

Optimally Escaping a Room Using POMDPs

Zachary Farnsworth Charles Furrer Adam Thorne
Stanford University Stanford University Stanford University
450 Serra Mall 450 Serra Mall 450 Serra Mall
zacharyf@stanford.edu cfurrer@stanford.edu athorne@stanford.edu

Abstract

Partially Observable Markov Decision Processes

(POMDPs) are becoming more and more ubiquitous as
technology continues to develop throughout the world.
Examples include Professor Kochenderfer’s Aircraft
Collision Avoidance algorithm [1], autonomous robots,
marketing policies, and militaristic applications (moving
target search, search and rescue, etc.)[2]. This paper
focuses on documenting POMDP solving techniques
applied to the following hypothetical scenario: A Roomba
robot is placed in a room and has the goal of navigating its
way to a goal wall (labelled green in the simulation). The
robot knows the layout of the room (dimensions and
spacing), but doesn’t know where it is placed. The robot is
equipped with a bumper sensor that can tell when it hits a
wall, but that is its only way to collect information on its
location. A reward of -0.1 is given for every time step in
the simulation and -1.0 for every time a wall is hit. The
simulation continues until the robot either reaches a
portion of the wall designated as the “stairs” (labelled in
red in the simulation), resulting in a reward of -10, or
reaches the goal, corresponding to a reward of +10. This
paper describes the implementation and evaluation of
ARDESPOT, QMDP, and continuous and discrete space
Monte Carlo Tree Search solving techniques applied to the
previously described POMDP scenario.

1. Introduction

​In a Markov Decision Process (MDP), an agent chooses
action ​a​t at time ​t​, which results in a transition to state ​s​t
and a reward ​r​t ​[3]. In a POMDP, the state of the agent is
uncertain, and the agent must make choose actions to take
based on observations that it makes. In both POMDPs and

MDPs, policies are created that aim to maximize the
agent’s cumulative reward in the state space or state and
observation space described in the model.

1.1. POMDP Solving Methods

​​Two main methods exist for solving POMDPs: offline

and online methods. Offline methods compute a policy
through implementation of whatever solving algorithm is
being used prior to execution of the policy in the model,
while online methods compute the optimal policy in real
time, based in the current state of the model.

Offline methods typically find an approximate optimal
solution unless value iteration is being used. POMDP value
iteration is slightly different than MDP value iteration, as
in the POMDP implementation, alpha vectors are
calculated for incremental one step plans, with dominated
alpha vectors (alpha vectors that result in a policy with a
lower utility than any other policy at a given belief state)
being thrown out and not used for calculation in the
consequent one step plan. Other offline POMDP solving
techniques include QMDP, Fast Informed Bound (FIB) and
Point Based Value Iteration.

Online solving methods plan an optimal policy for the
POMDP based on the given belief state the model is in
(typically up to a certain depth specified in online method
algorithms). Methods include Forward Search, One-Step
Lookahead, and Monte Carlo Tree Search.

2. Related Work

We were initially inspired by “​Robust Online Belief
Space Planning in Changing Environments: Application
to Physical Mobile Robots​” by Agha-mohammadi et. al.
[4] In the paper, online methods are used and extended to
try to help a robot navigate out of a room full of obstacles.
Online methods were shown to have very high success
rates. Additionally, the researchers implemented a novel
policy (a rollout-based extension of FIRM

1

(Feedback-based Information RoadMap)), which had
even better results. This convinced us that online methods
would likely be a successful approach to our own
Roomba problem.

In “Predictive Autonomous Robot Navigation” [5], the
researchers used online POMDP methods to help a robot
navigate through a crowded space full of moving
obstacles. While we do not have moving obstacles, the
same principles of online methods still apply to our
research, and the success of this research furthers our
desire to explore online methods as a solution.

Another group of researchers attempted to use neural
networks to help a robot navigate autonomously, in a
paper titled “Real-time autonomous robot navigation
using VLSI neural networks” [6]. The results of these
experiments were quite successful, however, it should be
noted that these robots were equipped with infrared
sensors, while our Roomba will only be using bumper
sensors. Nevertheless, the success of these experiments
would make neural networks an interesting approach to
explore despite the differences in the constraints of the
problems.

3. Methods

3.1. Environment Setup

We used a code base that set up the problem as a
POMDP, including the declaration of a sensor and action
spaces for the roomba, as well as declarations of the
possible states and observations of the room. The
observation space is defined by implementing a particle
filter. The code base also sets up functions to simulate the
performance of the robot based on a calculated policy.
When executing a given policy in the environment, the
belief state is also updated by means of the particle filter
based on the observations of the Roomba through its
movement and bumper sensors.

Figure 1​​: Roomba and its belief state (blue circles) after 2 time

steps. Goal marked in green, stairs marked in red.

Figure 2​​: The same simulation after 5 time steps. Notice the

belief state is much smaller due to the Roomba having hit a wall

3.2.​​ ​​Evaluation Metric

​​We created a custom evaluation metric in order to be
able to compare performance between different policies
created by different POMDP solving algorithms (or our
baseline policy). Additionally, it should be noted that we
will be evaluating all of our policies using a maximum of
100 time steps.

If a roomba has not reached a terminal state by the end
of 100 steps or so, it is possible that it never will, and
quite likely that even if it does it will not for many steps
more, incurring many more negative penalties along the
way. Because of this, it seemed to us that the fact that a
policy successfully completes after a large fixed number
of steps is the most important thing in selecting the "best
policy". Because of this, we define our evaluation metric
as follows:

 core T R s = (total trials
succesful trials) 2

* M

2

where MTR is the mean total rewards for the successful
trials. This metric stresses the importance of successfully
finding the goal state so as to "stop the bleeding" of
endlessly looping in dead ends, since in a real simulation,
the Roomba would not stop incurring negative rewards
after 100 time steps.

3.3. Baseline Policy

​​The roomba calculates its state as the mean of all of its
belief states, and then computes the angle between its
state and the goal state before moving in the direction it
believes the goal to be. However, the roomba will also,
for 4 (consecutive) time steps out of every 20 time steps,
turn to the left and move forward as an exploratory
strategy.

The idea here is that the roomba will often get stuck if
it only gains information by bumping into walls. By
deterministically turning and moving 20% of the time,
this should help the roomba remove itself from dead ends.
We chose this policy because it is quite naive, yet still
produces a good result a fair amount of the time. The state
and action spaces used for this policy were both
continuous.

3.4. ARDESPOT

​​ARDESPOT is an online search algorithm similar to
forward search and branch and bound algorithms in that it
searches for an optimal policy for a tree (based on a given
belief state) up to a given depth. This is done by looping
over the entire action and observation spaces for a given
node and summing the expected rewards for taking a
certain action and seeing a certain observation from the
given node. A weakness of this approach is that
calculating the optimal policy for a very large depth and
extremely large state, observation and action spaces can
become intractable. This is where a DESPOT comes into
play.

A Determinized Sparse Observable Tree (DESPOT)
essentially “prunes” the decision tree used in forward
search by only evaluating policies based on K sampled
scenarios, where a scenario is a set of belief spaces
included in the tree while the others are left out.

​Figure 3: ​​Illustration of a DESPOT from Somani et. al. [7].

The black and gray lines together represent the entire tree (used
in forward search or branch and bound algorithms), while the
black lines only represent a DESPOT, where only certain belief
states (labeled as any combination of a single blue circle, single
orange circle or blue and red circle) are evaluated in the decision
tree.

One weakness of DESPOTs is the optimal policy
computed is only an approximate estimation of the true
optimal policy if the policy space is small and the subtrees
for the DESPOT are small. Regularized DESPOTS or
RDESPOTs remedy this by implementing ​default policies
for subtrees in the DESPOT that are over a certain size.

Anytime RDESPOTs (ARDESPOTs) further improve
on RDESPOTs by greedily ruling out subtrees that result
in a lower bound value for the algorithm, and greedily
choosing values above an upper bound for the algorithm.

We implemented ARDESPOT with a continuous state
space and discretized action and observation spaces. The
action space was limited to combinations of a velocity of
5.0 and angular turning velocities in the set {-0.5, 0, 0.5}.
The observation space is limited to whether you hit a wall
or not, {0, 1}. The upper bound of the algorithm was 0 (as
any reward above 0 is desirable) and the lower bound was
-9 (allowing for traversing the room and hitting a few
walls) in our implementation.

3.5. QMDP

The second algorithm we experimented with was
QMDP, an offline method that creates a set of alpha
vectors for each action based on the the state-action value
function under full observability [3]. These alpha vectors
can be computed using value iteration, and used to
estimate the value function. Hitting a wall provides quite
a bit of information to the Roomba, so it is likely that
QMDP may have issues with this problem, since it tends
to have issues with problems with information-gathering
actions.

We discretized both the state and the action spaces for
QMDP. The state space divides the room into 100
x-points, 100 y-points, and 20 theta-points. The action
space is the set of combinations of a velocity of 3.0 and

3

angular turning velocities in the set {-0.5, -0.25, 0, 0.25,
0.5}. We chose this particular discretization because it
offered a good range of options while still allowing the
algorithm to complete in a reasonable amount of time. We
also decided that the Roomba should always be moving,
so we restricted all actions to have a velocity of 3.0.

3.6. POMCP

The third algorithm we used was Partially Observable
Monte-Carlo Planning, or POMCP for short [8]. POMCP
builds on the Monte-Carlo search to provide a
high-performance online method for approximating best
actions. A traditional Monte-Carlo approach involves
sampling only start states from the belief state to
overcome the curse of dimensionality. POMCP’s
innovation is to use a flavor of Monte-Carlo sampling to
histories as well. It uses a simulator to create history
samples and reduce dimensionality in that spacel,
allowing it to perform much faster than a typical
Monte-Carlo search.

We discretized the action space for POMCP, and used a
continuous state space. The action space is the set of
combinations of a velocity of 5.0 and angular velocities in
the set {-0.5,0,0.5}. We chose this particular
discretization because POMCP seemed to be better at
learning where it was trying to go, so we decided that
giving it a fixed high velocity of 5.0 was ideal. We had to
limit the number of options for the turn-rate due to the
high computational requirements that running this online
algorithm entails. Expanding the range of actions led to
much slower run times.

3.7. Modifications to POMDP Policies

After testing our policies for ARDESPOT, QMDP, and
POMCP on random data, the results were somewhat
mediocre, and we could see from visualizing our
simulations that the Roomba would frequently get stuck
in walls. Because of this, we made a simple modification
to our policies. For ARDESPOT, QMDP, and POMCP,
we select an action for the Roomba based on the
corresponding policy, unless the Roomba is currently in
contact with a wall, in which case we turn with an angular
velocity of -𝜋 and move with velocity of 5.0. This simple
modification greatly improved the performance of all of
our POMDP policies. Thus, it should be noted in the
following sections that our experiments on ARDESPOT,
QMDP, and POMCP are actually using this modified
policy.

4. Experiments

We ran each of our 4 algorithms (baseline,

ARDESPOT, QMDP, POMCP) on 3 different room
configurations (different goal and stairs locations, but the
same room shape). For each run on each configuration,
the policy was tested on a batch of 100 different random
initializations for the Roomba, i.e., the Roomba starts at a
different location and orientation within the room on each
of the 100 runs. We then computed the score for each of
these batches on each room configuration and for each
algorithm, using our previously defined evaluation metric
to compute each score.

5. Analysis​​ of Results

5.1. QMDP

QMDP had the most consistent results of all the
models. The success rates were 93.0%, 84.0%, and 76%,
with scores of 1.31, .674, and .316 for configs 1, 2 and 3,
respectively. This was expected, as QMDP is a well
known algorithm that converges to an approximately
optimal solution. Overall, QMDP had the best success
rate performance, and produced the most consistent
performance for each configuration. The only outlier
performance was on room number three, where it scored
very low relative to the other configurations.

5.2. ARDESPOT

​​ARDESPOT performed the worst out of all of the
implemented algorithms (even worse than the baseline
algorithm). The success rates were 21.0%, 14.0% and
11.0% with scores of 0.374, 0.156 and 0.091 for configs
1, 2 and 3, respectively. We did not expect this algorithm
to behave more poorly compared to other online and
offline methods that we implemented.

We suspect that our implementation of ARDESPOT
was not optimal. We passed in float limits into the
function (-9.0 and 1.0 for the upper and lower bounds),
and what was likely needed for a more successful
implementation was passing in a heuristic function to the
solver. ARDESPOT.jl uses a random rollout policy to
calculate the lower bound - we would try to implement
this as a starting point in the future to see if this algorithm
could be more effective.

Although ARDESPOT was designed to scale up to
large state spaces better than DESPOT or RDESPOT
algorithms, Somani et. al. explains that when
implemented with extremely large state spaces
ARDESPOT can work if a good, small policy exists [7].
The best policies for this POMDP are not going to be

4

small, as we have 200,000 states that are possible with
discretization alone (this implementation uses a
continuous state space, but the relatively large discretized
state size illustrates that optimal policies would be
complex). This would lead to extremely complex policies,
which would make ARDESPOT a poor algorithm to use
for this POMDP.

5.3. POMCP

​​POMCP performed the best out of all of the
implemented algorithms in terms of score. The success
rates were 84.0%, 20.0% and 66.0% for configs 1, 2 and
3, respectively. It scored 2.598, .265, and 1.669 on each
configuration. Overall, POMCP had the best score
performance, which supports the hypothesis that online
methods are better suited for this problem than offline
methods.

5.4. Graphs

​​To analyze our results consistently across all of the
configurations, we divided each model’s score by the
maximum score observed for that configuration. This
resulted in a “Norm Score” metric that presents a
configuration score as a percentage of the best score
observed. This led to a nice set of graphs, where we
compared success percentage against Norm Score. The
graph results can be seen in figs 4 through figs 7 below.

Figure 4: ​​Performance of each algorithm on configuration one

Figure 5: ​​Performance of each algorithm on configuration two

Figure 6: ​​Performance of each algorithm on configuration three

Figure 7: ​​Average performance of each model

As you can see in Figure 7, the best performing models
were POMCP and QMDP. QMDP had the highest success
percentage across all configurations, with an average of
around 85% success rate. However, for our proposed
scoring metric, POMCP performed the best with an
average normalized score of .8 . This means that POMCP
might have been successful less often than QMDP, but
when it was successful it found its way to the goal very
quickly.

5

6. Conclusion

POMDPs are a powerful tool for solving problems in
which there exists a great deal of uncertainty. Because of
this, it should come as no surprise that POMDP methods
perform quite well at helping a Roomba navigate out of a
hypothetical room in an optimal way. Even with a
minimal amount of observable data using very basic
sensors, both offline and online methods were proven to
be much more effective than random or naive policies.
Overall, we conclude that the success of POMDPs in this
simple experiment could translate into success in more
advanced areas of autonomous control, such as
self-driving cars.

6.1. Future Work

Given more time and resources, other areas that would
be interesting to explore would be the use of neural
networks in solving such a problem. This could be quite
difficult to implement, but given the success of neural
networks in other areas of AI, it would be worth
exploring. The use of larger datasets and scenarios with
multiple goals/stairs would also be an interesting
extension to this problem. The variations and possible
solutions to this problem are quite extensive, and could
produce valuable results for autonomous control
technologies.

6.2. Contributions

Zachary did much of the groundwork for formulating a
baseline policy and establishing an evaluation metric. He
also worked extensively on running and evaluating
QMDP methods, as well as explored relevant literature.

Charlie worked on applying POMCP to the problem,
training, and evaluating it. He did lots of research into
saving and standardizing the models produced. He also
aggregated the results and produced visuals and analysis.

Adam did initial research into narrowing down which
algorithms would be best to implement for the Roomba
POMDP and how to implement them in code.. He spent
extensive time implementing, researching and
documenting results for the ARDESPOT algorithm. He
also maintained the GitHub for the project.

References

[1] Bai, Haoyu, et al. "Unmanned aircraft collision

avoidance using continuous-state POMDPs."
Robotics: Science and Systems VII​ 1 (2012): 1-8.

[2] Cassandra, Anthony R. "A survey of POMDP
applications." ​Working notes of AAAI 1998 fall
symposium on planning with partially observable
Markov decision processes​. Vol. 1724. 1998.

[3] Kochenderfer, Mykel J. ​Decision making under
uncertainty: theory and application​. MIT press,
2015.

[4] Agha-Mohammadi, Ali-Akbar, et al. "Robust online
belief space planning in changing environments:
Application to physical mobile robots." ICRA. 2014.

[5] Foka, Amalia F., and Panos E. Trahanias. "Predictive
autonomous robot navigation." ​Intelligent Robots and
Systems​, 2002. IEEE/RSJ International Conference
on. Vol. 1. IEEE, 2002.

[6] Tarassenko, Lionel, et al. "Real-time autonomous
robot navigation using VLSI neural networks."
Advances in neural information processing system​s.
1991.

[7] Somani, Adhiraj, et al. "DESPOT: Online POMDP
planning with regularization." ​Advances in neural
information processing systems​. 2013.

[8] Silver, D., & Veness, J. (2010). Monte-Carlo
Planning in Large POMDPs. In ​Advances in neural
information processing systems​ (pp. 2164–2172).

6

