
Offline and Online POMDP Solution Approaches for
Roomba Navigation

Brad Cash [bradcash@stanford.edu]
Joel Persson [joelpe@stanford.edu]

Abstract

This paper compares the implementation of three unique POMDP1

solution methods to a common agent and operating environment. The2

paper begins with a detailed introduction of the common environment3

by describing the agent, a Roomba, its physical operating environ-4

ment, a single room, and the resulting state, action, and observable5

space. One offline and two online POMDP solution methods are6

tested with an explanation of their implementation in relation to the7

environment. QMDP is the offline solution method and POMCP8

and POMCPOW are the two online solution methods implemented.9

Solution method results are compared according to a performance10

metric introduced in the paper. We find that QMDP is outperformed11

by both POMCP and POMCPOW, while POMCPOW has a slightly12

better performance measure than POMCP.13

1 Introduction14

An autonomous, self-driving vacuum cleaner, referred to in our paper as the Roomba,15

is powered on inside a room. The Roomba knows the layout of the room but is not16

aware of its initial position and heading within the room. In order to begin its cleaning17

duties in the adjacent room, the Roomba needs to safely and efficiently navigate18

its way outside of the room by passing through the room’s single doorway. The19

room the Roomba currently occupies, explained in further detail in the Operational20

Environment section below, also has an entrance into a descending staircase. Entering21

the staircase spells almost certain destruction for the Roomba and mission failure for22

cleaning the adjacent room. The Roomba is equipped with one sensor for observing23

the environment, a bump sensor. The bump sensor alerts the Roomba when it has24

come in contact with a wall. In addition to the bump sensor, the Roomba maintains25

a history of its preceding movements relative to its current state. While the bump26

sensor serves as the primary instrument for learning the environment as the Roomba27

explores the room, limiting contact with the wall is valued as repeated contact may28

be damaging. In addition, repeated contact with the wall, or edges of the room, may29

increase the probability of total failure with an unwanted excursion down the stairs.30

With these considerations, the methods implemented to optimally maneuver through31

our partially observable space need to balance efficiency and safety, or commonly32

referred to in decision making in a partially observable Markov decision process33

(POMDP) as environment, exploration and exploitation.34

A collection of both offline and online POMDP solution methods are implemented to35

varying degrees of success. Success, for our implementation, is measured by simple36



aggregation of values associated with the final state of the Roomba when each trial37

is complete. We take the mean for all trials to directly compare iterations between38

applied solution methods. Each trial will be conducted for a maximum period of 10039

time steps. 100 time steps is our determined threshold for a Roomba to efficiently40

navigate into the adjacent room. The trial ends when the Roomba enters the doorway,41

enters the stairs, or 100 time steps have lapsed. For a trial, if the Roomba reaches42

the doorway, the resulting value is 1. If the Roomba enters the stairwell, the value43

for the trial is -1. Lastly, if 100 time steps lapse and the Roomba is still in the room,44

the resulting value is 0. The mean value for all trials will serve as our comparable45

metric of success for a tested solution method. Three solution methods were tested46

in this paper: one offline and two online methods. The offline method is QMDP, Q47

Markov decision process, with the Q representing the value function associated with48

a state/action pair. The online methods utilized are POMCP, partially observable49

Monte Carlo planning, and POMCPOW, partially observable Monte Carlo planning50

with observation widening.51

The state and action space within the room is continuous. For the application of52

the QMDP solution method, the state and action spaces are discretized. For the53

application of the POMCP and POMCPOW solution methods, only the action space54

is discretized. Observations are limited to contact or no contact with the wall,55

entering the doorway, or entering the staircase. POMCP and POMCPOW solution56

methods utilize particle filtering to represent belief for the Roomba’s current state.57

2 Background58

POMDPs are an extension of Markov decision processes (MDPs). Unlike a strict59

MDP, the agent of a POMDP is not able to observe the entire state space and its60

relative position therein. The agent must rely on what is observable in the current61

and preceding time steps to generate beliefs about existing in a collection of possible62

states. The solution methods incorporate and updates these beliefs to effectively63

plan for the optimal actions to take in the succeeding time steps. To address high64

dimensionality of planning through a large, continuous state space, several sampling65

methods are implemented to include particle filtering and Monte Carlo tree search66

(MCTS). This paper assumes familiarity with POMDPs and the solution methods67

applied. This paper will not explain in detail the algorithms associated with the68

POMDP solution methods but will rather focus on their application and results when69

applied in this specific testing environment. Detailed information with regards to the70

solution methods can be found by exploring the references in the References section71

of the paper. This paper will utilize standard POMDP lexicon to include state, action,72

observation, rewards, value, belief, and particles. Clear and extensive definitions for73

this verbiage, as they relate to the study of POMDPs, may be found in [1] and [4].74

3 Operational Environment75

For the purpose of our experimentation, the room may be configured in three different76

ways. For each configuration, the dimensions of the room remain the same. The77

dimensions of the room are indicated by the adjacent number. The only variation in78

the configurations is the location of the doorway into the room and the entrance into79

the staircase. The doorway is indicated in green and the entrance to the staircase is80

indicated in red. Ideally, a successful policy solver will safely navigate the Roomba81

through the doorway in any configuration while avoiding the entrance to the stairs.82

The three configurations are depicted below.83

2



(a) (b)

(c)

Figure 1: The three different room configurations in the Roomba environment.

4 Methodology84

Detailed below are the three POMDP solution methods implemented to navigate the85

Roomba out of the room and their respective results in accordance with our unique86

value metric explained in the Introduction. We implemented the solution methods87

using the Julia coding language leveraging the POMDP library and associated88

packages for QMDP, POMCP, and POMCPOW.89

4.1 QMDP90

The first POMDP solution method we implemented was QMDP, the method com-91

putes an alpha vector for each action assuming we have full observability of the92

model [1]. We find the alpha vectors by initializing them to zero and then iterating93

over:94

α(k+1)
a (s) = R(s, a) + γ

∑
s′

T (s′ | s, a)max
a′

α
(k)
a′ (s

′)

When we have our set of alpha vectors we find the optimal action, given a belief95

state, by taking maxa α
>
a b. One obvious flaw with this approach is that assumes96

that all uncertainty regarding the state will disappear in the next time step. Given97

this information we anticipated that it would not perform very well in the Roomba98

environment where the agent needs to take multiple actions in a row with the sole99

purpose of eliminating, or at least reduce, the state uncertainty. Our hypothesis was100

immediately confirmed as the Roomba did not decide to make any moves that would101

serve to reduce its uncertainty. However, if we gave the Roomba full observability102

it would quickly find its way out of the room successfully which demonstrates that103

QMDP is an efficient algorithm when the state uncertainty has little impact on the104

optimal actions.105

3



4.2 Partially Observable Monte-Carlo Planning106

The second policy solver we implemented was Partially Observable Monte-Carlo107

Planning (POMCP). The method performs a Monte-Carlo tree search from the108

current belief states and updates the belief during the tree search using another109

layer of Monte-Carlo update [2]. The method produces two apparent advantages:110

using Monte-Carlo update we reduce the curse of dimensionality in the Roomba111

environment where you have a large (or even continuous) state space combined with112

a large action space. The second advantage is that we do not need to encode the113

parameters and the model governing the Roomba. We can let the POMCP solver114

interact with the environment using a black-box simulation. To find efficient and115

satisfying results we needed to tune three different hyper-parameters: number of116

tree queries, exploration coefficient, and the maximum depth for each search. In117

addition to this the POMCP uses rollout to evaluate the value of each path in the tree.118

Instead of using a random policy for evaluation we defined a policy that is close to119

optimal given knowledge of its current state, rollout uses states rather than belief120

states for evaluation. Utilizing an optimal policy in comparison to a random policy121

for evaluation resulted in a significant improvement in our evaluation metric. Using122

an “optimal” policy our Roomba had a success rate of 100% and an evaluation score123

of 1.0, if we instead used a random policy for rollout the corresponding numbers124

were 70% and 0.7 since the Roomba did not enter the stairs in any simulation. We125

evaluated the planners in 10 different simulations and calculated our evaluation126

metric described in earlier sections. Given the relatively small sample size we can127

not draw any major conclusions but our limited computational power made large128

sample sizes intractable.129

4.3 Partially Observable Monte-Carlo Planning with Observation Widening130

The third planning algorithm applied to the Roomba environment was Partially131

Observable Monte-Carlo Planning with Observation Widening (POMCPOW). This132

algorithm is essentially an extension of POMCP where we use a weighted particle133

filtering in the tree search compared to an unweighted particle filtering used in134

POMCP [3]. While POMCP supports operating on continuous state spaces it requires135

discrete action and observation spaces, in contrast, POMCPOW allows us to plan136

in environments having continuous state, action and observation spaces. Similar to137

when implementing POMCP, we needed to tune hyper-parameters to find satisfying138

results. In addition to the hyper-parameters from POMCP, we also needed to139

determine the criterion and its exploration coefficient used for choosing an action at140

each node during the Monte-Carlo search.141

5 Results142

In Table 1 we can observe how our evaluation metric differs across the three im-143

plemented POMDP solvers and for the various room configurations. We see that144

POMCP and POMCPOW performs similar to each other across the configurations,145

although POMCPOW appears to perform slightly better. The results confirm our146

expectations since the POMCPOW algorithm uses weighted belief sampling when147

searching the tree while POMCP uses unweighted belief states. For this environ-148

ment we anticipated weighted sampling to perform better than unweighted sampling149

since it encourages the Roomba to take actions that are better aligned with the150

observations.151

Based on the results above we concluded that POMCPOW was the better of the three152

methods. The evaluation was done on the same 10 seeds for all the methods making153

4



Room configuration QMDP POMCP POMCPOW
#1 0 1.0 1.0
#2 0 -0.1 0.1
#3 0 -0.2 0.5

Table 1: Results for 3 different POMDP solvers.

the comparisons justifiable. However, the hyper-parameter tuning was performed154

on the same 10 seeds making the results in the table an optimistic estimate of the155

true score. To get an understanding of how good the method performs out of sample156

we simulated POMCPOW using the first configuration on 10 new seeds that it had157

not been trained on before, i.e. these seeds had not been used for hyper-parameter158

tuning or evaluation. The evaluation score on these 10 new seeds were 0.5 compared159

to 1.0 in sample. This suggests that the hyper-parameters might have been overfit, or160

the first samples just showed a high score due to randomness. However, a score of161

0.5 is still satisfying and the Roomba had a failure rate of 0% and a success rate of162

100% in the out of sample test.163

6 Discussion164

While our results largely confirmed our expectations of offline versus online solver165

performance and POMCP versus POMCPOW performance, we did not expect the166

large degree in performance variation with respect to different room configurations.167

Both the POMCP and POMCPOW algorithm had superior performance in the first168

configuration compared to the other settings. Judging by Figure 1 it is logical that169

the first room has a higher score than the two other environments since the first170

configuration has both a smaller area/length for the stairs and a less critical placement171

of the stairs than the two other environments. We say less critical, since there are172

fewer states were the Roomba might actually be facing the stairs when it has a large173

state uncertainty. In future work, we would devote more time to identifying the174

source of this discrepancy.175

To better differentiate the degree of performance between POMCP and POMCPOW,176

future work would include executing simulations through a larger number of trials177

while utilizing greater values for the depth of search and number of tree queries178

hyper-parameters. We hypothesize this work would result in a more pronounced179

difference in performance between POMCP and POMCPOW. An effort would also180

be made to further debug the simulation environment. An intermittent error occurred181

across both discretized and continuous state space simulations when the Roomba182

contacted the one convex corner of the room. The Roomba appeared to be stuck183

while believing it was actually moving through the room. In addition to more184

rigorous simulations for the POMCP and POMCPOW solution methods, we would185

like to implement the Determinized Sparse Partially Observable Trees (DESPOT)186

POMDP solution method and the Regularized DESPOT (ARDESPOT) method [5].187

References188

[1] M. J. Kochenderfer. Decision Making Under Uncertainty: Theory and Application. MIT Press, 2015.189

[2] David Silver, Joel Vaness. “Monte-Carlo planning in large POMDPs.” Advances in Neural Information190

Processing Systems 23, 2010.191

[3] Zachary Sunberg and Mykel Kochenderfer. “Online Algorithms for Continuous State, Action, and Observa-192

tion Spaces.” ICAP, 2018.193

[4] Peigen Liu, Jeng Chen, Hongfu Liu. “An Improved Monte Carlo POMDPs Online Planning Algorithm194

Combined with RAVE Heuristic.” ICSESS, 2016.195

5



[5] Adhiraj Somani, Nan Ye, David Hsu, Wee Sun Lee. "DESPOT: Online POMDP Planning with Regulariza-196

tion." NIPS, 2013.197

6


	Introduction
	Background
	Operational Environment
	Methodology
	QMDP
	Partially Observable Monte-Carlo Planning
	Partially Observable Monte-Carlo Planning with Observation Widening

	Results
	Discussion

