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Abstract 
Predicted trends show a growth in the number of electric vehicles and a rise in the use of 
renewable energy in the coming decades. While the environmental and societal benefits of these 
technologies will be large, they also bring with them numerous challenges. In particular, the 
temporal volatility of renewable energy means that managing and timing the flow of energy to 
systems with high energy consumption, such as electric vehicles, will be of great importance. It 
is therefore necessary to create a framework for decision-making that will allow future systems 
to optimize charging schedules. We formulate the problem of charging electric vehicles with a 
time-dependent energy source as a Markov Decision Process (MDP), with states defining the 
presence of cars, their individual levels of charge, and the level of available renewable energy. 
Using Value Iteration over this state space and a 7-hour timespan, we were able to generate 
optimal policies that balanced the energy toll on the electric grid with the final charge levels of 
each vehicle. We hope that future work can build upon this foundation to incorporate more 
aspects of the real-world problem and design policies that will be able to tackle this major issue 
of the next few decades. 

Background and Motivation 
As transportation evolves for the 21st century, it must meet the needs of modern society by being 
efficient for personal travel while simultaneously utilizing environmentally conscious and 
sustainable methods. Electrical vehicles (EV) are one solution that perfectly satisfies these 
requirements. EVs have already been successfully introduced globally and are projected to 
account for up to 40% of auto sales by 2030 [1]. This large market penetration is due to EV’s 
abilities to reduce global dependence on oil, an environmentally conscious public (over 50% of 
American households support the idea of using an EV in their household), and likely continued 
government incentives to purchase EVs [2]. Ultimately, the positive environmental impact of 
EVs can be most directly seen by eliminating private transportation’s 95% energy dependence on 
oil, which in turn accounts for 50% of the world’s oil dependence [3]. 
 
Hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV) and battery electric 
vehicles (BEV) are examples of EVs that can revolutionize personal transportation. Not only for 
their reliance on energy from the grid over combustion, but also for their improved efficiency 
rates. A traditional internal combustion engine vehicles (ICEV) efficiency is approximately 15% 
while an EV can have up to 70% efficiency [3]. 
  



To further maximize EV’s positive environmental impacts, the use of Vehicle-to-Grid (V2G) and 
Smart Charging have been suggested [4, 5]. V2G allows for energy from the grid to be stored in 
an EV when they are parked and plugged in, transforming the EV to a critical fuel storage device 
for the electric grid. Since most EV are plugged in overnight, V2G can allow for a greater use of 
renewable energies for powering the grid, such as wind and solar wherein the current bottleneck 
for using more renewable energy sources is the inability to store such energy efficiently. 
Denmark has extensively researched this technology for implementation with wind energy, with 
promising results [5]. However, scholars agree that Smart Charging will bring the necessary 
changes to EVs and the grid so that EV can become a sustainable future technology [5]. Smart 
Charging simply requires some form of feedback from the EV so that it only is pulling energy 
from the grid during off-peak times, and only to the extent that the grid can sustainably handle 
[1, 4]. Therefore, since both of these ideas rely on a knowledgeable car charging energy 
distribution cycle, a problem wrapped in uncertainties, it becomes the basis for this research. 
This project model’s the uncertainty of ideal energy distribution for overnight charging of 
electric vehicles so as to maximize the positive environmental impact of an EV over an ICEV. 
 
In order to solve this decision-making problem, it is useful to model the scenario as a Markov 
Decision Process (MDP). An MDP is a type of sequential decision process whereby an agent can 
choose from a set of actions at each timestep after observing their state at the current time. It is 
fundamentally based on the Markov assumption, which is the assumption that the next state only 
depends on the current state and the action chosen by the agent. There are a variety of solution 
methods for MDPs; however, the one that shall be implemented here is known as value iteration. 
This is a method that approximates the optimal value function iteratively and then extracts the 
optimal policy from the determined value function [6]. 

Methodology 

Problem Definition 

Since deep market penetration of EVs will impose substantial current demands on an already 
fragile electricity grid, an optimal policy is sought to schedule smooth charging of electric 
vehicles overnight and minimize the need for non-renewable electricity sources. This is done by 
structuring the problem as an MDP and performing Value Iteration using the POMDPs.jl Julia 
library [7].  
 
We scale our MDP to the level of a suburban street of homes. In this case, we model ​n​ homes on 
the electric grid, each with an EV charging port capable of charging one car. It is assumed that 
each car​ ​follows a unique driving route during the day and arrives back to the home for charging 
at night at a variable time and with variable amount of current charge ​c​. 
 
All vehicles draw energy from the same grid, which can have a renewable energy level up to R. 
Charging a vehicle will increment its charge level up towards C, the maximum charge level. 
However charging too many cars at once will reduce the energy level. An ideal policy for this 
model would discern which cars to charge at every time step, with the goal that by the end of the 



night (when ​t = T​ ), all cars would be fully or nearly fully charged while keeping the grid’s 
renewable energy mixture level high. 

States  

The states are defined by a four component tuple. First, we include a boolean vector of length ​n 
describing whether there is a car in each port. Second, we include a vector providing the charge 
level for the vehicle at that indexed location. Each car can take on discrete charge levels in the 
range of [0,C]. If there is no car present, the charge level reported is zero. Third, to model car 
arrival probabilities and renewable level changes as a function of time, we include the current 
time step ​t​ up to the maximum simulated value ​T​. Last, we include the current renewable energy 
level, which can take discrete values in [0,R]. The state space therefore has​ ​|S| =2​n​(C+1)​n​T(R+1) 
possible states.  
 
The initial state is defined with all cars being away, each car having zero charge (though this 
may change once they arrive), time ​t​ of 1, and a maximum renewable energy level. 

Actions 

The action to take at each time step is whether to charge each car. This is represented as a 
boolean array of length ​n​. The total number of possible actions is therefore ​|A| = 2​n​. 

Transitions 

The transition model mandates that time increments by one, or ​t​t​ = t ​t-1​ + 1​. Additionally, if a 
vehicle is present, it will remain until the end of the simulation. If a vehicle is not present, the 
probability of it arriving at the next time step is 

 
When a car first arrives, it’s initial charge may take any value between 0 and C-1 with equal 
probability​. ​If a car was present and the action to charge that car is taken, the level is 
incremented by one, up to a maximum charge potential C​. ​The renewable energy level is updated 
based on the number of actions taken and a function modeling how the renewable energy source 
levels change naturally throughout the day. The update equation follows: 

 
 
which will be rounded to the nearest discrete value in [0, R]. With each update, we decrement 
our renewable level if we charge more than half of all cars. The naturalAddition(t) function 
allows us to add a level of complexity by modeling how a renewable energy changes over time 
due to external causes. In our default case, we assume there is no naturalAddition, but we also 
explore how our policy changes when we allow naturalAddition(t) to add a level per time-step 
for the first half of the simulation. 

https://www.codecogs.com/eqnedit.php?latex=%20P_%7Bn%2Ct%7D%20%3D%20%5Cfrac%7B1%7D%7B1%20%2B%20%5Cexp(-20%5Cfrac%7Bt%20-%201%7D%7BT%7D)%20%7D%20%0
https://www.codecogs.com/eqnedit.php?latex=r_%7Bt%2B1%7D%20%3D%20r_t%20%2B%20naturalAddition(t)%20-%20%5Cfrac%7B%5Csum_%7Bn%7D(actions%5E1)%7D%7Bn%7D%0


Rewards 

The reward function is modeled using the current renewable energy level ​r​, charge amounts in 
each car c, and time ​t​, by 
 

 
The first part of the equation gives reward at each time-step based on the current renewable 
energy level r. This inherently penalizes for dropping the renewable energy level. The second 
part of the equation gives penalties based on the level of charge in each car at the terminal state. 
Remaining charge is exponentiated to more heavily penalize cars with less charge. The relative 
weighting of the two components is dictated by . In our finite-horizon MDP, future rewards are 
not discounted. 

Results and Discussion 
We tested our implemented solver with a 14,336-state MDP, where ​n​ is 3 cars, ​C​ is a maximum 
charge level of 3, T is 7 timesteps, and R is a maximum renewable energy level of 3. Using the 
POMDPs.jl package Discrete Value Iteration solver, this we can solve for the exactly optimal 
policy in 30 seconds. Below we show plots of the same simulation run with policies solved with 

= 0.01 vs = 50.0. The color of each block represents the charge of that car at that time step, 
with black indicating a car is yet to arrive. 
 

    
 

As we can see, the = 0.01 policy cares much more that every car is charged by the end of the 
simulation. It doesn’t mind taking the action to charge all cars at the final timestep, even though 
doing so decrements the renewable energy level (not shown). It does however try to 
incrementally charge the cars for most of the time duration in order to keep the renewable energy 
level high. 
 

https://www.codecogs.com/eqnedit.php?latex=%20R_t%20(s%2Ca)%20%3D%20%5Clambda%20r%20-%5Cmathbbm%7B1%7D(t%20%3D%20T)%5Csum_%7Bi%20%3D%201%3An%7D%20%5Cexp(%20(C-c_i)%2FC%20)%20%0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda%0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda%0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda%0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda%0


The = 50.0 policy on the other hand focuses more on keeping the renewable energy level high 
throughout the simulation. It therefore charges only one car at a time, even if in doing so, the car 
will not be fully charged at the end of the simulation. It does make the decision, however, to 
have one fully charged and two cars mostly charged rather than two cars fully charged and one 
car partially charged. This is because our reward function exponentially penalizes lack of charge, 
meaning that one car having a small amount of charge is much more costly than having two cars 
with a moderate amount of charge. This mirrors what we would wish to see in a real world 
implementation of such a tool, since making the decision to not charge one person’s car and fully 
charge another’s could lead to ethical issues and consumer distrust of the system if there is no 
reasoning to determine which car is charged less.  

 
Next, we observe what happens when we model additional renewable energy being added to the 
system as it is collected from available sunlight . With the simulation shown on the left, we 

model the naturalAddition(t) function to add a 
level of renewable energy for each of the first 
T/2 time steps. This would correspond to 
starting the simulation when there is daylight 
still available. One may notice that even 
though we use = 50.0, as we did in the top 
right model, our policy still informs us to take 
the greedy action, and charge every car it can 
during timestep 3, since there would be no 
reduction in renewable energy level in the 
first few timesteps. As the number of 
timesteps in “daylight” (i.e. with renewables 
added each timestep) increases, one would 
expect the decision to become more greedy. A 
run with all 6 timesteps in sunlight yielded a 

similarly greedy result, indicating this hypothesis to be true. This implies that in a real world 
implementation, one could potentially include the time of charging as a state variable as well. 
 
One point of note is that the discretization of the state space currently has a large effect on the 
predicted policy. Currently there will not be a reduction in the energy level until more than 2 cars 
are charged simultaneously. This means that early on the tradeoffs for charging only one or two 
cars are not as severe as they would be in a state space where the renewable energy level was 
closer to a continuous variable. See Future Work below for discussions on how to increase this 
state space in future additions to this work.  
 
Conclusions and Future Work 

Conclusions 

Overall, we were able to create a model of the electric vehicle charging process and compute a 
non-trivial, optimal policy with respect to the number of cars that need to be charged, the length 
of time available for charging, and different renewable energy level dynamics. Our model can be 

https://www.codecogs.com/eqnedit.php?latex=%5Clambda%0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda%0


tuned between prioritizing the final level of charge in each car and the renewable energy level 
throughout charging using a free parameter . When we added external sources of energy, as 
expected, the model chose to greedily charge the cars when renewable energy levels were high, 
and become more conservative as these levels dropped. While the model required various 
assumptions, primarily regarding the discretization of the state space, the groundwork now exists 
for future work to incorporate more aspects of this large-scale and complex real world problem.  

Limitations and Future Work 

While Value Iteration converges quickly on an optimal policy when we have three cars, we note 
that our approach is not very scalable. Every time we add a car, we multiply the size of our 
action-space by 2 and our state-space by 2(​C​+1). Since the algorithmic complexity of each 
iteration of Value Iteration is O(|A| |S|​2​), every time we add a car, we multiply our runtime by 
8(​C​+1)​2​ per iteration. To scale this problem, we will therefore have to change our approach.  
 
There are a variety of options available to further simplify this problem. One approach would be 
to utilize a local or global approximation to find an approximate solution for a larger state space. 
This would potentially allow for a larger set of timesteps and a more “continuous-esque” state 
space but sacrifices the guarantee of global optimality. Another option would be to use an online 
method. This would only consider the states that are reachable from the current state and would 
therefore limit the computational power and storage required for computation by again trading 
off the certainty of optimality.  
 
Lastly, another approach would be to take advantage of the inherent structure within the problem 
and implement a form of hierarchical planning. One could abstract the policy for a single car and 
use that division of policies to compute the optimal policy over a set of N cars. In scaling this 
method up further, one could further abstract the policy for a “street” of cars and scale it up to a 
whole neighborhood. Without some form of hierarchical planning, the state space for such a 
problem would otherwise be intractably large. 
 
Future work, in addition to implementing the above suggestions to further scale up the model, 
could also utilize other methodologies to capture more of the real-world dynamics and 
constraints inherent in the problem. For example, cars do not all arrive at the same time, so a 
future model could utilize a structure more similar to a POMDP to determine an optimal policy 
despite uncertainty as to each car’s arrival time. This could also implement a form of machine 
learning to determine approximate arrival and departure times for each car over time.  
 
Another option for future work could be to implement a more complete model of available 
power. The current model relies on estimates of energy grid availability. However, discretizing 
the energy state space further would allow for greater exploration of the effects of the 
time-dependency of renewable energy on the computed policy. 

https://www.codecogs.com/eqnedit.php?latex=%5Clambda%0


Contributions 
Each group member contributed approximately evenly. Emily wrote a lot of the final report, as 
well as the state/action indexing, reward, and simulation functions for the MDP. Arec wrote a lot 
of the MDP structure, solver, and visualization code, and part of the final report. Yash wrote the 
MDP transition function, as well as a part of the final report.  
 
The code is made available at https://github.com/jamgochiana/evMDP 
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