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Abstract 

  
Partially Observable Markov Decision Processes      

(POMDPs) are becoming more and more ubiquitous as        
technology continues to develop throughout the world.       
Examples include Professor Kochenderfer’s Aircraft     
Collision Avoidance algorithm [1], autonomous robots,      
marketing policies, and militaristic applications (moving      
target search, search and rescue, etc.)[2]. This paper        
focuses on documenting POMDP solving techniques      
applied to the following hypothetical scenario: A Roomba        
robot is placed in a room and has the goal of navigating its             
way to a goal wall (labelled green in the simulation). The           
robot knows the layout of the room (dimensions and         
spacing), but doesn’t know where it is placed. The robot is           
equipped with a bumper sensor that can tell when it hits a            
wall, but that is its only way to collect information on its            
location. A reward of -0.1 is given for every time step in            
the simulation and -1.0 for every time a wall is hit. The            
simulation continues until the robot either reaches a        
portion of the wall designated as the “stairs” (labelled in          
red in the simulation), resulting in a reward of -10, or           
reaches the goal, corresponding to a reward of +10. This          
paper describes the implementation and evaluation of       
ARDESPOT, QMDP, and continuous and discrete space       
Monte Carlo Tree Search solving techniques applied to the         
previously described POMDP scenario.  
 

1. Introduction 
 

​In a Markov Decision Process (MDP), an agent chooses          
action ​a​t at time ​t​, which results in a transition to state ​s​t             
and a reward ​r​t ​[3]. In a POMDP, the state of the agent is              
uncertain, and the agent must make choose actions to take          
based on observations that it makes. In both POMDPs and          

MDPs, policies are created that aim to maximize the         
agent’s cumulative reward in the state space or state and          
observation space described in the model.  

 
1.1. POMDP Solving Methods 

 
​​Two main methods exist for solving POMDPs: offline         

and online methods. Offline methods compute a policy        
through implementation of whatever solving algorithm is       
being used prior to execution of the policy in the model,           
while online methods compute the optimal policy in real         
time, based in the current state of the model. 

Offline methods typically find an approximate optimal        
solution unless value iteration is being used. POMDP value         
iteration is slightly different than MDP value iteration, as         
in the POMDP implementation, alpha vectors are       
calculated for incremental one step plans, with dominated        
alpha vectors (alpha vectors that result in a policy with a           
lower utility than any other policy at a given belief state)           
being thrown out and not used for calculation in the          
consequent one step plan. Other offline POMDP solving        
techniques include QMDP, Fast Informed Bound (FIB) and        
Point Based Value Iteration.  

Online solving methods plan an optimal policy for the          
POMDP based on the given belief state the model is in           
(typically up to a certain depth specified in online method          
algorithms). Methods include Forward Search, One-Step      
Lookahead, and Monte Carlo Tree Search.  
  
2. Related Work 
 

We were initially inspired by “​Robust Online Belief         
Space Planning in Changing Environments: Application      
to Physical Mobile Robots​” by Agha-mohammadi et. al.        
[4] In the paper, online methods are used and extended to           
try to help a robot navigate out of a room full of obstacles.             
Online methods were shown to have very high success         
rates. Additionally, the researchers implemented a novel       
policy (a rollout-based extension of FIRM      
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(Feedback-based Information RoadMap)), which had     
even better results. This convinced us that online methods         
would likely be a successful approach to our own         
Roomba problem. 

In “Predictive Autonomous Robot Navigation” [5], the        
researchers used online POMDP methods to help a robot         
navigate through a crowded space full of moving        
obstacles. While we do not have moving obstacles, the         
same principles of online methods still apply to our         
research, and the success of this research furthers our         
desire to explore online methods as a solution.  

Another group of researchers attempted to use neural         
networks to help a robot navigate autonomously, in a         
paper titled “Real-time autonomous robot navigation      
using VLSI neural networks” [6]. The results of these         
experiments were quite successful, however, it should be        
noted that these robots were equipped with infrared        
sensors, while our Roomba will only be using bumper         
sensors. Nevertheless, the success of these experiments       
would make neural networks an interesting approach to        
explore despite the differences in the constraints of the         
problems. 

3. Methods 

 
3.1.    Environment Setup  
 

We used a code base that set up the problem as a             
POMDP, including the declaration of a sensor and action         
spaces for the roomba, as well as declarations of the          
possible states and observations of the room. The        
observation space is defined by implementing a particle        
filter. The code base also sets up functions to simulate the           
performance of the robot based on a calculated policy.         
When executing a given policy in the environment, the         
belief state is also updated by means of the particle filter           
based on the observations of the Roomba through its         
movement and bumper sensors. 
 

 
Figure 1​​: Roomba and its belief state (blue circles) after 2 time 

steps. Goal marked in green, stairs marked in red. 
 

 
Figure 2​​: The same simulation after 5 time steps. Notice the 

belief state is much smaller due to the Roomba having hit a wall 
 

 
3.2.​​    ​​Evaluation Metric 
 

​​We created a custom evaluation metric in order to be           
able to compare performance between different policies       
created by different POMDP solving algorithms (or our        
baseline policy). Additionally, it should be noted that we         
will be evaluating all of our policies using a maximum of           
100 time steps. 

If a roomba has not reached a terminal state by the end             
of 100 steps or so, it is possible that it never will, and             
quite likely that even if it does it will not for many steps             
more, incurring many more negative penalties along the        
way. Because of this, it seemed to us that the fact that a             
policy successfully completes after a large fixed number        
of steps is the most important thing in selecting the "best           
policy". Because of this, we define our evaluation metric         
as follows: 

                 core  T R  s =  ( total trials
# succesful trials) 2

* M  
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where MTR is the mean total rewards for the successful          
trials. This metric stresses the importance of successfully        
finding the goal state so as to "stop the bleeding" of           
endlessly looping in dead ends, since in a real simulation,          
the Roomba would not stop incurring negative rewards        
after 100 time steps.  
 
3.3.    Baseline Policy 
 

​​The roomba calculates its state as the mean of all of its             
belief states, and then computes the angle between its         
state and the goal state before moving in the direction it           
believes the goal to be. However, the roomba will also,          
for 4 (consecutive) time steps out of every 20 time steps,           
turn to the left and move forward as an exploratory          
strategy.  

The idea here is that the roomba will often get stuck if             
it only gains information by bumping into walls. By         
deterministically turning and moving 20% of the time,        
this should help the roomba remove itself from dead ends.          
We chose this policy because it is quite naive, yet still           
produces a good result a fair amount of the time. The state            
and action spaces used for this policy were both         
continuous. 
 
3.4.    ARDESPOT 
 

​​ARDESPOT is an online search algorithm similar to         
forward search and branch and bound algorithms in that it          
searches for an optimal policy for a tree (based on a given            
belief state) up to a given depth. This is done by looping            
over the entire action and observation spaces for a given          
node and summing the expected rewards for taking a         
certain action and seeing a certain observation from the         
given node. A weakness of this approach is that         
calculating the optimal policy for a very large depth and          
extremely large state, observation and action spaces can        
become intractable. This is where a DESPOT comes into         
play.  

A Determinized Sparse Observable Tree (DESPOT)       
essentially “prunes” the decision tree used in forward        
search by only evaluating policies based on K sampled         
scenarios, where a scenario is a set of belief spaces          
included in the tree while the others are left out.  
 

 
​Figure 3: ​​Illustration of a DESPOT from Somani et. al. [7].            

The black and gray lines together represent the entire tree (used           
in forward search or branch and bound algorithms), while the          
black lines only represent a DESPOT, where only certain belief          
states (labeled as any combination of a single blue circle, single           
orange circle or blue and red circle) are evaluated in the decision            
tree.  
 

One weakness of DESPOTs is the optimal policy         
computed is only an approximate estimation of the true         
optimal policy if the policy space is small and the subtrees           
for the DESPOT are small. Regularized DESPOTS or        
RDESPOTs remedy this by implementing ​default policies       
for subtrees in the DESPOT that are over a certain size.  

Anytime RDESPOTs (ARDESPOTs) further improve      
on RDESPOTs by greedily ruling out subtrees that result         
in a lower bound value for the algorithm, and greedily          
choosing values above an upper bound for the algorithm.  

We implemented ARDESPOT with a continuous state        
space and discretized action and observation spaces. The        
action space was limited to combinations of a velocity of          
5.0 and angular turning velocities in the set {-0.5, 0, 0.5}.           
The observation space is limited to whether you hit a wall           
or not, {0, 1}. The upper bound of the algorithm was 0 (as             
any reward above 0 is desirable) and the lower bound was           
-9 (allowing for traversing the room and hitting a few          
walls) in our implementation.  
 
3.5.    QMDP 
 

The second algorithm we experimented with was        
QMDP, an offline method that creates a set of alpha          
vectors for each action based on the the state-action value          
function under full observability [3]. These alpha vectors        
can be computed using value iteration, and used to         
estimate the value function. Hitting a wall provides quite         
a bit of information to the Roomba, so it is likely that            
QMDP may have issues with this problem, since it tends          
to have issues with problems with information-gathering       
actions.  

We discretized both the state and the action spaces for           
QMDP. The state space divides the room into 100         
x-points, 100 y-points, and 20 theta-points. The action        
space is the set of combinations of a velocity of 3.0 and            
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angular turning velocities in the set {-0.5, -0.25, 0, 0.25,          
0.5}. We chose this particular discretization because it        
offered a good range of options while still allowing the          
algorithm to complete in a reasonable amount of time. We          
also decided that the Roomba should always be moving,         
so we restricted all actions to have a velocity of 3.0. 
 
3.6.    POMCP 
 

The third algorithm we used was Partially Observable         
Monte-Carlo Planning, or POMCP for short [8]. POMCP        
builds on the Monte-Carlo search to provide a        
high-performance online method for approximating best      
actions. A traditional Monte-Carlo approach involves      
sampling only start states from the belief state to         
overcome the curse of dimensionality. POMCP’s      
innovation is to use a flavor of Monte-Carlo sampling to          
histories as well. It uses a simulator to create history          
samples and reduce dimensionality in that spacel,       
allowing it to perform much faster than a typical         
Monte-Carlo search.  

We discretized the action space for POMCP, and used a           
continuous state space. The action space is the set of          
combinations of a velocity of 5.0 and angular velocities in          
the set {-0.5,0,0.5}. We chose this particular       
discretization because POMCP seemed to be better at        
learning where it was trying to go, so we decided that           
giving it a fixed high velocity of 5.0 was ideal. We had to             
limit the number of options for the turn-rate due to the           
high computational requirements that running this online       
algorithm entails. Expanding the range of actions led to         
much slower run times. 
 
3.7.    Modifications to POMDP Policies 
 

After testing our policies for ARDESPOT, QMDP, and         
POMCP on random data, the results were somewhat        
mediocre, and we could see from visualizing our        
simulations that the Roomba would frequently get stuck        
in walls. Because of this, we made a simple modification          
to our policies. For ARDESPOT, QMDP, and POMCP,        
we select an action for the Roomba based on the          
corresponding policy, unless the Roomba is currently in        
contact with a wall, in which case we turn with an angular            
velocity of -𝜋 and move with velocity of 5.0. This simple           
modification greatly improved the performance of all of        
our POMDP policies. Thus, it should be noted in the          
following sections that our experiments on ARDESPOT,       
QMDP, and POMCP are actually using this modified        
policy.  
 
4.    Experiments 

 
We ran each of our 4 algorithms (baseline,         

ARDESPOT, QMDP, POMCP) on 3 different room       
configurations (different goal and stairs locations, but the        
same room shape). For each run on each configuration,         
the policy was tested on a batch of 100 different random           
initializations for the Roomba, i.e., the Roomba starts at a          
different location and orientation within the room on each         
of the 100 runs. We then computed the score for each of            
these batches on each room configuration and for each         
algorithm, using our previously defined evaluation metric       
to compute each score. 
 
5.    Analysis​​ of Results  
 
5.1.    QMDP  
 

QMDP had the most consistent results of all the          
models. The success rates were 93.0%, 84.0%, and 76%,         
with scores of 1.31, .674, and .316 for configs 1, 2 and 3,             
respectively. This was expected, as QMDP is a well         
known algorithm that converges to an approximately       
optimal solution. Overall, QMDP had the best success        
rate performance, and produced the most consistent       
performance for each configuration. The only outlier       
performance was on room number three, where it scored         
very low relative to the other configurations.  
 
5.2.    ARDESPOT 
 

​​ARDESPOT performed the worst out of all of the          
implemented algorithms (even worse than the baseline       
algorithm). The success rates were 21.0%, 14.0% and        
11.0% with scores of 0.374, 0.156 and 0.091 for configs          
1, 2 and 3, respectively. We did not expect this algorithm           
to behave more poorly compared to other online and         
offline methods that we implemented.  

We suspect that our implementation of ARDESPOT        
was not optimal. We passed in float limits into the          
function (-9.0 and 1.0 for the upper and lower bounds),          
and what was likely needed for a more successful         
implementation was passing in a heuristic function to the         
solver. ARDESPOT.jl uses a random rollout policy to        
calculate the lower bound - we would try to implement          
this as a starting point in the future to see if this algorithm             
could be more effective.  

Although ARDESPOT was designed to scale up to         
large state spaces better than DESPOT or RDESPOT        
algorithms, Somani et. al. explains that when       
implemented with extremely large state spaces      
ARDESPOT can work if a good, small policy exists [7].          
The best policies for this POMDP are not going to be           
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small, as we have 200,000 states that are possible with          
discretization alone (this implementation uses a      
continuous state space, but the relatively large discretized        
state size illustrates that optimal policies would be        
complex). This would lead to extremely complex policies,        
which would make ARDESPOT a poor algorithm to use         
for this POMDP.  
 
5.3.    POMCP 
 

​​POMCP performed the best out of all of the          
implemented algorithms in terms of score. The success        
rates were 84.0%, 20.0% and 66.0% for configs 1, 2 and           
3, respectively. It scored 2.598, .265, and 1.669 on each          
configuration. Overall, POMCP had the best score       
performance, which supports the hypothesis that online       
methods are better suited for this problem than offline         
methods.  
 
5.4.    Graphs  
 

​​To analyze our results consistently across all of the          
configurations, we divided each model’s score by the        
maximum score observed for that configuration. This       
resulted in a “Norm Score” metric that presents a         
configuration score as a percentage of the best score         
observed. This led to a nice set of graphs, where we           
compared success percentage against Norm Score. The       
graph results can be seen in figs 4 through figs 7 below.  
 

 
Figure 4: ​​Performance of each algorithm on configuration one 
 

 
Figure 5: ​​Performance of each algorithm on configuration two 
 
 

 
Figure 6: ​​Performance of each algorithm on configuration three 

 
 
Figure 7: ​​Average performance of each model  
 

As you can see in Figure 7, the best performing models            
were POMCP and QMDP. QMDP had the highest success         
percentage across all configurations, with an average of        
around 85% success rate. However, for our proposed        
scoring metric, POMCP performed the best with an        
average normalized score of .8 . This means that POMCP          
might have been successful less often than QMDP, but         
when it was successful it found its way to the goal very            
quickly. 
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6.    Conclusion 
 

POMDPs are a powerful tool for solving problems in          
which there exists a great deal of uncertainty. Because of          
this, it should come as no surprise that POMDP methods          
perform quite well at helping a Roomba navigate out of a           
hypothetical room in an optimal way. Even with a         
minimal amount of observable data using very basic        
sensors, both offline and online methods were proven to         
be much more effective than random or naive policies.         
Overall, we conclude that the success of POMDPs in this          
simple experiment could translate into success in more        
advanced areas of autonomous control, such as       
self-driving cars. 
 
6.1.    Future Work 
 

Given more time and resources, other areas that would          
be interesting to explore would be the use of neural          
networks in solving such a problem. This could be quite          
difficult to implement, but given the success of neural         
networks in other areas of AI, it would be worth          
exploring. The use of larger datasets and scenarios with         
multiple goals/stairs would also be an interesting       
extension to this problem. The variations and possible        
solutions to this problem are quite extensive, and could         
produce valuable results for autonomous control      
technologies. 
 
6.2.    Contributions 
 

Zachary did much of the groundwork for formulating a          
baseline policy and establishing an evaluation metric. He        
also worked extensively on running and evaluating       
QMDP methods, as well as explored relevant literature.  

Charlie worked on applying POMCP to the problem,         
training, and evaluating it. He did lots of research into          
saving and standardizing the models produced. He also        
aggregated the results and produced visuals and analysis. 

Adam did initial research into narrowing down which         
algorithms would be best to implement for the Roomba         
POMDP and how to implement them in code.. He spent          
extensive time implementing, researching and     
documenting results for the ARDESPOT algorithm. He       
also maintained the GitHub for the project.  
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