gust) over time. The true value is 0.1. Note that the
jumps to 0.11 are within margin of error as the resolution of probabilities in
the beta pdf was 0.01.

VII. FUTURE WORK

I intend to continue testing MCTS to see if any parameter
values help the solution. Something to watch for is whether
the parameters are very specific to the exact problem. Since it
seems like MCTS may not be well suited to the persistent
surveillance problem, it may be beneficial to implement a
branch and bound forward search [9], which is the direction
that the modified MCTS went toward.

VIII. VIDEOS
Good greedy policy

https://youtu.be/XW_jNghgG8k

This animation shows the performance of the greedy method.
The algorithm is very similar to the rollout policy used for
this project. When an agent needs replacing, a red circle
appears to indicate a call for help. Notice that several
transfers happen at the furthest distance. This is a behavior
that should be improved by a less greedy method. The size of
the squares and the number beneath the squares indicate the



battery charge level. The positions at the bottom are charging
stations.

Bad greedy policy
https://youtu.be/q3jYZgk50RAA

This animation demonstrates a bad example of the system
behaving greedily. At every time step, if an agent thinks it is
better suited to the task, it takes over. This leads to far too
much travel time and an unsustainable system.

Poorly-sized team
https://youtu.be/nn-rcmrSQac

This animation demonstrates the need to account for travel
time. The team is sized to exactly balance battery usage
when there are no transfers or full batteries. The agents in
this system discharge at 3 times the charge rate. The size of
the squares and the number beneath the squares indicate the
battery charge level.

Well-sized team

https://youtu.be/XgrXy6kv_uw

This animation demonstrates the benefit of a single extra
agent. This agent allows the system to recover from the
battery loss of a transfer. This system can run indefinitely.
The size of the squares and the number beneath the squares
indicate the battery charge level.

Original MCTS
https://youtu.be/q XrXhlsBt4

This animation shows the result of the base MCTS
implementation. The system commands too many transfers
and ultimately has some agents run out of battery. This is
similar to the bad greedy video. The chargers are all grouped
into one point in the animation.

Modified MCTS

https://youtu.be/z5eUeK50GBQ

This animation shows the result of the modified MCTS
implementation. The system appears fine over the duration
of the test but some decisions are not ideal, likely because
issues would not appear for hundreds of time steps later,
which is beyond the horizon of the search. The chargers are
all grouped into one point.

All code can be found at
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