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0. ABSTRACT 
Preparing nutritious meals on a budget poses a challenge to many households, from those of recent 
college graduates to those of busy families. In this paper, we leverage nutrition research to develop 
several partially observable Markov decision processes (POMDP), Fast-Informed Bound with 
one-step lookahead and Branch and Bound. We use these to model the design of a nutritionally 
optimal and cost-efficient meal plan. We find that Branch and Bound yields a meal plan with a high 
expected utility, while FIB provides a reasonable upper bound for the optimal value. 
  
1. INTRODUCTION 
There is a popular conception that healthy eating is not readily accessible because of factors like 
perceived cost (shopping at grocery stores such as Whole Foods that stock “healthy” foods such as 
kale and quinoa is often associated with more affluent households) and relative effort (cooking at 
home versus picking up a fast food meal). Being able to maintain a balanced and nutritious diet on a 
budget of both time and money may seem impossible. However, we believe that it can be done and 
that knowledge of this possibility needs to be publically available to encourage more widespread 
access to better health. 
 
This classic problem of resource allocation has been explored extensively through linear 
programming. Here, we aim to model the problem instead as a partially observable Markov decision 
process (POMDP) to determine the fifteen meals a young adult should eat in a 5-day week while 
optimizing for cost and nutritional content. 
 
2. RELATED WORK 
There are several studies that explore the generation of optimal meal plans based on certain 
constraints. J. Bulka et. al uses artificial intelligence algorithms to model glucose and insulin fluxes in 
people with diabetes and prepare meal plans adapted to their tastes while staying within blood 
glucose limits [1]. SmartDiet [2] proposes an interactive diet consultant built on optimization 
algorithms that recommends nutrient-balanced meals by taking into account individual needs.  
 
These works, and other works in the field, focus on specific health conditions and standalone meals. 
We hope to navigate more of the general health space, gearing our results towards households that 
prepare their own meals using ingredients from local markets. We also hope to generate meal plans 
that span a period of time to encourage flexibility, as households may purchase all their ingredients 
for a week or several weeks at a time. 
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3. DATASET AND PREPROCESSING 
We acquired a dataset from Kaggle with information on the ingredients, nutritional content, and user 
ratings of around 10,000 meals, represented as recipes. For each meal (row), there is information on 
its protein, sodium, calorie and fat content and whether is can be eaten for breakfast, lunch, or 
dinner. Since the dataset did not contain cost information, we compiled data on costs of the 
ingredients manually to calculate the costs of preparing each meal. We deleted samples that had 
poorly recorded ingredients and nutritional content information, as well as those that required 
ingredients that are difficult to find in the average supermarket, such as venison.  
 
In order to formulate a reward function, we conducted research into optimal nutrition and 
nutritional decay. We studied suggested daily nutrition intakes of different demographics, compiling 
tables of daily nutritional requirements and noting optimization opportunities in recommended total 
fat and sodium ceilings. As an potential time factor in our model, we also looked into how nutrients 
decay in the body, which involved considering the basal metabolic rates involved in food intake. 
 
4. MODELING THE PROBLEM 
AS A POMDP 
 
Our goal is to generate a 5-day meal plan 
for a young adult. We assume a finite 
horizon of 15 steps, as the adult eats 3 
times a day. At each time step (mealtime), 
we observe the young adult as happy or 
unhappy and suggest a meal for the 
current time step based on our 
observation. Since each action is a meal we 
recommend, there are 2,620 possible 
actions. 
However, the time of the day restricts the 
meals we can suggest to the adult. For 
example, the adult must have breakfast at 
the first time step, lunch at the second, 
and dinner at the third. This sequence of 
breakfast-lunch-dinner repeats till we get 
to the 15th step, which represents dinner 
at the end of the work week. The young 
adult can be in any one of seven states that 
are not directly observable to us: healthy, low_protein, high_protein, low_sodium, high_sodium, 
low_fat and high_fat. These states are a noisy indication of the health of the adult.  
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We built our observation model and transition matrix based on the nutritional (o | s, ) O a  (s  | s, ) T ′ a  
value of each action (meal) and used these to update our belief about the states according to the 
equation 

( s) ∝ O(o | s  , a) Σ  T  (s  | s, a)b(s)b′ ′  s ′   (Eq. 1) 
We used Python to generate sample action-observation pairs based on the reward function we 
formulated. Since our actions are the meals we decide to take, the reward from each action is the 
nutritional value obtained from the particular meal. Our reward function assigns positive rewards to 
meals that were within a certain distance from required daily amounts regarding cost and nutritional 
breakdown and negative costs to meals that were not. It also assigns positive value to meals that are 
reasonably priced. To encourage exploration, we ensure that our model does not recommend a meal 
more than once. 
 
Our simulator observes a happy adult when the reward is a non-negative integer and an unhappy 
adult otherwise. Of our 2,620 actions, 612 yield a “happy” observation. Although this is unbalanced, 
we did not delete any of the surplus samples because we wanted to be able to choose from a wide 
variety of meals. 
 
5. METHODS 
5.1. FIB with One-Step Lookahead 
We first executed a simple QMDP technique which created a set of alpha vectors based on the value 
function  under full observability. Since QMDP is an offline method, it is executed prior to(s, )Q a  
placement in the environment. Using value iteration, we initialized  for all and iterate:(s) 0αa

(0) =  s  

(s) R(s, a) γ  (s  | s, a) max α (s )αa
(k + 1) =   +  ∑

 

s′
T ′  a′ a′

(k) ′ (Eq. 2)  

We used these alpha vectors to approximate the optimal value function and used one-step look ahead 
at each step to calculate the optimal policy: 

(b) arg max  [ R(b, a) γ Σ  P (o | b, a)U  (UpdateBelief (b, a, o)) ]π =  a  +  o    (Eq. 3) 
 

The utility of a policy was calculated using the alpha vector for that action and the associated belief. 
The optimal policy for 15 steps yielded a total utility of  this raised some concerns.28 ;1 × 1019  
because it appeared abnormally large. We used Fast Informed Bound (FIB) in an attempt to attain a 
tighter bound of this value. FIB with one-step lookahead yielded a utility of so we.7 ,9 × 1014   
expected the optimal value to be just a little lower than this value. 
 
 
5.2. Branch and Bound Forward Search 
We then implemented forward search, an online method. We expected faster performance, as this 
method only computes values for states that are reachable from the current state in the environment. 
We used the following equation to evaluate the value of an action ​a​ and chose the action that returns 
the highest value for a given depth ​d​: 

(b, a) γ Σ  P (o | b, a)U (UpdateBelief (b, a, o))R  +  o  d−1   (Eq. 3) 
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Forward Search, however, was very slow because of the large number of possible actions. To improve 
upon this performance, we implemented Branch and Bound policy search to prune the less useful 
searchspace. We expected Branch and Bound to greatly improve upon Forward Search because most 
of the meals in our data are unhealthy; the meals contain more nutrients than is recommended. To 
efficiently prune the searchspace, we arranged the actions in order of decreasing upper bounds. We 
calculated the upper bounds using FIB for tightness and we used a blind policy for the lower bound. 
Though Branch and Bound was much quicker than ordinary Forward Search, it was still slow. It 
yielded an optimal value of which was notably less than the value obtained from FIB..6 6 × 109  
 
6. RESULTS 
After comparing optimal meal plans generated from different implementations of POMDPs, we 
found our most optimal meal plan through Branch and Bound [Figure 2]. Interestingly, although all 
our methods yielded positive utility, the compositions of the meal plan varied greatly, with very few 
meals suggested by more than one method. This is perhaps due to the large number of meals in our 
dataset. We find that as the days go on, the model better fits the daily intake of nutrients to the 
recommended amounts. 
 

Meal Day 1 Day 2 Day 3 

Breakfast Ham and Swiss Puff-Pastry 
Quiche 

Eggs Carbonara with Basil and 
Parmesan 

Whole-Wheat Pancakes 
with Blackberry Syrup 

Lunch Shrimp Cakes with Andouille 
Sausage 

Carrot Cardamom Soup Cheddar Potato Soup 
with Bacon 

Dinner Coriander Chicken Tostadas with 
Refried Beans and Grilled Fennel 

Sheet-Pan Chicken Saltimbocca 
With Roasted Potatoes and Crispy 
Kale 

Springtime Pasta 
Primavera 

 
Figure 2. The first three days of the optimal meal plan proposed by Branch and Bound.  
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Figure 3. Daily nutrition intake provided by the optimal meal plan, compared to recommended amounts.  
 
7. DISCUSSION 
The results of this work suggest that there exists multiple possible meal plans that range in relative 
utility and, depending on the recipe pool, vary widely in content, providing flexibility and variety. We 
imagine that our model can be adapted in terms of different budgets, nutritional needs, and possible 
meals, and these different inputs will output reactive results. 
 
One possible application for this work, as explored in SmartDiet [2], is incorporation into a mobile 
application that households can use to plan out their meals. Another possible application is 
incorporation into a tool for systems that require producing food for large amounts of people on 
budget constraints, such as school cafeterias.  
 
We have made many assumptions in the course of designing our model for simplification purposes, 
notably that prices of meal ingredients would not fluctuate significantly from store to store, that 
there is a standard amount of an ingredient in all recipes, and that there is one optimal nutritional 
mix. For future consideration, we hope to extend this work the following ways: revisit the 
assumptions we have made and refine them to improve the accuracy of our model and results; 
introduce level of meal enjoyment, measured through recipe ratings, as a factor to be optimized; 
consider how ingredients can be combined and used across recipes - i.e. buying one dozen eggs and 
using varying numbers of eggs in different meals over the span of a week; and adapt our model to 
account for varying nutritional needs - i.e. those of a grown adult man versus those of a child.  
  
8. WORK BREAKDOWN 
We worked together to develop and refine the problem and its scope in order to fit it to POMDP 
constraints, which involved several iterations of brainstorming; researching the feasibility, details, and 
implementation of ideas; and getting feedback from course assistants. We developed the reward 
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function, grouped food items and manually inputted costs for our dataset, and trained and evaluated 
policies together.  
 
Maame acquired and cleaned the dataset; wrote code for the observation model, simulator, FIB with 
One-Step Lookahead, and Forward Search with Branch and Bound; wrote certain sections of the final 
paper; and outlined the final paper. Hillary conducted nutrition research and surveyed relevant 
literature; wrote code for the Monte Carlo tree search; wrote certain sections of the final paper; and 
edited the final paper.  
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10. APPENDIX 
Please refer to our code at ​https://codeshare.io/24QvX3https://codeshare.io/24QvX3​​. 
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