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Abstract

We1 use existing open source tools to build an autonomous agent, more specifically
a Roomba robot tasked with exiting a room with a known map. We start by
describing the project, introduce the POMDP formalism and explain how it is
applied to this particular case. We use a set of open source libraries for the
implementation and then evaluate different hyper parameters. We show that it is
important to validate the reward function definition against the real life outcomes
of the problem.

1 Introduction

Building intelligent agents (Russell and Norvig [2003]) is one of the major goals of Artificial
Intelligence. The agent performs autonomously a task in a given environment, by taking actions and
observing changes through its sensors. The agent relies on a policy indicating which actions should
be taken next. Since the state of the system is not know the planning process is challenging and can
be addressed using the principled mathematical framework Partially observable Markov decision
processes (POMDP) ((Littman et al. [1995])).

In this paper we evaluate ways to provide such policy for a Roomba robot. The robot can take two
actions, rotate and move forward, and is equipped with either lidar or bump sensors. The robot is
positioned in a room defined by walls, an exit and stairs. The map of the room is known, however
the exact position and orientation are unknown. The robot must exit the room while minimizing
the amount of motion and contact with the walls and of course not falling down the stairs. We are
focussing on using only the bump sensor.

2 Modeling the Roomba as a POMDP problem

We start by defining the underlying Markov Decision Process through the 5-tuple (S,A, T ,R, γ).
The state space S contains the position and orientation of the robot. This space is continuous and it
is not directly observable. The action space A contains the rotation angle and forward speed. The
transition model T is defined as the probability T (s′| s, a) of transitioning to state s′ given that the
system is in state s and we take action a. For our case the transition model T is deterministic since it
is based on simple motion equations. The reward function R needs to be designed for this problem.

We cannot observe the state s so in order to specify the Partially Observable MDP we need to define
O and Z . O is observation space and Z(o| s, a, s′) is the observation model, i.e. the probability of
receiving observation o in state s′ given that the previous was s and we took action a.

1One human and multiple computers
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Table 1: Observed reward given various hyper parameters

Exit state
Reward

Tree
depth

Timestep
limit

Mean
reward

Success
rate ∗100

Success
reward

Failure
rate ∗100

Failure
reward

10 20 400 -2.56 46.1 -1.78 33.6 -3.55
100 20 400 0.71 44.6 5.79 30.0 -3.99
10 200 400 -2.54 39.4 -1.34 30.4 -3.99
10 200 4000 -2.58 61.9 -1.80 38.1 -3.85

Rewards for other states: stairs -10, time step -0.1, wall -1.

3 Methods

We provide an implementations for the 7-tuple defining the POMDP, as described in Section 2. We
start with the code provided to us as part of the class. We use the POMDPs.jl package (Egorov et al.
[2017]) and additional code to implement a simulator for the Roomba agent, a belief implementation
using Particle Filtering (Del Moral and Doucet [2009]) and other glue functions. One of the benefits
of the POMDPs.jl library is that it provides integration to multiple solvers. For this problem we
evaluate the POMCPOW(Sunberg and Kochenderfer [2017]) algorithm. POMCPOW is an online algorithm
which provides quick feedback to help us increase our understanding of the problem. It also supports
continuous states which makes it a good fit for our problem.

Typically planning algorithms are compared using the average total discounted reward achieved, for
example in the paper introducing DESPOT(Somani et al. [2013]). Defining the reward function is
a subjective process and we have devised an experiment to evaluate reward functions against the
actual outcomes of different runs. We define successful outcomes the simulations that reach the exit
and failed runs the one falling down the stairs. Comparing the ratios of these outcomes allows the
practitioner to evaluate various reward functions and hyper parameters in a more objective manner.

The evaluation algorithm is the following:

1. For each hyper parameter change

(a) generate an uniform grid of initial states
(b) run a simulation from each state
(c) generate a gif image with the trajectory of the robot for visual inspection
(d) save a log line with the initial state, discounted reward, last state reward and length of

the path

The code for this project is available here: https://github.com/winding-lines/
AA228FinalProject.

We selected hyper parameters sequentially based on the results at the earlier step. For example we
noticed that the reward for successful and failed runs were very close together and we tried to tune
the reward for the exit state. We then increased the depth of the tree search. Since the number of
"hang" states was relatively high we then increased the timestamp limit.

4 Results

Table 1 presents the experiments conducted, each grid evaluation takes a couple of days to run on
available hardware. All of the result files are available on github, in the order of experiments https://
bit.ly/2RFyY0B, https://bit.ly/2RAsNdX, https://bit.ly/2Umlybv, https://bit.ly/
2G1Rdfl.

We find that the discounted reward for a particular simulation is a poor predictor of the actual outcome.
Table 2 illustrates two representative paths. In the first run (id 266, Figure 1) Roomba successfully
exits the room while the second run (id 267, Figure 2) falls down the stairs.

We increased the reward for the success state in order to increase the correlation between higher
rewards and successful outcomes. By comparing rows 1 and 2 of Table 1 we can see that the
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Table 2: Similar discounted rewards can have widely different outcomes

Id X Y θ Mean
Reward

Last
Reward

Path length Outcome

266 0.460 2.340 1.571 -2.937 8.9 203 positive
267 0.460 2.340 3.142 -2.523 -11.1 88 negative

mean reward increases however the ratio of successful and failed experiences decrease slightly from
46% → 45% and 34% → 30%.

Another finding is that increasing the search depth does not lead to improvements, see row 3 for a
depth search of 200.

Lastly we notice that by allowing the simulation to complete (row 4, simulation limit of 4000) shows a
marked increase in the success ratio 46% → 62% a smaller increase in the failure ratio 34% → 38%.

5 Discussion

While we have been able to increase the ratio of positive outcomes our approach has some limitations.
Notably, it was impossible to avoid hitting the stairs, specially when the robot started by pointing
towards the stairs. This suggests that we may want to improve the sensors on the Roomba. Some low
cost alternatives could be to eliminate the cost of hitting the stairs by adding an edge sensor or to
reduce the uncertainty in the orientation by adding a magnetic based sensor.

We have achieved a near zero ratio of plans reaching the run limit. This is impressive given that our
earlier attempts at building a manual policy lead mostly to stuck states.

By looking at the trajectory plots, for example Figure 3, we see that the robot seems to discover some
patterns: goes in straight lines when possible, minimally bounces from the wall. In order to improve
the run time a future direction is to try to express the action space using macro actions (Theocharous
and Kaelbling [2004]).

6 Conclusions

We introduced a more objective method to compare policies for the Roomba project. Our method
evaluates the overall quality of the policy by comparing the ratio of successful and failure outcomes.
This method is an additional hierarchical measure on top of the reward function which is still the
foundational measure behind the planning process. For example, the success of the reward based
planning process can be seen in the minimal amount of contacts with the wall, a state with a reward
of -1.
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Figure 1: Run id 266, successful run with reward -2.937

Figure 2: Run id 267, failed run with reward -2.523
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Figure 3: Macro/hierarchical actions learned at tree depth 200
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