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Abstract

Solving Partially Observed Markov Decision Processes (POMDPs) requires aggre-
gation of multiple incomplete state observations through time. Recurrent neural
networks (RNNs) offer a way to learn to perform this aggregation effectively
when computing or approximating Bayes-optimal belief state updates is intractable.
However, RNNs trained through gradient-based methods are known to have limited
ability to learn to effectively aggregate information over many time steps, as is
necessary in POMDPs with highly noisy or incomplete observations. We propose a
model that mitigates this issue by augmenting the RNN embedding vector with its
nearest neighbors in a stored finite bank of exemplar vectors. This has the effect of
discretizing the possible embedding values along the newly added dimensions in
the RNN embedding space. The exemplar vectors are learned along with the rest of
the model, allowing for optimization of this partial discretization protocol. We find,
through experimentation on the Mountain Hike benchmark task with varying levels
of observation noise, that this approach aids model performance as observation
noise grows. These results suggest a new approach to enhancing the performance
of RNN-based POMDP models in tasks where observations are severely limited.

1 Introduction and Related Work

Deep reinforcement learning techniques have exhibited impressive performance on a variety of tasks,
but their application to POMDPs is less well-studied. One popular approach, the Deep Recurrent Q-
network (DRQN) of [1] uses a recurrent neural network (RNN) to aggregate observations from earlier
time points. Such information aggregation is necessary for POMDPs, in which the optimal action
to take is not able to be inferred from the current state observation alone. This method was refined
further in the action-specific deep recurrent Q-network model of [2]. Though these methods consider
Q-learning, the concept of maintaining an RNN-based embedding of the state/action trajectory can in
principle be used with any deep reinforcement learning algorithm to apply it to POMDPs.

In [3], Igl et al. improve the RNN-based approach to POMDPs (in their case, they consider an
RNN-based actor-critic model) by imposing additional structure on RNN updates. Their RNN is
incentivized to explicitly represent inference of a belief distribution over a partially observed state
space, whose transition dynamics are learned using a generative model with an auxiliary loss. They
introduce the “Mountain Hike” task, a continuous control task in which agents are meant to navigate
along a particular path (dubbed a mountain ridge) but receive noisy observation of their current
location. The difficulty in this task is estimating the current position from the noisy observations. They
find that their method outperforms an RNN-based baseline without the generative model structure.

All these methods confront the computational challenge of recurrently computing uncertainty in the
current estimation of state. Igl et al. use a particle filtering approach, while DRQN represents this
belief state uncertainty implicitly. As the space of possible probability distributions over the state is
very high-dimensional, it can be difficult to learn an appropriate representation given limited training
data.



Our model also draws techniques from the recent work of Ritter et al. in [4]. Their model incorporates
an episodic memory module into a recurrent neural network-based meta-learning system by allowing
the agent to reinstate previously experienced RNN hidden states, which are stored in a memory but
accessed in differentiable fashion and updated as the model is trained end-to-end. Reinstatement
of stereotyped RNN hidden activations allows the model to learn new policies much faster, as the
retrieval allows the model to efficiently leverage previously learned structure even when encountering
entirely novel states. In this model, memory retrieval is based on contextual cues that indicate which
task the agent is currently facing, and the memories correspond to previously experienced RNN
activation patterns. In particular, the model finds the activation patterns corresponding to the k nearest
neighbors in the memory (according to the contextual cue index) to the current context. By repeatedly
reinstating samples from a constrained of activity patterns through training, the model has much more
training data with which to learn how to use these particular activity patterns effectively. Our model
aims to leverage a similar effect.

2 Motivation and Model Outline

This work proposes a new way to maintain an implicit estimate of the true state in a POMDP
given noisy state observations. We are motivated by the fact that the DRQN model and the more
sophisticated model of Igl et al. rely heavily on gradient updates to a recurrent neural network in
order to learn the appropriate representation of uncertainty. These networks must not only learn an
effective encoding of high-dimensional states but must also be able to learn to represent sequences of
states, which grows exponentially more difficult as the length of the sequence that must be encoded
in order to aggregate sufficient state information increases. Recent work has shown that recurrent
neural networks in practice have considerable difficulty in learning representations of arbitrary-length
sequential information. In [5], Bai et al. note that ”the ’infinite memory’ advantage of RNNs is
largely absent in practice,” and Miller and Moritz prove in in [6] that in many cases a recurrent neural
network trained via gradient descent can be well approximated by a feedforward neural network.
This phenomenon is, in essence, a manifestation of the “vanishing gradient” effect which makes
it difficult for long-term dependencies to be learned effectively via backpropagation through time.
As Miller and Moritz note, even though more sophisticated recurrent units like LSTMs and GRUs
were developed to address this problem, they do not do so completely. Thus, we might expect that
approaches to solving POMDPs that rely on fully differentiable recurrent neural network models
will, as observation noise increases, have increasing difficulty capturing the long-term dependencies
necessary to maintain an accurate representation of the belief state.

We propose a mechanism which aims to mitigate this suboptimality of RNN-based POMDP solvers in
when the state observation is highly noisy or incomplete. In particular, we partially discretize the space
of RNN embeddings by partitioning the state space into disjoint regions and augmenting the state
embedding by concatenating it with additional embedding vectors associated with its region. Thus,
the mapping from a sequence of observations to a state embedding varies both continuously (within
each region) and discretely (across regions, since the augmentation vector changes discontinuously at
regional boundaries). The discrete component allows the network to effectively learn how to act based
on coarse estimates of state uncertainty, as there are few enough regions that each is visited reasonably
often as the agent acts in the environment. The continuous component of the representation allows
for some flexibility to fine-tune the RNN representation beyond what is allowed by the discrete set.
The discretization is implemented by maintaining a finite set of exemplar points in the state space,
which partition the state space into disjoint regions – each region is defined by the identity of its k
nearest neighbors in the set. The positions of these exemplars are learned along with the rest of the
model, allowing them to be optimized in a productive way. One expects that the model will learn to
place these points at canonical locations in state space, motivating the use of the word “exemplar.”

Our model’s activation retrieval mechanism differs from that of Ritter et al. in several important ways.
First, it retrieves exemplars, which may or may not lie near previously experienced states, rather than
memories. Second the exemplar retrieval is indexed by the current state embedding rather than an
auxiliary contextual cue (since no additional cue is available in the general POMDP setting). We
predict that despite these significant differences from the model of Ritter et al., our model’s repeated
reinstatement of stereotyped patterns of activity will still guide it to learn how to use these particular
activity patterns effectively. We hypothesize that repeated exposure to these exemplar patterns will
tend to strengthen the gradient signal that passes through them during backpropagation, mitigating
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the vanishing gradient problem and enabling the model to learn to recurrently updated representations
of state uncertainty more effectively. Hence, we expect that the benefits of the model, if observable,
will manifest most clearly for POMDPS with a high degree of observation noise.

3 Methods

All of our experiments are performed on the Mountain Hike task with varying levels of observation
noise, σ ∈ {0.01, 0.05, 0.25, 1.0}. In the task, an agent is meant to navigate along an elevated
“mountain ridge” while receiving noise-corrupted observations of its current state at each time step.
The state space consists of 2D coordinates (x, y) in a bounded box, and actions consist of intended
movements (∆x,∆y) where ||(∆x,∆y)|| ≤ 0.5. Transitions are stochastic with mean corresponding
to the intended action and standard deviation equal to 0.25. State observations are corrupted with
Gaussian noise with standard deviation σ. Rewards are given as Rt = f(xt, yt)− 0.01 · ||at|| where
f represents the elevation of a given point in the environment.

As Mountain Hike is a continuous control task, Q-Learning methods relying on a discrete action
space cannot be applied. Hence, all our models are based on a recurrent variant of the Advantage
Actor Critic model (A2C) from [7], which is well suited to problems with continuous action spaces.
A2C uses one neural network (the “actor”) to perform policy gradient updates which are based not on
empirically observed rewards but rather based on estimated expected rewards of state-action pairs as
computed by another trained neural network (the ”critic”). The critic is trained such that its value
estimates match empirically observed Q-values of state-action pairs. The overall architecture of this
baseline model is similar to that of the Deep Recurrent Q Network model, but with the A2C algorithm
replacing Q-learning, and without any convolutional layers needed at the start of the model in our
case (since the Mountain Hike task has low-dimensional state space). More concretely, the model
feeds the given observation and the previous action through two linear feedforward neural network
layers of width 64, each with ReLU activations. The result is then fed to a layer of generalized
recurrent units (GRU) (introduced in [8]) of width N . The GRU layer also receives its state at the
previous time step as input, allowing for recurrent updates. The GRU layer outputs an embedding
to an M -dimensional state space (we used M = N = 128 · 6 = 768 in all experiments). In the
“RNN-A2C” baseline model, this embedding vector is fed in as the input to the A2C algorithm. Code
for defining the task environment and implementing the RNN-A2C baseline was adapted from Igl et
al.’s implementation of their generative model approach at https://github.com/maximilianigl/DVRL.
To quantify the importance of recurrence at different levels of observation noise, we also experimented
with a pure A2C baseline using no recurrence, in which the mapping from observation to embedding
consisted solely of the two initial feedforward layers.

Our exemplar-based approach (which we will refer to as RNN-Exemplar-A2C) differs from the
above in the following manner. 50 random points are initialized in the exemplar bank by projecting
observations into embedding space via the model’s randomly initialized weights for 50 time steps
with the model following random actions. Following this initialization phase, each time the model
recurrently embeds the current observation and GRU context into a state embedding (or size 128), it
concatenates this embedding with the embeddings of the k = 5 nearest exemplars in the exemplar
bank (for a total embedding size of 128 + 5 · 128 = 768. The GRU then takes in this augmented
vector as input and computation proceeds as in the baseline RNN-A2C model above. The model
is updated end-to-end via backpropagation, and the locations of the exemplars, once initialized are
considered as learnable parameters that are updated along with the rest of the model’s weights. All
optimization was performed using RMSProp with α = 0.99. All models were trained for 2.5 million
iterations. Note that the architecture matches that of the RNN-A2C model to admit fair comparison –
both models have comparable numbers of parameters (the RNN-Exemplar-A2C model has slightly
fewer due to the nonparameteric augmentation computation). See Figure 1 for a visualization of the
model architecture.

4 Results

We test the A2C, RNN-A2C, and RNN-Exemplar-A2C models on the Mountain Hike task on different
settings of the noise parameter: σ = 0.01, 0.05, 0.25, and 1.0. See Figure 2. We observe a few
trends. First, as would be expected, the feedforward A2C model performs competitively with the
other models for low noise values. This is reasonable, as the Mountain Hike task becomes a fully
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Figure 1: A schematic depicting the architecture of the RNN-Exemplar-A2C model. First, the noisy
state observation and previous action are mapped to an embedding space. The k nearest neighbors to
this embedding in the exemplar bank are retrieved and concatenated onto the embedding vector. The
augmented vector is used as the input to a GRU-based recurrent neural network, which also receives
as input its own output from the last time step. The RNN outputs a vector ht which is fed in as input
to the advantage actor-critic (A2C) model, in which an “actor” neural network learns a policy through
policy gradient updates based on the reward estimated by the “critic network,” which is trained to
accurately estimate the value of given values of ht. The RNN-A2C model is the same except that it
lacks the exemplar-based augmentation step. The A2C model is the same except that its lacks the
RNN, feeding state/action embeddings directly into the actor and critic networks. Format based on a
figure in [3].

observed MDP when σ = 0, in which case the optimal policy should in theory be computable via
feedforward computation from the current state observation (of course, differences in architecture and
number of parameters may still cause A2C and RNN-A2C to give different results in the zero-noise
case). As σ increases, the A2C model becomes unable to learn the task and exhibits unstable learning
trajectories. This is expected, as the error in state estimation by a feedforward model which only
accesses one noisy state observation will grow large as the noise increases.

Second, the RNN-Exemplar-A2C model grows increasingly competitive as σ grows, eventually
overtaking all other models in performance. For σ = 0.01 it is asymptotically outperformed by
RNN-A2C. For σ = 0.05 it matches RNN-A2C but learns slower. For σ = 0.25 the same is true
but the learning speed disparity is smaller. Finally, for σ = 1.0, RNN-Exemplar-A2C significantly
outperforms the other models.

An additional interesting observation is that a modified version of the RNN-Exemplar-A2C model,
in which the RNN state was not augmented by the retrieved exemplar vectors but instead replaced
by them, could not achieve task performance better than that achieved with random weights, for
any value of noise. This result suggests that while the partial discretization of the embedding space
achieved by the RNN-Exemplar-A2C model can be helpful in the presence of high noise, complete
discretization is not a viable solution, at least given the small exemplar bank size (and correspondingly
coarse embedding space discretization) used in our experiments.

5 Discussion

Our experiments suggest that augmenting the activations in a recurrent neural network with its the
nearest neighbors retrieved from a bank of exemplar patterns can allow it to learn better policies
in POMDPs with high observation noise. In the low observation noise regime, this augmentation
does not appear to help performance and even hurts it slightly (we presume the slight reduction in
performance arises from the fact that in the low noise regime, the dimensions in embedding space
spent on the augmentation are better used as part of a higher-dimensional RNN representation).
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Figure 2: Performance of the A2C, RNN-A2C, and RNN-Exemplar-A2C models on Mountain Hike
for different values of σ. The relative performance of RNN-Exemplar-A2C compared to the other
models improves for higher noise values, while the feedforward A2C model becomes less competitive
as σ increases.

This result suggests a umber of follow-up research directions. First, it should be checked whether
the performance advantage of RNN-Exemplar-A2C in high-noise regimes does in fact result from
the hypothesized phenomenon of mitigating the vanishing gradient problem. This could be checked
empirically by tracking the magnitude and directional consistency of gradient updates as training
progresses, in the RNN-Exemplar-A2C and RNN-A2C models. Second, the effect of various
hyperparameters in the RNN-Exemplar-A2C model should be characterized. Time and resource
constraints prevented thorough optimization of and experimentation with the choice of the size of
the exemplar bank. Increasing this size significantly, which likely requires improving the efficiency
of our implementation of the nearest neighbors retrieval, could allow for much denser coverage of
embedding space by the exemplar bank, which might improve performance significantly. The choice
of the number k of exemplars retrieved at each iteration is also likely to have significant impact on
performance.

A number of reasonable extensions to the model are also worth considering. For instance, each of
the k exemplars retrieved was weighted equally in our model. One could potentially also augment
the embedding space with information about the proximity of the exemplars to the original state
embedding, allowing the model to weight the top nearest neighbors more heavily. One could also
imagine replacing infrequently accessed exemplars with new ones during training, perhaps initializing
the replacement exemplars to correspond to the RNN embeddings of recent observation/action pairs
(which would bring the model closer to the memory retrieval paradigm of Ritter et al.). Additionally,
it would be worth exploring alternative methods of augmenting the embedding space with information
about the exemplars besides simple concatenation. Finally, the performance of the exemplar approach
should be assessed on a wide variety of tasks and in combination with a wide variety of base RL
algorithms (i.e. others besides A2C).
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Overall, this work suggests a promising new approach to enhancing the performance of RNN-based
POMDP models when observations are very noisy or incomplete, through partial discretization of the
RNN embedding space via exemplar retrieval.
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