
Optimal Battle Strategy in Pokémon using Reinforcement Learning

Akshay Kalose, Kris Kaya, and Alvin Kim

Abstract— Pokémon is a turn based video game where
players send out their Pokémon to battle against the opponents
Pokémon one at a time. Our project attempts to find an
optimal battle strategy for the game utilizing a model-free
Reinforcement Learning strategy. We found that a softmax
exploration strategy with Q-Learning resulted in the best
performance after qualitatively and quantitatively, using the
win rate against a random agent, evaluating it against other
approaches.

INTRODUCTION

Pokémon is a popular video game franchise where players
play as a trainer who owns monsters called Pokémon. Players
can battle other trainers by having their Pokémon fight in
a turn-based combat system. The game of Pokémon has
evolved in major ways over the years, with each new iteration
of the game making the game more and more complex. The
first Pokémon game featured 151 unique Pokémon, but now
there exists over 800 of them.

Pokémon battles contain an unique blend of strategy,
domain knowledge, and luck that make them well-regarded
amongst the video game community. In addition, due to the
extremely large amount of both Pokémon and moves, there
exists an incredible amount of variety to the battles.

We were interested in exploring this battle space by using
reinforcement learning to create an agent that can optimally
play Pokémon battles.

MOTIVATION

The battling aspect of Pokémon is so popular that there
is a relatively large competitive scene. Countless databases,
forums, and other online resources exist to give players the
information needed to increase battling skill. Moreover, there
are sanctioned competitive battle tournaments in real life
where the winners receive cash prizes. There also exists a
popular battle simulator website called Pokémon Showdown,
where play can create teams of Pokémon and battle others
on the internet. Given the widespread popularity of Pokémon
battling, we wished to further explore the competitive scene
by developing a successful agent.

Additionally, we were interested in the projects appli-
cations in general game-playing. Attempts to find optimal
strategies for various games such as chess or Go are common
throughout the literature. Yet, given that Pokémon is a video
game and that it has an immense state space, comparatively
less research has been put into creating an optimal battle
agent. Therefore, we were interested in seeing if it was
indeed possible to create an AI agent for Pokémon that was
able to match or even exceed human performance levels. By

using game-playing algorithms explored in other games, we
hoped to find the existing strategy that would have the best
performance when applied to Pokémon battling.

PROBLEM DEFINITION

Our project attempts to find an optimal battle strategy
in Pokémon. As mentioned before, a battle is a turn based
game where players send out their Pokémon to battle against
the opponents Pokémon one at a time. Each player has a
team of [1,6] Pokémon, each with its own set of uniquely
valued stats such as health, physical attack, special attack,
physical defense, special defense, and speed which determine
its strength and survivability. They each also have up to 4
unique moves which serve as the potential actions that the
Pokémon can take during battle. Most moves function to
reduce the health of the opponent Pokémon. However, some
moves inflict special conditions (known as status conditions
or status effects) on the opponent’s Pokémon such as poison
and sleep, which negatively impact a Pokémon in more
subtle ways than having it just lose health. For example,
the poison ailment reduces a Pokémon’s health by 1

16 every
turn. Additionally, some moves can apply a stat multiplier to
either Pokémon. For example, there is a move called Swords
Dance which doubles the attack stat of the user.

We define a battle strategy as an ordered sequence of
moves to be performed by a given user’s Pokémon. An opti-
mal strategy would be the sequence of moves that maximizes
the probability of a given user winning the Pokémon battle.
The winning player of a battle is the one who makes the other
players Pokémon lose all their health while having at least
one Pokémon on their team that is still alive. We sought to
implement an AI agent whose goal was to defeat opponents
by reducing all of the opponents Pokémon to zero health
while maximally retaining the health of their own Pokémon.

Fig. 1. An example of the key components in a Pokémon battle

LITERATURE REVIEW

Attempts to create an optimal Pokémon battler have been
prevalent both at Stanford University and at other academic
institutions. Students in advanced undergraduate classes at
Stanford such as CS 221 and CS 229 have attempted to
create AI agents to optimally play Pokémon Showdown, an
online Pokémon battle simulator. A paper by Khosla, Lin,
and Qi [1] used an expectimax AI with an evaluation function
trained from 20,000 replays using a TD Lambda Learning
strategy and was able to achieve an ELO rating of 1344.
This indicates the bot was able to achieve a level of play
equal to an average human. Moreover, a CS 221 project done
by Ho and Ramesh [2] implemented a minimax agent (of
search depth 2) with branch and bound, move ordering, and
evaluation function that took into account speed and whether
the current Pokémon could do super effective damage. This
bot was able to achieve an ELO rating of 1270.

Beyond the above studies, other approaches to Pokémon
AI have been undertaken by researchers outside Stanford.
Panumate and Iida [3] tested four Pokémon AIs (Random
AI, Attack AI, Smart-Attack AI and Smart-Defense AI) that
each used a different strategy for the purposes of game
refinement. They found that the four agents were optimal for
play against agents of different skill levels, which reflects that
the differing strategies influenced the agents’ performance.
Additionally, Lee and Togelius [7] found that a Pruned BFS
agent, a Minimax agent, and a One Turn Look Ahead agent
were able to outperform other agents such as a standard BFS.
This study compared the performance of the AIs by having
them battle against each other.

CHALLENGES

There are a few challenges that make it difficult to create
an intelligent agent that can win Pokémon battles. First of
all, battles have an extremely large state space. There are
over 800 Pokémon and over 700 potential moves. As a
result, there is an enormous number of possible teams of
Pokémon. In addition, while most moves purely do damage,
there are also moves that have additional effects such as
inflicting status condition or altering base stats. Whereas a
naive agent would solely choose moves that do the most
damage, a more intelligent player knows how to properly
utilize these secondary types of moves in order to win. The
presence of these secondary moves indicates the need for a
strategy beyond simple damage maximization.

To combat the issue of a large state space, we decided
to limit the amount of Pokémon and moves to just the first
generation. This change meant only 151 Pokémon and 165
moves were available. The additional effects were a larger
challenge but we will discuss later in our approach how we
accounted for them.

In addition, there was the logistical challenge of modelling
the game state and performing the necessary logic and
damage calculations needed in a battle. Pokémon battles
have surprisingly large amount of unique moves and special
conditions that we had to account for.

IMPLEMENTATION

Due to the complexity of a Pokémon battle, we decided
to simplify the process of battling and implemented a de-
terministic Pokémon battle simulator. Making our simulator
deterministic allowed us to avoid some uncertainty involved
in Pokémon battles such as the accuracy of a move or the
chance of inflicting a status effect. As such, we were able to
focus more on finding an optimized strategy.

We built our simulator from scratch in Python using the
data from veekun’s pokedex [5], and pokeapi.co [6]. This
simulator supports all first generation Pokémon except Ditto
and most first generation moves.

A. Data Structure

The game of Pokémon has a lot of data in its game state,
which required us to structure our data very deliberately.
There are essentially two main data structures; a data struc-
ture to represent each Pokémon and then a data structure to
represent each potential move.

Pokémon
ID: Index in list of Pokémon
Stats: List of integers representing base

stat values for HP, Attack, Defense,
Special Attack, Special Defense,
Speed

Level: Level of Pokémon
Stat Stages: List of integers ranging from -6 to

6 that determine stat stages
Type: Indexes of types associated with

the Pokémon
Current HP: Current health points of the

Pokémon
Moves: List of up to 4 indexes of moves

Move
ID: Index of list of moves
Type: Index of type of the move
Power: Integer used in damage calculation
Priority: Integer that determines who attacks

first (Overrides speed)
Target: Integer determining who is affected

by the move
Damage
Class:

Integer determining whether move
is status, physical, or special

Meta: Information of status effects and
stat stage modifications.

B. Damage Calculation

Damage =

(
(2×Level

5 + 2)× Power ×A/D
50

+2

)
×Modifier

Modifier = TypeModifier × SameTypeAttackBonus

A = (Special) Attack stat of attacking Pokémon

D = (Special) Defense stat of defending Pokémon

The above equation is the formula utilized by the game and
our simulator to calculate the amount of damage inflicted on
the opponent when a Pokémon performs a damaging move.
It takes into account the Pokémon’s stats including level,
Attack, and Defense as well as the Power of the move and
any relevant modifiers.

The type modifier is calculated using the type of the move
being used and the types of the defending Pokémon. The
same type attack bonus is equal to 1.5 if the defending
Pokémon shares a type with the attacking move’s type,
otherwise is equal to 1.

C. Stat Stage Multiplers

Every Pokémon stat has a stat staged value. Depending on
the value, there is a multiplier applied to the stat as shown
in the table below. Certain moves can manipulate the stat
multiplier of the agent’s Pokémon, the opponent’s Pokémon,
or both.

-6 -5 -4 -3 -2 -1
25
100

28
100

33
100

40
100

50
100

66
100

0 1 2 3 4 5 6
100
100

150
100

200
100

250
100

300
100

350
100

400
100

CONSIDERING APPROACHES

Multiple approaches exist in trying to build an AI to play
Pokémon battles including both model-based and model-free
as seen in the Literature Review. Since most of the AI’s
available are model-based and use game trees to perform
some form of search such as minimax or expectimax, we
explore model-free approaches to optimally win battles. One
feature of model-free approaches that we found advantageous
was less computation and more efficient data usage.

INITIAL APPROACH

In a model-free approach to reinforcement learning, we
don’t need to define transition and reward functions. These
will be approximated by the learning algorithm. One of the
most popular model-free learning algorithms is Q-learning,
which attributes Q values to state and action pairs. In the
context of our problem, given a current game state, we will
have Q values associated with each of the user’s Pokémon
moves. The trained AI would then select the move with the
highest Q value. We implement the Q-learning algorithm,
as shown below. We use α = 0.10 and γ = 0.95.

We decided to choose an epsilon-greedy strategy as our
initial exploration strategy. We chose epsilon to be 0.10 so
that we would choose the optimal move based off our Q-
values 90% of the time and a random move the other 10%.
Therefore, we would not be stuck in a local optima yet still
could explore enough of the state space.

The next decision point was what to include in our state
vector. Pokémon battles have an extremely high number of
potential features that would be useful to keep track of. First
of all, we could keep track of features of the general game
state such as how many Pokémon each trainer has remaining.

Algorithm 1 Q-learning algorithm as described in [4]
1: function QLEARNING
2: t← 0
3: s0 ← initial state
4: Initialize Q
5: loop
6: Choose action at based on Q and some explo-

ration strategy
7: Observe new state st+1 and reward rt
8: Q(st, at)← Q(st, at)+α(rt+γmaxaQ(st+1, a)
−Q(st, at))

9: t← t + 1

Then we could keep track of the specific Pokémon on the
field. These features would include the type of the Pokémon,
how much health each one has remaining, and the stats of
both Pokémon. There are then additional features such as
whether either Pokémon are currently inflicted with a status
effect. Beyond the Pokémon that are currently on the field,
each player has other Pokémon on their teams, whose stats,
moves, and ailments could be useful to consider.

For the purpose of our initial implementation of Q-
learning, we decided to utilize a simple feature vector that en-
coded the necessary basic information. We initially planned
on tracking the sum of the total health of both trainer’s
respective teams of Pokémon, the amount of Pokémon left
on each side, and the type of both Pokémon currently on
the field. When we kept track of health, we wanted to have
an accurate account of remaining health while also trying
to avoid having too many possible states for each health
total. Therefore, we instead split the health into 10 buckets
of percentages that dictated what level of health the team
had left. For example, if a team only had 6% health left, it
would be in the first bucket but if it had 33% it would in the
fourth.

We quickly made a change however to remove the amount
of Pokémon left on each side. We realized that this inclusion
would exponentially grow the state space, and since in our
initial implementation we did not have function approxima-
tion, this would then lead to a lot of unknown states and
random behavior. We also reasoned that our agent should
still yield promising results if optimizing its actions to play
against just a single opponent.

Our next step was then to determine what the reward
should be. We wanted to strongly reward winning and
penalize losing, so we set the rewards for reaching those
particular game states to be very high. We then had a
intermediary reward where we compared how much health
we had left to how much our opponent had. If we had more
health, we would receive a small reward scaled to how much
more health we had and were penalized in the same way
otherwise.

D. State Definition

player hp bucket: Index of player’s health bucket
opponent hp bucket: Index of opponent’s health bucket
player type 1: First type of player’s Pokémon
player type 2: Second type of player’s Pokémon
opponent type 1: First type of opponent Pokémon
opponent type 2: Second type of opponent Pokémon

E. Action Definition

Each Pokémon has at most 4 unique moves that it can
perform at a given state. Therefore, we defined an action as
the index of the move that was performed by the Pokémon.

INITIAL RESULTS

We performed self-play by having two Q-learning agents
play each other. The first agent would re-evaluate its Q-
values after each move and choose its moves according to the
exploration strategy, while the second agent would only have
its Q-values updated after each game and choose the move
with the best Q-value, breaking ties randomly. We trained our
agent with 5,000 games and then had our Q-learning agent
play against a random agent with the fixed Q-values found
after our training. We ended up with a win-rate of 60%.

SOFTMAX EXPLORATION

To improve our agent, we decided to utilize a softmax
exploration strategy instead. With softmax, our exploration
strategy will now utilize information from our previous
games. We now chose an action with probability proportional
to exp(λρi), with λ = 1 and ρi is equal to the normalized
distribution of Q values at the current state and possible
actions.

SOFTMAX RESULTS

We saw improvements solely by changing the exploration
strategy to softmax. Whereas before we only had a win rate
of 60% against random, after implementing softmax and
training our agent with 5,000 games, we saw our agent win
against a random agent with a higher win-rate of 65%. We
noticed softmax had also converged to the optimum faster.
After only 2,000 games for training, softmax resulted in a
win rate of 60% against the random agent. After training for
20,000 games, softmax resulted in a win rate of 70% against
the random agent.

RESULTS

5000 Training Games

Epsilon-greedy vs Random agent win rate 60%
Softmax vs Random agent win rate 65%

ANALYSIS

Our simulator was designed to create completely random
battles, so a group of 6 random Pokémon vs an opponent
team of 6 random Pokémon. In a similar vein, each Pokémon
also has a random moveset. As a result, there are a few un-
winnable games and we do not expect even the perfect agent
to have a 100% win rate. A win rate of 65% against random
shows that our agent is at times choosing the best action
but not at a frequent enough rate to more consistently win
games. For comparison, when we implemented a minimax
agent for our CS 221 project, we were able to achieve a
winrate of around 90% against a random opponent.

FUTURE WORK

There exists a high level of other potential improvement
in order to improve our win rate. A simple method of
improvement would be to run more trials during our training
so that we can make sure we are getting Q-values for even
more states.

Another method that we attempted was to implement
eligibility traces. In our current implementation, we do not
implement it and therefore our large reward of winning the
game is only associated with the action and state directly be-
fore. While given enough simulations this reward would still
be useful, it does not give enough credit to previous action,
state pairs that helped lead to a win result. However, after
we implemented eligibility traces our win-rate decreased so
we decided to remove it.

There also exists high room for improvement in terms of
improving our state vector. We explained that we initially
chose our vector to have the simplest state space as possible
while still encoding the necessary information in order to
win the game. However, there are far more features that we
could have included that would have helped provide insight.
Some of these features include whether either Pokémon was
inflicted with a status condition and what the statistics such
as attack and defense were for each Pokémon.

We had to simplify our state space as we did not have
a form of local approximation implemented. As a result, if
during our game we reached a stage that we had not trained
for, then we would have been choosing a random move.
Therefore we had to keep our state vector simple and did not
implement the additional features as mentioned above. If we
had local approximation implemented, then we would be able
to both improve the state vector by adding more descriptive
features but also we would in general choose better moves as
even in new states we would have a general approximation
of what a good action is.

CONCLUSION

While we did end up having positive results of having a
win rate of 65% with 5,000 training games, and 70% with
20,000 training games, against a random agent, a Q-learning
implementation requires significantly more effort to create
an optimal player when compared to other versions such
as minimax. In our final project in CS 221 we approached
a similar problem but used a minimax agent instead, and

that agent’s win rate against random was close to around
90%. We believe that similar win rates can be attained but
more work needs to be done as detailed in our future works
section. Also, Q-Learning requires a lot more training to
learn Q values to estimate rewards and transitions. Therefore,
it makes sense that most other Pokémon related research we
have found used a model-based minimax agent, as it was a
simpler process and received good results.

GROUP MEMBER CONTRIBUTION

Akshay implemented the battle simulator from scratch
using data by veekun and pokeapi. The entire group worked
together to come up with agent strategies and implementa-
tion. We split the writing of the paper equally.

ACKNOWLEDGEMENT

We would like to thank Mykel Kochenderfer and the rest
of the CS 238 staff.

REFERENCES

[1] Kush Khosla, Lucas Li, Calvin Qi. Artificial Intelligence for Pokémon
Showdown. Stanford, CA: n.d. Web. 6 Dec. 2018.

[2] Harrison Ho, Varun Ramesh. Percymon: A Pokémon Showdown
Artificial Intelligence/ Stanford, CA: 2014. Web. 6 Dec. 2018

[3] Hiroyuki Iida, Chetprayoon Panumate. Developing Pokémon AI for
Finding Comfortable Settings. Aug. 2016. Web. 6 Dec. 2018

[4] Mykel J. Kochenderfer, Decision Making Under Uncertainty: Theory
and Application, MIT Press, 2015.

[5] GitHub. veekun/pokedex. https://github.com/veekun/pokedex/. 7 Dec.
2018.

[6] GitHub. PokeAPI/api-data. https://github.com/PokeAPI/api-data/. 7
Dec. 2018.

[7] S. Lee and J. Togelius, ”Showdown AI competition,” 2017 IEEE
Conference on Computational Intelligence and Games (CIG), New
York, NY, 2017, pp. 191-198. 7 Dec. 2018

