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Abstract

In this work, we aim to find optimal trajectories to achieve an autonomous landing
of an Unmanned Aerial Vehicle (UAV) with a camera on a moving ground platform
in stochastic environments. We consider both Markov Decision Process (MDP)
and Partially Observable Markov Decision Process (POMDP) to formulate the
landing problem with different assumptions of the environment. We solve the MDP
problem with the Monte Carlo Tree Search (MCTS); for the POMDP problem,
we use the partially observable Monte Carlo planning with observation widening
(POMCPOW) algorithm to handle continuous state, action, and observation spaces.
Further, with the MDP model, we analyze the performance of the model for
36 different UAV initial locations and reasons of failure of landings. Also, we
compare the performance of the model with the different target moving speeds.
With the POMDP model, we simulated the UAV landing scenario and verified our
model’s capability of tackling the state uncertainty. Finally, we conclude with some
observations from both POMDP and MDP models.

1 Introduction

We consider the problem of a UAV landing problem under uncertainty. A UAV is expected to land
through an optimal trajectory from some initial locations. Normally, there is a two-step plan done
by the UAV: first computing a sequence of actions that will take it landing on the target, and then
executing it. For simplifying the question, we assume the UAV will successfully execute every action
computed by planning stage even though it’s too ideal in the real world.

First, we define this problem based on an MDP model (Section 3)[8] in an ideally observable
environment assuming that the camera sensor is able to fully observe the target platform. In other
words, states, rewards and transition function are always known. And then, we formulate it as a
POMDP problem (Section 4) when the target is only partially observable by the camera because
of the field-of-view (FOV) constraint. Accordingly, the state information is only partially known.
Considering the computational cost, we choose MCTS[4][6], one of the most successful sampling-
based online approaches in recent year, be the solver for the MDP model, and POMCPOWT[10], an
online algorithm for POMDPs with continuous state, action, and observation spaces, be the solver
for the POMDP model. Finally, we conclude with some observations for both types of problem in
Section 5.

2 Related Work

As we mentioned early, to reach the moving target, the UAV does two steps, which is motion planning
and execution. To solve such problem, many works formulated it as an MDP based problem. For
example, [3] describes an MDP-based planning method that uses a hierarchic representation of
the robot’s state space to solve both planning and execution problems. [1] presents an approach
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to improve the traditional MPD methods by non-random initialization of the algorithms with a
significant reduction of calculations at each iteration.

Besides, more and more people utilize a POMDP formulation to solve the motion planning problem
in a stochastic environment whose state is partially observed. [11] uses a Monte Carlo algorithm for
learning to act in a POMDP model with real-valued state and action spaces. [9] focuses on online
approaches that alleviate the computational complexity by computing good local policies at each
decision step to solve POMDP. More recently, [12] presents a new approach to motion planning under
sensing and motion uncertainty by computing a locally optimal solution to a continuous POMDP
problem.

To alleviate the computational cost, we utilize MCTS[6] to be the solver for the MDP problem.
MCTS [2] is used to find optimal decisions in a given domain by taking random samples in the
action space and building a search tree according to the rewards. Although it saves time and storage,
tuning the MCTS solver is not an easy task. We have to carefully choose a proper balance between
exploration and exploitation in the selection step of MCTS[5]. At the other siede, even though
many offline methods have been developed to solve small and moderately sized POMDPs[7], we
choose POMCPOW, a new online method, to handle the POMDP with continuous state, action, and
observation spaces[10].

3 The MDP Landing Problem

In this section, we introduce the UAV landing problem represented as MDP=MDP(S, A, T, R), i.e.
we set up clear transition and reward functions (no model uncertainty). Also, we assume that both the
UAV and the target coordinates have been known without state uncertainty. This section first explains
the MDP formulation by describing four essential elements: state, action, transition, and reward. The
state, action, and transition functions are built according to the real UAV dynamic model. Besides,
several rewards are designed to realize different control purposes. Then applying the online solver
MCTS, we solve the MDP instance for various initial conditions. Finally, we qualitatively discuss the
rationality of results based on the problem formulation.

3.1 MDP Formulation

A UAV landing to a moving target should choose a series of sequential actions considering relative
coordinates between the current UAV and the target. This control task could be represented as
an MDP network as shown in Fig.1-1. Notice that the target position is dependent only on the
initial setting but not controlling actions, while we select different UAV actions to adjust UAV space
coordinates for a reasonable landing trajectory. However, UAV and target positions jointly (typically
relative position) decide the reward for each time step. We will discuss specific details of the MDP
problem in the following subsections.

3.1.1 UAV and Target Dynamic: state, action and generative transition

Our world is simplified as a 3D Cartesian coordinate so that we can conveniently represent any
physical value as a three components vector. In this world, obviously, the UAV state vector is a three-
element vector (z,, Yy, 2., ) plus a heading scalar 8,, in xy-plane (tilts and flips are not considered).
And the state of a target is a two-element vector (z;, y;) representing its location.

In addition, physically we are capable to control the velocity (both speed and orientation) of the
UAV to achieve the next possible state. Therefore, we utilize a three-element vector (horizontal
speed, angular speed, vertical speed) = (v, w,v,) as an action. It is necessary to clarify that the
representation of the action vector is based on the cylindrical coordinate. This setting is to make
the action vector more reasonable because in reality, we access to control the heading and xy-plane
speed other than the x-speed and y-speed separately. However, it won’t affect the formulation of the
problem in Cartesian coordinate with a naive transformation.

We assume that for each time step (dt = 1), the target movement, parameterized by vy, vy, and o, is
uniformly linear with the addition of the Gaussian white noise. On the other hand, the UAV takes a
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Figure 1: Left: MDP Network Representation of UAV Landing Problem. Right: Distance Reward as
a function of x and y

uniformly linear motion with current actions as velocity, so the transition 7'(s’, s, a) is a generative
model shown as below:

Ty = Ty + Ugy €OS Oy
Yu = Yu + Vzy sin 0,
Zu = Zy + U,

0, +w
Ty = Ty + Uiy + NOLSE

Yt = Yt + Vgy + n0LSE

In the algorithm, the state is continuous around all space, but the action is discrete since MCTS
requires a potential action set when building the tree. The specific value of action is: vz, = —0.5 :
0.05:0.5,v, = —1.0:0.05: —0.05 and w = —7/3 : 7/6 : /3. Also, it is worth to mention that
the non-positive v, would be meaningful when formulating rewards.

3.1.2 Landing Setting: reward and two-step landing

The physical motion decides the UAV dynamic process, yet it is also necessary to figure out what
purpose is expected to achieve, which could be implemented by setting several rewards under
different conditions. In our case, action reward, out-scene reward, landing reward as well as distance
reward lead UAV to land on the moving target. Action reward is set as —0.5 with discount factor
0.95 so as to penalize the case when the trajectory takes redundant walks. Moreover, negative
out-scene reward is assigned to the out-of-boundary trajectory (i.e. 0 < z,y,2 < 10). At the
same time, the large landing reward (1000) encourages the UAV to land closely to the target (the
distance in xy-plane is less than landing radius » = 1). Also, distance rewards, representing as
1/(1+7)=1/(1+/(zt — )% + (Yt — yu)?), induce the UAV to stay directly above the target.
Additionally, we use 1+, instead of directly using r, to avoid the singularity at r=0. The reward as
a function of x and y is plotted in Fig.1-1 (the reward is multiplied by -1 to indicate the landing
process).

Based on the reward as described above, we are able to find the optimal action of a UAV always
following the target but without landing. The reason for this is that, in such way, a UAV always
obtain a high distance reward rather than a one-off landing reward. To fix the problem, we purpose
the two-step landing by dividing the landing interval at z = 1. Within the boundary, we expect the
UAV track down to the target from an its initial starting point based on the distance reward. Then
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Figure 2: MDP Landing Trajectory with different initial locations

we turn off the distance reward when the UAV is out of the boundary. After that, the UAV will only
evaluate landing reward and finally get to the target.

3.2 Results and Discussion

After building up the problem, a MCTS solver with iterations=800, depth=80 and explore constant=15
is utilized under various conditions. Here we discuss two landing configurations. For each case, we
initialize the UAV at z = 10 for providing enough vertical space to take actions. A typical landing
solution is shown in Fig.2-1. The UAV goes through a zigzag trajectory and meets the target at
about (2.3, 2.3). The following discussion exhibits the UAV landing solutions with different initial
parameters.

3.2.1 Initial positions

With different initial positions, the trajectory exhibits new configurations and outcomes. One
distinguished characteristic in Fig.2 is the circular path of the UAV. In Fig.2-2, the UAV rotates and
almost forms a complete circle followed by a succesful landing. In Fig.2-3, the UAV rotates more
and wait until the target get closer. In Fig.2-4, the UAV awaits much longer but fail to land. Notice
that the circular motion occurs when the relative distance between the UAV and the target platform is
large. There are two potential reasons associated with this phenomenon. First, the distance reward
may not be strong enough to induce the UAV landing. Shown in Fig.1-2, when r gets larger, the valley
tends to become a flattened region and the reward becomes too small to significantly influence actions.
Second, the depth in MCTS isn’t large enough to allow the algorithm to find out target positions.
Actually, We observe that with an increased depth, the rotating-landing phenomenon happens earlier.
These two possible reasons may jointly create the circular motion.

3.2.2 Target Velocity and Noise

Besides trying different initial positions, we also tune the parameters of the target movement in Fig.3.
Referring to the successful landing trajectory as shown in Fig.3-1, it seems that the UAV cannot
follow the target when the target speed increases. Also, if the distance between the UAV and the
target is too far, again we would observe the circular motion. Moreover, when we increase noise to
be std = 0.3, the UAV would deviate to the landing region even though the UAV attempts to follow
the target at the beginning.



Trajectory when Initial state = (0,0,10) Trajectory when target velocity = (0.2,0.2) Trajectory when target moving std = 0.3
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Figure 3: MDP Landing Trajectory with different target velocity and noise
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Figure 4: POMDP landing simulation snapshots with the UAV path in orange, the estimated target in
green, the true target in blue, and the target position belief in black (X, y, z axes are in meters)

4 The POMDP Landing Problem

Instead of assuming the full knowledge of states as what is done in the MDP model, a POMDP
model is constructed to handle the case when state uncertainty of a target platform is present. In
this new scenario, the UAV state is assumed to be fully observed and the uncertainty only lies on
the platform’s state, which is estimated through intermittent camera measurements. Besides the
necessary components described in a MDP model, a POMDP model takes observations belief states
into account (i.e. POMDP=POMMDP(S, A, T, R, O, B)).

4.1 POMDP Formulation

The state, action spaces and the state transition are similar to what are defined for the MDP model.
The state space includes the UAV pose in x, y, z coordinates, the UAV heading angle, and the target
pose in X, y coordinates. Since we are controlling a UAV to land on a linearly moving ground
platform whose dynamic model is known, the action space is only concerned with UAV actions,
which are described by a forwarding speed, the speed in the z-direction, and a angle to head forward
horizontally. The transition of the UAV state follows a dynamic model described by its state and

action spaces.

Besides, four penalties are defined for the POMDP problem: the “out of scene” penalty (-100), the
“action” penalty (-10), the “undetected” penalty (-800), and the “distance” penalty (-300*distance).



(1) The “out of scene” penalty sets constraints to discourage the UAV to fly below the plane level of
the target height or above a certain height, like that of a ceiling;

(2) the “action” penalty encourages fewer steps of actions;

(3) the “undetected” penalty gives an extra burden when the UAV does not receive any measurement
from the camera regarding the platform;

(4) the negative “distance” reward pushes the UAV to fly closer to the platform. All rewards are set to
be negative values, namely, the penalties, so that landing with a zero reward will naturally be seen as
the best option in a search tree algorithm.

The observation space is defined as a Boolean type variable indicating if any measurement of the
platform is available and a 2-element vector describing the measured position of the platform. The
relative position of the UAV and the platform determines whether or not the platform is inside of the
FOV of the camera. A measurement is obtained only when the platform is within the camera FOV. In
this scenario, a large “undetected” penalty pushes the UAV to develop “active sensing” behaviors to
see the platform in the FOV. The belief of the platform is maintained as a Gaussian distribution and
only gets updated when a measurement is received through a particle filter. In other words, when no
measurement is observed, the platform state will be predicted by its known dynamic model but no
updates.

A POMCPOW solver is used to handle this POMDP problem taking its capability for continuous
states. A depth of 1000 and a tree query number of 1000 are set to render a robust solution. A
terminal condition is reached when the UAV and the platform are close enough to each other.

4.2 Simulation and Results

A simulation' of the UAV attempting to chase the “target” and land on it is shown as snapshots in
Fig.4. The motion of a UAV is simplified to have zero pitch and roll so that the camera FOV can be
easily simulated as a square shape. The FOV angle is set to be 40 degrees. Initially, the confidence
about the platform state is very low as presented by the black dots. At the same time, the estimated
target shown as a red dot is randomly sampled from the belief distribution of the target platform,
which is relatively far from the true target position, shown in blue. With a large penalty of not being
able to “see” the platform, the UAV is forced to fly higher in order to cover the platform within
its camera FOV. As soon as a measurement is obtained, the estimated target, now shown in green,
quickly converges to the true target position while the belief space shrinks. After this point, the UAV
never loses the view of the platform until landing on it. Therefore, it’s shown that the estimated target
dot moves with the true target dot with some oscillations inherently from the sensor and measurement
noises.

5 Conclusion

In this project, we came up with detailed MDP and POMDP formulations to handle the problem of a
UAV landing on a moving target. With the MDP model, the UAV achieves successful landings from
28 initial locations out of a total of 36 locations( i.e. € [0, 5],y € [0, 5], z = 10). The success rate
is around 77.78%. We observe that when the UAV starts from initial positions which are far from
the target, the distance rewards are too small to be used for computing efficient actions. Therefore,
the UAV hovers instead of taking efficient actions to chase the target as it does with large distance
rewards. Besides initial UAV positions, target velocity and noise are two more important factors
which would cause the failure of the UAV landing. If a target moves too fast or with a large noise (i.e
large std), the UAV will not be able to land on the target as well. For the POMDP model, the UAV
starts off from a predefined location and moves upward until the camera observes the moving target.
Then the UAV starts to chase the target and achieves landing finally.

"https://github.com/biy001/UAV-autonomous-landing



Contributions

Xinyu Ren worked on MDP problem formulation, typically design dynamic model and landing
reward, simulation as well as preliminary parameter tuning. Also written relevant paper part (S3) .

Bilan Yang took a full responsibility over the POMDP model, including developing, implementing,
parameter tuning, simulating, visualizing the model as well as writing related part (S4).

C.Y. worked on MDP model optimization, tuning and visualizing the MDP model, and animation
for testing models. Besides, written abstract, introduction, related work as well as conclusion and
proofread the report.
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