
 

AA228 - Final Project Report 
 

Spencer Diehl - bigdiehl@stanford.edu 
 Tyler Pharris - tpharris@stanford.edu 
Alp Ozturk - azoturk@stanford.edu 

 
December 7, 2018 

 
 

Abstract 
A Roomba has been powered on and found itself in a familiar room. It now needs to make its 
way to the next room in order to begin its task of cleaning the floors. This would normally be a 
simple task, but the Roomba’s location and direction in the room are unknown. The Roomba 
knows the dimensions of the room it is in and what sensor it has. The sensor on the Roomba is 
either a bump sensor or a lidar. Using the sensor, an unknown initial position and direction, and 
the room dimensions, the goal is to reach the doorway to the next room while avoiding the flight 
of stairs that are also in the room. This Roomba problem can be modeled as a POMDP [1] with 
the location and direction of the Roomba as the state uncertainty. Two different sensors were 
tested on 3 different types of methods. The bump sensor was tested on a random policy, a 
predefined policy, an offline QMDP solver, and an online solver that used QMDP for the offline 
portion. The bump sensor’s scores ranged from -9.596 to -5.600 points.  The lidar sensor was 
tested on a predefined policy and an offline QMDP solver. The lidar sensor scores ranged from 
-3.900 to -2.188 points. Each method had a couple of failure modes with the most common being 
due to a lack of lookahead depth. In conclusion, when comparing results using the same sensor, 
online methods outperformed offline methods,which outperformed predefined policy methods, 
which outperformed random policy methods. Each successive method type was more effective, 
but required more computational power. The inclusion of the more accurate lidar sensor (which 
incurred no penalties for making observations, unlike the bumper sensor) increased the mean 
total reward for the different methods using that sensor. These results suggest that POMDP 
solution methods are effective methods for solving problems with partially observable state 
spaces. It further suggests that it may be more efficient to use POMDP solution techniques to 
solve this and similar problems rather than attempting to derive an explicit policy. 
 

Problem Description 
Our team was challenged with solving a problem where a Roomba was in an unknown location 
in a room and needed to leave the room through a doorway. The room’s dimensions, including 
the location of the doorway and a flight of stairs, are known to the Roomba. However, its 
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location in (x,y) coordinates and its heading θ, 
where the heading θ = 0° is aligned with the 
positive x-direction, are unknown.  
 
Observations 
The only sensor available to the Roomba is 
either a bump sensor, which returns a signal to 
the Roomba when it contacts a wall, or a lidar 
which return a noisy measurement of the 
closest wall in front of the Roomba. Using the 
sensor, an unknown initial position and 
direction, and the room dimensions the 
Roomba must reach the doorway to the next 
room.  
 
Rewards 
To quantify positive and negative behaviour, 
the Roomba problem is defined to have the 
following rewards/penalties: 

● Each time that the Roomba hits a wall 
it receives -1 point.  
The bump sensor provides crucial 
informations when it hits the wall, so 
this incentivized our Roomba to 
balance impacting walls in order to 
acquire more information with the 
penalty for doing so.  

● For falling down the stairs our 
Roomba receives a penalty of -10 
points. This provides a large incentive 
for the Roomba to avoid the stairs.  

● Reaching the goal state of the 
doorway to the next room gives a 
reward of +10 points. This provides a 
large incentive for our Roomba to 
attempt to reach the goal.  

● The last scoring factor is that for 
every time step our Roomba receives a 
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-0.1 point penalty. This incentivizes our Roomba to minimize the time taken to reach the 
goal 

 
Particle Filter 
Our team used a particle filter in order to update our belief state from an initial uniformly 
sampled distribution. This particle filter was able to filter out “bad” particles using a couple of 
different methods.  

1. If the Roomba’s bump sensor is activated then all the particles must be on one of the 
walls. A corollary to this is that if the bump sensor is activated but the goal or stairs are 
not reached then all of the particles on those locations are thrown out. 

2. If a particle is outside of the room’s dimensions then it is thrown out of our sample.  
This results in a couple of different methods for updating our belief state to a more accurate 
belief state using the bump sensor. 

1. We can attempt to run particles out of the room’s dimensions by moving farther than the 
state that the particle represents would allow. 

2. We can eliminate particles that were not along the walls by running into a wall.  
The combination of these two methods allow us to localize our belief state to where our Roomba 
actually is and then move to the goal state. Doing these actions has costs however.  

1. The longer that it takes us to localize, the longer it takes before the goal is reached, and 
the lower our score will be.  

2. The more walls we bounce into, the better our localization, but our score is reduced in 
large increments.  

This means that our Roomba has to balance the decision of collecting information versus 
attempting to reach the goal state. Each solution method discussed in the following sections has 
its own calculation for balancing these tradeoffs.  
 
Baseline Methods 
Two baseline methods were tested and scored to provide a comparison for a series of four 
different POMDP methods.  

1. The first baseline method was a random policy where the Roomba would begin by 
driving straight until it impacted a wall. After hitting the wall it would turn to a random 
direction and then drive straight until it hit another wall or an end state (goal or stairs). 
This would repeat until an end state was reached or 100 time steps had elapsed.  

2. The second baseline method used a Lidar sensor which gave the Roomba a noisy 
measurement of the distance to the wall directly in front of it. This method started with 
the Roomba rotating for 25 time steps so that it could localize and then it pointed itself 
directly at the goal state and drove to it.  

 
POMDP Solution Methods 
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After testing and scoring the baseline methods we used 3 different POMDP methods to attempt 
to beat the baseline scores.  

1. The first was a simple policy that attempted to use the bump sensor to approximate the 
lidar sensor before pointing and driving towards the goal state.  

2. The second was a QMDP method where the Roomba initially drove into a wall to 
localize and then used the alpha vectors calculated in QMDP and it’s current belief state 
to create a policy to take at each time step.  

3. The third was an online variation of one-step lookahead where the utility used to 
calculate the policy was the sum of the alpha vectors calculated using QMDP multiplied 
by the current belief state and the alpha vectors multiplied by the next belief state 
assuming that same action. This was not the optimal one-step lookahead method but was 
used to see if it would improve on the QMDP method alone.  

 
 
Solution Methods 
This section describes in more detail each of the solution methods implemented. Each solution 
method uses a particle filter to update the belief state when given the belief state at the past time 
step, the action, and the observation made given that action occurred.  
 
Lidar Baseline 
The policy for this method was to initially have the Roomba spin in place for 25 time steps. This 
allowed the Roomba to localize itself using lidar measurements. After the first 25 times steps of 
localization the Roomba would travel towards the goal state using a simple proportional 
controller.  
 
The main failure mode that this method experienced was that if the Roomba was initialized 
anywhere with a wall between its starting point and the goal state then it would never reach the 
goal state. To overcome this failure mode, a policy could be devised where if the Roomba’s 
bump sensor stays active for 10 time steps then it will point in a random direction and travel 
forward for 5 time steps before once again travelling to the goal state. Another solution was 
implemented in the ​Lidar QMDP Method ​discussed in more detail below. 
 
Bumper Baseline 
The policy for this method was to initially have the Roomba travel straight forward until it hit a 
wall or an end state. After impacting the wall the Roomba would then turn to a random direction 
and then travel straight forward until it again either hit a wall or an end state. This policy would 
continue until either an end state was reached or all 100 time steps ran. This method was purely 
random.  
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A policy could be devised where the Roomba will generally attempt to travel towards where it 
thinks the goal state is. As it impacts walls its localization will improve and its ability to travel to 
the goal state will get better. We implemented something similar to this below in the 
Localization Bumper Method. This general policy improvement won’t solve every failure 
instance, but it would take the random chance out of the system. Many other solutions could be 
implemented which would improve the results of this method. Those include the ​QMDP Bumper 
Method,​ and the ​ Updated Belief State Lookahead Bumper Method​. 
 
Localization Bumper Method 
For this policy, the Roomba travelled straight forward until it hit a wall or an end state. After 
impacting the wall the Roomba would then turn to 180 degrees and then travel straight forward 
until it reached the initial location that it started at. It would then turn 90 degrees and travel 
forward until it hit a wall. It would repeat those steps 4 times which is when it arrived back at its 
initial state.  
 
The intent of this procedure was to duplicate the initial localization that would occur with the 
Lidar, but with more uncertainty because of the noise in the velocity and angular velocity inputs 
to the actions.  
 
Once the localization step was finished the Roomba would point itself in the direction of the goal 
state and travel forward. This policy would continue until either an end state was reached or all 
100 time steps ran. This method was better than the Bumper Baseline Method but still could be 
improved upon. The main failure mode was that this method did not localize well, and it was 
guaranteed to hit at least 4 walls before it could use its localization knowledge to direct it.  
 
Another failure mode occurred if there was a wall in between the initial location of the Roomba 
and the goal state, as the roomba would get stuck on said wall.. Many better solutions could be 
implemented which would improve the results over this method. Those include the ​QMDP 
Bumper Method​, and the ​Updated Belief State Lookahead Bumper Method​. 
 
QMDP Bumper Method 
To compute the alpha vectors necessary to create a policy from the belief state, the predefined 
QMDP solver included in POMDP.jl was used. Once the alpha vectors were computed offline, 
the simulation was started. To kickstart the simulation, the Roomba was made to travel straight 
forward until it hit a wall or an end state. This allowed the belief state to localize along the walls 
rather than being completely uniform. After impacting the wall the Roomba would then dot 
product the alpha vector for a given action, ,with the current belief state, ,to calculate theαa

→ b
→

 
utility of that respective action, . This would be done for all of the action states in our(b)U a

→
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discretized action space and the action that had the greatest utility for that belief state would be 
chosen for our policy. This method is described by the equation below: 
 

 
Equation 1: ​Equation for finding the policy at each belief state in the ​QMDP Bumper Method​ [2] 

 
This method was proved effective but still failed on occasion. The main failure mode occurred 
when two clusters of particles overlapped with each other, but had opposite beliefs of what theta 
was. When this occurred the action with the highest utility was to just to drive in a circle with a 
small radius. This is because the QMDP solution was based solely on a single step horizon. It is 
supposed that a policy where the Roomba could do a lookahead to a certain depth to determine 
its highest utility would eliminate that failure mode. We implemented something similar to this 
below in the ​Updated Belief State Lookahead Bumper Method.  
 
QMDP Lidar Method 
This method was very similar to the ​QMDP Bumper Method. ​The main difference is that the 
lidar measurements had to be discretized in order to use the QMDP solver. Another difference is 
that at the beginning of the simulation the Roomba spun in place for 15 time steps while the lidar 
measured the distance to the nearest wall in front of the Roomba. Once the 15 time steps passed 
the Roomba began to choose its actions based on the method laid out in ​QMDP Bumper Method 
where the Roomba chose the action that would result in the greatest utility given its belief state 
and the alpha vectors computed offline. This method was highly effective and no major failure 
method occured.  
 
Updated Belief State Lookahead Bumper Method 
We first calculate the alpha vectors for our system using QMDPsolver in the POMDP.jl file . The 
simulation then begins with the Roomba travelling straight until it hit a wall or an end state. This 
localizes the particles to a more concentrated location along the walls. The Roomba then takes 
the dot product of the alpha vector for a given action,  , and the current belief state, ,toαa

→ b
→

 
calculate the utility of that respective action, . This would be done for all 50 of the action(b)U a

→
 

states in our discretized state space and then we would calculate the utility of the next step,
 ,by taking the dot product of  the alpha vector for a given action, , with the next(b |a)U a′

→
 αa

→
 

belief state given that the first action occurred, | a. Our total utility was calculated by taking theb
→

 
sum of the dot product of the first step and the dot product of the second step and then the action 
that resulted in the maximum utility was chosen for our policy. [3] This method is described by 
the equation below:  
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Equation 2​: Equation for finding the policy at each belief state in the ​Updated Belief State Bumper 

Method 
 

This policy would continue until either an end state was reached or all 100 time steps ran. This 
method was effective, but could still be improved upon by a better online method. The main 
failure mode again occurred when two clusters of particles overlapped with each other, but had 
opposite beliefs of what theta was. A policy with a greater lookahead depth can reduce the 
chances of the circling from happening. In this policy we only looked ahead two steps, but you 
could theoretically do this all the way to the 100 time steps available and find the exact actions 
that would maximize our utility.  
 
 

Summary of Results 
Below we have summarized the results obtained from testing our different methods. In each case, 
the simulator was run for a statistically significant number of times to approximate the mean 
total reward obtainable from using a particular method. As can be seen in the tables, the POMDP 
solution methods were able to improve on the predefined baseline methods.  
 
 
Table 1: ​Test results for the Roomba simulation with the bumper sensor. The simulation was done for a 
statistically significant number of testing cycles. The results were then averaged to give the mean total 
reward and the standard deviation of the total reward. 

Solution Method Mean Total Reward StdErr Total Reward Testing Cycles 

Bumper Baseline -9.596 3.737 50 

Localization Bumper 
Method 

 -9.452 3.196 50 

QMDP Bumper Method -6.444 3.418 50 

Updated Belief State 
Lookahead Bumper Method 

-5.600 2.950 50 
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Table 2: ​Test results for the Roomba simulation with the lidar sensor. The simulation was done for a 
statistically significant number of testing cycles. The results were then averaged to give the mean total 
reward and the standard deviation of the total reward. 

Solution Method Mean Total Reward StdErr Total Reward Testing 
Cycles 

Lidar Baseline -3.900 4.130 50 

QMDP Lidar Method -2.188 3.656 50 

 
 

Conclusions 
In conclusion, when comparing results using the same sensor, online methods such as the 
Updated Belief State Lookahead Bumper Method ​outperformed offline methods, such as the ​QMDP 
Bumper Method​, which outperformed predefined policy methods, such as the ​Localization 
Bumper Metho​d, which outperformed random policy methods, such as the ​Bumper Baseline 
Method​. Each successive method type was more effective, but required more computational 
power.  
 
The inclusion of the more accurate lidar sensor (which incurred no penalties for making 
observations, unlike the bumper sensor) increased the mean total reward for the different 
methods using that sensor.  
 
These results suggest that POMDP solution methods are effective methods for solving problems 
with partially observable state spaces. It further suggests that it may be more efficient to use 
POMDP solution techniques to solve this and similar problems rather than attempting to derive 
an explicit policy.  
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Appendix 
 
Here we list the code files used in the development of this paper. The files are as follows: 
 
Solution methods file listing: ​​The first listing contains the full file code. Subsequent listings 
exclude the simulation and testing routines and the import statements: 

1. Lidar_Baseline.jl…………………………………………………………………….…..11 
2. Bumber_Baseline.jl………………………………………………………………….….15 
3. Lidar_QMDP.jl……………………………………………………………………..…...18 
4. Bumber_QMDP.jl…………………………………………………………………...…..22 
5. Localization_Bumper.jl………………………………………………………………….26 
6. Updated_Belief_State_Bumper.jl………………………………………………………..31 
7. Two_step_lookahead.jl…………………………………………………………………..36 

 
Support file listing:​​ All the solution methods above used the same support files, as listed below: 

1. roomba_env.jl - Contains definitions for the Roomba environment and for the Roombda 
POMDP 

2. filtering.jl - Contains definitions for the particle filter used during simulations 
3. env_room.jl - Contains definitions and functions for creating the room environment 
4. line_segment_utils.jl - Contains functions for determining whether the Roomba's path 

intersects with a line segment. 
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Lidar_Baseline.jl 
# activate project environment 

# include these lines of code in any future scripts/notebooks 

import​ Pkg 
 

if​ !haskey(Pkg.installed(), ​"AA228FinalProject"​) 
jenv = joinpath(dirname(​@__FILE__​()), ​"."​) ​# this assumes the 

notebook is in the same dir 

# as the Project.toml file, which should be in top level dir of the 

project. 

# Change accordingly if this is not the case. 

Pkg.activate(jenv) 

end 

 

# import necessary packages 

using​ AA228FinalProject 
using​ POMDPs 
using​ POMDPPolicies 
using​ BeliefUpdaters 
using​ ParticleFilters 
using​ POMDPSimulators 
using​ Cairo 
using​ Gtk 
using​ Random 
using​ Printf 
 

# %% 

----------------------------------------------------------------------- 

sensor = Lidar() ​# or Bumper() for the bumper version of the environment 
config = ​3​ ​# 1,2, or 3 
m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config)); 

 

# %% 

----------------------------------------------------------------------- 

num_particles = ​2000 
resampler = LidarResampler(num_particles, 

LowVarianceResampler(num_particles)) 

# for the bumper environment 

# resampler = BumperResampler(num_particles) 

 

spf = SimpleParticleFilter(m, resampler) 
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v_noise_coefficient = ​2.0 
om_noise_coefficient = ​0.5 
 

belief_updater = RoombaParticleFilter(spf, v_noise_coefficient, 

om_noise_coefficient); 

 

# %% 

----------------------------------------------------------------------- 

# Define the policy to test 

mutable struct​ ToEnd <: Policy 
ts::​Int64​ ​# to track the current time-step. 

end 

 

# extract goal for heuristic controller 

goal_xy = get_goal_xy(m) 

 

# define a new function that takes in the policy struct and current belief, 

# and returns the desired action 

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState}) 
 

# spin around to localize for the first 25 time-steps 

if​ p.ts < ​25 
 p.ts += ​1 
 return​ RoombaAct(​0.​,​1.0​) ​# all actions are of type RoombaAct(v,om) 

end 

p.ts += ​1 
 

# after 25 time-steps, we follow a proportional controller to 

navigate 

# directly to the goal, using the mean belief state 

 

# compute mean belief of a subset of particles 

s = mean(b) 

 

# compute the difference between our current heading and one that 

would 

# point to the goal 

goal_x, goal_y = goal_xy 

x,y,th = s[​1​:​3​] 
ang_to_goal = atan(goal_y - y, goal_x - x) 

del_angle = wrap_to_pi(ang_to_goal - th) 
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# apply proportional control to compute the turn-rate 

Kprop = ​1.0 
om = Kprop * del_angle 

 

# always travel at some fixed velocity 

v = ​5.0 
 

return​ RoombaAct(v, om) 
end 

 

# %% 

----------------------------------------------------------------------- 

# first seed the environment 

Random.seed!(​2​) 
 

# reset the policy 

p = ToEnd(​0​) ​# here, the argument sets the time-steps elapsed to 0 
 

#RUN THE SIMULATION 

c = ​@GtkCanvas​() 
win = GtkWindow(c, ​"Roomba Environment"​, ​600​, ​600​) 
for​ (t, step) ​in​ enumerate(stepthrough(m, p, belief_updater, 
max_steps=​100​)) 

@guarded​ draw(c) ​do​ widget 
 

 # the following lines render the room, the particles, and the roomba 

 ctx = getgc(c) 

 set_source_rgb(ctx,​1​,​1​,​1​) 
 paint(ctx) 

 render(ctx, m, step) 

 

 # render some information that can help with debugging 

 # here, we render the time-step, the state, and the observation 

 move_to(ctx,​300​,​400​) 
 show_text(ctx, ​@sprintf​(​"t=%d, state=%s, 
o=%.3f"​,t,string(step.s),step.o)) 

end 

show(c) 

sleep(​0.1​) ​# to slow down the simulation 
end 

 

# %% 
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----------------------------------------------------------------------- 

using​ Statistics 
 

total_rewards = [] 

 

for​ exp = ​1​:​50 
println(string(exp)) 

 

Random.seed!(exp) 

 

p = ToEnd(​0​) 
traj_rewards = sum([step.r ​for​ step ​in 

stepthrough(m,p,belief_updater, max_steps=​100​)]) 
 

push!(total_rewards, traj_rewards) 

end 

 

@printf​(​"Mean Total Reward: %.3f, StdErr Total Reward: %.3f"​, 
mean(total_rewards), std(total_rewards)/sqrt(​5​)) 
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Bumper_Baseline.jl 
# %% 

----------------------------------------------------------------------- 

sensor = Bumper() ​# or Bumper() for the bumper version of the environment 
config = ​3​ ​# 1,2, or 3 
 

m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config)); 

# %% 

----------------------------------------------------------------------- 

num_particles = ​5000 
resampler = BumperResampler(num_particles) 

# for the bumper environments 

# resampler = BumperResampler(num_particles) 

 

spf = SimpleParticleFilter(m, resampler) 

 

v_noise_coefficient = ​2.0 
om_noise_coefficient = ​0.5 
 

belief_updater = RoombaParticleFilter(spf, v_noise_coefficient, 

om_noise_coefficient); 

 

# %% 

----------------------------------------------------------------------- 

# Define the policy to test 

mutable struct​ ToEnd <: Policy 
ts::​Int64​ ​# to track the current time-step. 

end 

 

# extract goal for heuristic controller 

goal_xy = get_goal_xy(m) 

 

#flag for our wall hit policy 

previousBumpState = ​false 
spinStep = ​1 
 

# define a new function that takes in the policy struct and current belief, 

# and returns the desired action 

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState}) 
 

#Seed the environment 

Random.seed!() 
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#Naive approach: Bump the wall, spin in a random direction, and then 

drive 

#again. 

global​ previousBumpState 
global​ spinSteps 

 

#Fixed Velocity and spin rate maximums 

velMax = m.mdp.v_max 

omegaMax = m.mdp.om_max 

 

#Normal driving speed 

vel = ​5.0 
 

#Set max and min number of time-steps to spin 

maxSpinCount = ​8 
minSpinCount = ​2 

 

#Increase time step 

p.ts += ​1 
 

#If the wall has been bumped, then all particles are on the wall. If 

so, 

#then any particle will do for determining wall contact 

s = particle(b,​1​) 
 

#Call the wall_contact function to determine if we are in wall 

contact 

#(returns true or false) 

currentBumpState = AA228FinalProject.wall_contact(m,s) 

 

#The bump sensor tells us we are in contact with the wall 

if​ (currentBumpState == ​true​) 
 #Our memory variable tells us we weren't in contact the previous 

timestep 

 if​ (previousBumpState == ​false​) 
 #Set a random number of time steps to spin 

 spinSteps = 

floor(minSpinCount+rand()*(maxSpinCount-minSpinCount)) 

 #Update the previous state 

 previousBumpState = currentBumpState 

 #Return our trajectory 
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 return​ RoombaAct(​0.0​, omegaMax) 
 #Our memory variable tells us we were in contact with the wall in the 

 #last time-step as well 

 elseif​ (previousBumpState == ​true​) 
 #If we are still spinning 

 if​ (spinSteps != ​0​) 
 #decrement spinSteps 

 spinSteps -= ​1 
 

 #Return our trajectory 

 return​ RoombaAct(​0.0​, omegaMax) 
 #Otherwise we are ready to test to see if we can drive forward 

 else 

 #Assume that we won't aren't pointed into a wall 

 previousBumpState = ​false 
 #Attempt to drive forward. If we can't them the logic 

flow will 

 #reset the spinSteps variable and the Roomba will spin a 

random 

 #number of time-steps again 

 return​ RoombaAct(vel, ​0.0​) 
 end 

 end 

 

#If we aren't in contact with the wall 

elseif​ (currentBumpState == ​false​) 
 #Update previous state 

 previousBumpState = currentBumpState 

 #Drive forward at a fixed velocity 

 return​ RoombaAct(vel, ​0.0​) 
end 

end 
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Lidar_QMDP.jl 
# %% 

----------------------------------------------------------------------- 

#Discretize the observation space 

cut_points = collect(​0​:​1​:​30​) 
sensor_discrete = DiscreteLidar(cut_points) 

 

#Discretize state space 

num_x_pts = ​20 
num_y_pts = ​20 
num_th_pts = ​10 
sspace = DiscreteRoombaStateSpace(num_x_pts,num_y_pts,num_th_pts) 

 

#Discretize action space 

vlist = collect(​0​:​2.5​:​10.0​) 
omlist = collect(​0​:​0.25​:​1.0​) 
aspace = vec(collect(RoombaAct(v, om) ​for​ v ​in​ vlist, om ​in​ omlist)) 
 

#Define our sensor and room layout 

sensor = Lidar() 

config = ​1​ ​# 1,2, or 3 
 

#Define POMDP for the simulation 

m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config)); 

 

#Define the POMDP with discretized state/action/observations for the solver 

m_discrete = RoombaPOMDP(sensor=sensor_discrete, 

mdp=RoombaMDP(config=config, sspace = sspace, 

 aspace = aspace)); 

 

# %% 

----------------------------------------------------------------------- 

#Create our particle filter 

num_particles = ​5000 
resampler = LidarResampler(num_particles, 

LowVarianceResampler(num_particles)) 

 

spf = SimpleParticleFilter(m, resampler) 

 

v_noise_coefficient = ​2.0 
om_noise_coefficient = ​0.5 
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belief_updater = RoombaParticleFilter(spf, v_noise_coefficient, 

om_noise_coefficient); 

 

# %% 

----------------------------------------------------------------------- 

#Define our solver 

solver = QMDPSolver(max_iterations=​20​, 
 tolerance=​1e-3​, 
 verbose=​true​) 
 

#If we need to compute our policy for the first time 

if​ (​1​ == ​1​) 
#Use our solver and our POMDP model to find a policy 

policy = solve(solver,m_discrete) 

#Save our policy so we don't have to recompute 

using​ JLD2, FileIO 
@JLD2​.save ​"my_policy_lidar.jld"​ policy 

 

#Otherwise use the saved policy we computed previously 

else 

@JLD2​.load ​"my_policy_lidar.jld"​ policy 
end 

 

# %% 

----------------------------------------------------------------------- 

# Define the policy to test 

mutable struct​ ToEnd <: Policy 
ts::​Int64​ ​# to track the current time-step. 

end 

 

# %% 

----------------------------------------------------------------------- 

 

states = POMDPs.states(m_discrete) 

 

# define a new function that takes in the policy struct and current belief, 

# and returns the desired action 

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState}) 
 

# spin around to localize for the first 25 time-steps 

if​ p.ts < ​15 
 p.ts += ​1 
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 return​ RoombaAct(​0.​,​1.0​) ​# all actions are of type RoombaAct(v,om) 
end 

p.ts += ​1 
 

#Get our policy from our solver 

global​ policy 
 

#Extract our set of alpha vectors from our policy (one for each 

action) 

alphas = policy.alphas 

 

greatestUtilityIndex = ​0 
greatestUtility = -​Inf 

 

numStates = POMDPs.n_states(m_discrete) 

numActions = length(alphas) 

 

#Create our belief vector from our particle filter 

belief = zeros(numStates) 

for​ i = ​1​:num_particles 
 s = particle(b,i) 

 index = POMDPs.stateindex(m_discrete,s) 

 belief[index] += ​1 
end 

belief = belief/num_particles 

 

# see which action gives the highest util value 

for​ i = ​1​:numActions 
 utility = dot(alphas[i], belief) 

 if​ utility > greatestUtility 
 greatestUtility = utility 

 greatestUtilityIndex = i 

 end 

end 

 

# map the index to action 

a = policy.action_map[greatestUtilityIndex] 

 

if​ greatestUtilityIndex == ​1 
 a = policy.action_map[​2​] 

end 
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return​ RoombaAct(a[​1​], a[​2​]) 
end 
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Bumper_QMDP.jl 
 
# %% 

----------------------------------------------------------------------- 

#Define our sensor 

sensor = Bumper() 

 

#Room configuration. Choose from 1,2, or 3 

config = ​1 
 

#Discretize state space 

num_x_pts = ​50 
num_y_pts = ​50 
num_th_pts = ​20 
sspace = DiscreteRoombaStateSpace(num_x_pts,num_y_pts,num_th_pts) 

 

#Discretize action space 

vlist = collect(​0​:​1.0​:​10.0​) 
omlist = collect(​0​:​0.2​:​1.0​) 
aspace = vec(collect(RoombaAct(v, om) ​for​ v ​in​ vlist, om ​in​ omlist)) 
 

#Get rid of first action which is (0,0). Doesn't do us any good 

#aspace = aspace[2:length(aspace)] 

 

#Construct the POMPDP for the QMDP solver (Discrete state/action space) 

m_discrete = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config, sspace 

= sspace, 

 aspace = aspace)); 

 

#Try increasing the rewards 

m_discrete.mdp.goal_reward = ​100 
m_discrete.mdp.stairs_penalty = -​100 
 

 

#Construct the POMDP for the simulator (Continuous state/action space) 

m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config)); 

 

# %% 

----------------------------------------------------------------------- 

#Create the particle filter 

num_particles = ​10000​ ​#2000 
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resampler = BumperResampler(num_particles) 

spf = SimpleParticleFilter(m, resampler) 

 

#Create our belief updater using our simple particle filter 

v_noise_coefficient = ​2.0 
om_noise_coefficient = ​0.5 
belief_updater = RoombaParticleFilter(spf, v_noise_coefficient, 

om_noise_coefficient); 

 

# %% 

----------------------------------------------------------------------- 

#Define our solver 

#solver = FIBSolver() 

solver = QMDPSolver(max_iterations=​20​, 
 tolerance=​1e-3​, 
 verbose=​true​) 
 

 

#If we need to compute our policy for the first time 

if​ (​1​ == ​0​) 
#Use our solver and our POMDP model to find a policy 

policy = solve(solver,m_discrete) 

#Save our policy so we don't have to recompute 

using​ JLD2, FileIO 
@JLD2​.save ​"my_policy3.jld"​ policy 

 

#Otherwise use the saved policy we computed previously 

else 

@JLD2​.load ​"my_policy2.jld"​ policy 
end 

 

# %% 

----------------------------------------------------------------------- 

 

# Define the policy to test 

mutable struct​ ToEnd <: Policy 
ts::​Int64​ ​# to track the current time-step. 
policy::AlphaVectorPolicy 

end 

 

# %% 

----------------------------------------------------------------------- 

23 



 

#flag for our wall hit policy 

previousBumpState = ​false 
 

states = POMDPs.states(m_discrete) 

 

# define a new function that takes in the policy struct and current belief, 

# and returns the desired action 

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState}) 
 

global​ previousBumpState 
 

#Drive straight into wall to localize belief state 

if​ previousBumpState == ​false 
 #If the wall has been bumped, then all particles are on the wall. If 

so, 

 #then any particle will do for determining wall contact 

 s = particle(b,​1​) 
 

 #Call the wall_contact function to determine if we are in wall 

contact 

 #(returns true or false) 

 currentBumpState = AA228FinalProject.wall_contact(m,s) 

 

 if​ currentBumpState == ​false 
 return​ RoombaAct(​5.0​, ​0.0​) 
 else 

 previousBumpState = ​true 
 end 

end 

 

#Use alpha vectors once first wall contact is made 

if​ previousBumpState == ​true 
 #Extract our policy from struct p 

 policy = p.policy 

 #Extract our set of alpha vectors from our policy (one for each 

action) 

 alphas = policy.alphas 

 

 greatestUtilityIndex = ​6 
 greatestUtility = -​Inf 
 

 numStates = POMDPs.n_states(m_discrete) 
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 numActions = length(alphas) 

 

 

 #Create our belief vector from our particle filter 

 belief = zeros(numStates) 

 for​ i = ​1​:num_particles 
 s = particle(b,i) 

 index = POMDPs.stateindex(m_discrete,s) 

 belief[index] += ​1 
 end 

 belief = belief/num_particles 

 

 #print(belief) 

 #print("\n") 

 

 # see which action gives the highest util value 

 for​ i = ​1​:numActions 
 utility = dot(alphas[i], belief) 

 if​ utility > greatestUtility 
 greatestUtility = utility 

 greatestUtilityIndex = i 

  

 end 

 end 

 

 # map the index to action 

 a = policy.action_map[greatestUtilityIndex] 

 

 if​ greatestUtilityIndex == ​1 
 a = policy.action_map[​6​] 
 end 

 

 return​ RoombaAct(a[​1​], a[​2​]) 
end 

 

end 
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Localization_Bumper.jl 
 

# %% 

----------------------------------------------------------------------- 

sensor = Bumper() ​# or Bumper() for the bumper version of the environment 
config = ​1​ ​# 1,2, or 3 
m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config)); 

 

# %% 

----------------------------------------------------------------------- 

num_particles = ​10000 
resampler = BumperResampler(num_particles) 

# for the bumper environments 

# resampler = BumperResampler(num_particles) 

 

spf = SimpleParticleFilter(m, resampler) 

 

v_noise_coefficient = ​2.0 
om_noise_coefficient = ​0.5 
 

belief_updater = RoombaParticleFilter(spf, v_noise_coefficient, 

om_noise_coefficient); 

 

# %% 

----------------------------------------------------------------------- 

# Define the policy to test 

mutable struct​ ToEnd <: Policy 
    ts::​Int64​ ​# to track the current time-step. 
end 

 

# extract goal for heuristic controller 

goal_xy = get_goal_xy(m) 

 

#flag for our wall hit policy 

previousBumpState = ​false 
spinStep = 

 

# define a new function that takes in the policy struct and current belief, 

# and returns the desired action 

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState}) 
 

    ​#Seed the environment 
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    Random.seed!() 

 

    ​#Naive approach: Bump the wall, spin in a random direction, and then 
drive 

    ​#again. 
    ​global​ velSteps 
    ​global​ previousBumpState 
    ​global​ spinSteps 
    ​global​ L 
 

    ​#Fixed Velocity and spin rate maximums 
    velMax = m.mdp.v_max 

    omegaMax = m.mdp.om_max 

 

    ​#Normal driving speed 
    vel = ​2 
 

    ​#Set max and min number of time-steps to spin 
    maxSpinCount = ​7 
    minSpinCount = ​3 
 

    ​#Increase time step 
    p.ts += ​1 
 

    ​#If the wall has been bumped, then all particles are on the wall. If 
so, 

    ​#then any particle will do for determining wall contact 
    s = particle(b,​1​) 
 

    ​#Call the wall_contact function to determine if we are in wall contact 
    ​#(returns true or false) 
    currentBumpState = AA228FinalProject.wall_contact(m,s) 

    initialBumpState = AA228FinalProject.wall_contact(m,s) 

    OmegaNinetyDegrees=​0.7853981634 
    ​if​ (p.ts<​2​ && currentBumpState==​true​) 
        L=​1 
        velSteps=​0 
    ​end 
    ​if​ (p.ts<​2​ && currentBumpState==​false​) 
        L=​2 
        velSteps=​0 
    ​end 
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    ​if​ (p.ts>​400​) 
        L=​3 
    ​end 
    ​if​ (p.ts>​420​) 
        L=​5 
    ​end 
    ​if​ (L==​1​) 
        ​if​ (currentBumpState==​true​) 
            ​if​ (previousBumpState==​false​) 
                spinSteps=​4 
                previousBumpState=currentBumpState 

            ​elseif​ (previousBumpState=​true​) 
                ​if​ (spinSteps!=​0​) 
                    spinSteps-=​1 
                    p.ts+=​1 
                    ​return​ RoombaAct(​0.0​,OmegaNinetyDegrees) 
                ​else 
                    previousBumpState=​false 
                    p.ts+=​1 
                    L=​2 
                    ​return​ RoombaAct(vel,​0.0​) 
                ​end 
            ​end 
        ​end 
    ​elseif​ (L==​2​) 
        ​while​ (currentBumpState==​false​) 
            velSteps+=​1 
            previousBumpState=currentBumpState 

            p.ts+=​1 
            ​return​ RoombaAct(vel,​0.0​) 
        ​end 
        ​while​ (currentBumpState==​true​) 
            ​while​ (previousBumpState==​false​) 
                spinSteps=​7 
                previousBumpState=currentBumpState 

                p.ts+=​1 
                ​return​ RoombaAct(​0.0​,OmegaNinetyDegrees) 
            ​end 
            ​while​ (previousBumpState==​true​) 
                ​if​ (spinSteps!=​0​) 
                    spinSteps-=​1 
                    p.ts+=​1 
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                    ​return​ RoombaAct(​0.0​,OmegaNinetyDegrees) 
                ​else 
                    velSteps-=​1 
                    p.ts+=​1 
                    L=​4 
                    ​return​ RoombaAct(vel,​0.0​) 
                ​end 
            ​end 
        ​end 
    ​elseif​ (L==​4​) 
        ​if​ (velSteps>​0​) 
            velSteps-=​1 
            p.ts+=​1 
            spinSteps=​4 
            ​return​ RoombaAct(vel,​0.0​) 
        ​else 
            ​if​ (spinSteps>​0​) 
                spinSteps-=​1 
                p.ts+=​1 
                ​return​ RoombaAct(​0.0​,OmegaNinetyDegrees) 
            ​else 
                L=​2 
                velSteps+=​1 
                p.ts+=​1 
                ​return​ RoombaAct(vel,​0.0​) 
            ​end 
        ​end 
    ​elseif​ (L==​3​) 
        s = mean(b) 

        goal_x, goal_y = goal_xy 

        x,y,th = s[​1​:​3​] 
        ang_to_goal = atan(goal_y - y, goal_x - x) 

        del_angle = wrap_to_pi(ang_to_goal - th) 

        Kprop = ​1.0 
        om = Kprop * del_angle 

        v = ​5.0 
        p.ts+=​1 
        ​return​ RoombaAct(​0.0​, om) 
    ​elseif​ (L==​5​) 
        s = mean(b) 

        goal_x, goal_y = goal_xy 

        x,y,th = s[​1​:​3​] 
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        ang_to_goal = atan(goal_y - y, goal_x - x) 

        del_angle = wrap_to_pi(ang_to_goal - th) 

        Kprop = ​1.0 
        om = Kprop * del_angle 

        v = ​5.0 
        p.ts+=​1 
        ​return​ RoombaAct(v,om) 
    ​end 
End 
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Updated_Belief_State_Bumper.jl 
 
# %% 

----------------------------------------------------------------------- 

#Define our sensor 

sensor = Bumper() 

 

#Room configuration. Choose from 1,2, or 3 

config = ​1 
 

#Discretize state space 

 

num_x_pts = ​50 
num_y_pts = ​50 
num_th_pts = ​20 
sspace = DiscreteRoombaStateSpace(num_x_pts,num_y_pts,num_th_pts) 

 

#Discretize action space 

vlist = collect(​0​:​1.0​:​10.0​) 
omlist = collect(​0​:​0.2​:​1.0​) 
aspace = vec(collect(RoombaAct(v, om) ​for​ v ​in​ vlist, om ​in​ omlist)) 
 

#Get rid of first action which is (0,0). Doesn't do us any good 

#aspace = aspace(2:length(aspace)) 

 

#Construct the POMPDP for the QMDP solver (Discrete state/action space) 

m_discrete = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config, sspace 

= sspace, 

                      aspace = aspace)); 

 

#Try increasing the rewards 

m_discrete.mdp.goal_reward = ​10 
m_discrete.mdp.stairs_penalty = -​10 
 

 

#Construct the POMDP for the simulator (Continuous state/action space) 

m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config)); 

 

# %% 

----------------------------------------------------------------------- 

#Create the particle filter 
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num_particles = ​5000​ ​#2000 
resampler = BumperResampler(num_particles) 

spf = SimpleParticleFilter(m, resampler) 

 

#Create our belief updater using our simple particle filter 

v_noise_coefficient = ​2.0 
om_noise_coefficient = ​0.5 
belief_updater = RoombaParticleFilter(spf, v_noise_coefficient, 

om_noise_coefficient); 

 

# %% 

----------------------------------------------------------------------- 

#Define our solver 

#solver = FIBSolver() 

solver = QMDPSolver(max_iterations=​20​, 
                    tolerance=​1e-3​, 
                    verbose=​true​) 
 

 

#If we need to compute our policy for the first time 

if​ (​1​ == ​0​) 
    ​#Use our solver and our POMDP model to find a policy 
    policy = solve(solver,m_discrete) 

    ​#Save our policy so we don't have to recompute 
    ​using​ JLD2, FileIO 
    ​@JLD2​.save ​"my_policy.jld"​ policy 
 

 

#Otherwise use the saved policy we computed previously 

else 

    ​@JLD2​.load ​"my_policy2.jld"​ policy 
end 

 

# %% 

----------------------------------------------------------------------- 

 

# Define the policy to test 

mutable struct​ ToEnd <: Policy 
    ts::​Int64​ ​# to track the current time-step. 
    policy::AlphaVectorPolicy 

end 
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# %% 

----------------------------------------------------------------------- 

#flag for our wall hit policy 

previousBumpState = ​false 
 

states = POMDPs.states(m_discrete) 

 

# define a new function that takes in the policy struct and current belief, 

# and returns the desired action 

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState}) 
 

    ​global​ previousBumpState 
 

    ​#Drive straight into wall to localize belief state 
    ​if​ previousBumpState == ​false 
        ​#If the wall has been bumped, then all particles are on the wall. 
If so, 

        ​#then any particle will do for determining wall contact 
        s = particle(b,​1​) 
 

        ​#Call the wall_contact function to determine if we are in wall 
contact 

        ​#(returns true or false) 
        currentBumpState = AA228FinalProject.wall_contact(m,s) 

 

        ​if​ currentBumpState == ​false 
            ​return​ RoombaAct(​5.0​, ​0.0​) 
        ​else 
            previousBumpState = ​true 
        ​end 
    ​end 
 

    ​#Use alpha vectors once first wall contact is made 
    ​if​ previousBumpState == ​true 
        ​#Extract our policy from struct p 
        policy = p.policy 

        ​#Extract our set of alpha vectors from our policy (one for each 
action) 

        alphas = policy.alphas 

 

        greatestUtilityIndex = ​6 
        greatestUtility = -​Inf 
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        numStates = POMDPs.n_states(m_discrete) 

        numActions = length(alphas) 

 

 

        ​#Create our belief vector from our particle filter 
        belief = zeros(numStates) 

        ​for​ i = ​1​:num_particles 
            s = particle(b,i) 

            index = POMDPs.stateindex(m_discrete,s) 

            belief[index] += ​1 
        ​end 
        belief = belief/num_particles 

 

        ​#print(belief) 
        ​#print("\n") 
        ​global​ s1 
        ​# see which action gives the highest util value 
        ​for​ i = ​1​:numActions 
            bp1=POMDPs.update(belief_updater, 

b,RoombaAct(policy.action_map[i]),AA228FinalProject.wall_contact(m_discrete

,s)) 

            ​for​ j = ​1​:num_particles 
                s1 = particle(bp1,j) 

            ​end 
            bp2=POMDPs.update(belief_updater, 

b,RoombaAct(policy.action_map[i]),AA228FinalProject.wall_contact(m_discrete

,s1)) 

            beliefnew2 = zeros(numStates) 

            ​for​ j = ​1​:num_particles 
                s2 = particle(bp2,j) 

                index2 = POMDPs.stateindex(m_discrete,s2) 

                beliefnew2[index2] += ​1 
            ​end 
            beliefnew2 = beliefnew2/num_particles 

            utility = dot(alphas[i], belief)+dot(alphas[i], beliefnew2) 

            ​if​ utility > greatestUtility 
                greatestUtility = utility 

                greatestUtilityIndex = i 

            ​end 
        ​end 
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        ​# map the index to action 
        a = policy.action_map[greatestUtilityIndex] 

 

        ​if​ greatestUtilityIndex == ​1 
            a = policy.action_map[​6​] 
        ​end 
        ​return​ RoombaAct(a[​1​], a[​2​]) 
    ​end 
 

end 
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Two_Step_Lookahead.jl 
 
# %% 

----------------------------------------------------------------------- 

#Define our sensor 

sensor = Bumper() 

 

#Room configuration. Choose from 1,2, or 3 

config = ​1 
 

#Discretize state space 

 

num_x_pts = ​50 
num_y_pts = ​50 
num_th_pts = ​20 
sspace = DiscreteRoombaStateSpace(num_x_pts,num_y_pts,num_th_pts) 

 

#Discretize action space 

vlist = collect(​0​:​1.0​:​10.0​) 
omlist = collect(​0​:​0.2​:​1.0​) 
aspace = vec(collect(RoombaAct(v, om) ​for​ v ​in​ vlist, om ​in​ omlist)) 
 

#Get rid of first action which is (0,0). Doesn't do us any good 

#aspace = aspace(2:length(aspace)) 

 

#Construct the POMPDP for the QMDP solver (Discrete state/action space) 

m_discrete = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config, sspace 

= sspace, 

                      aspace = aspace)); 

 

#Try increasing the rewards 

m_discrete.mdp.goal_reward = ​10 
m_discrete.mdp.stairs_penalty = -​10 
 

 

#Construct the POMDP for the simulator (Continuous state/action space) 

m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config)); 

 

# %% 

----------------------------------------------------------------------- 

#Create the particle filter 

36 



 

num_particles = ​40000​ ​#2000 
resampler = BumperResampler(num_particles) 

spf = SimpleParticleFilter(m, resampler) 

 

#Create our belief updater using our simple particle filter 

v_noise_coefficient = ​2.0 
om_noise_coefficient = ​0.5 
belief_updater = RoombaParticleFilter(spf, v_noise_coefficient, 

om_noise_coefficient); 

 

# %% 

----------------------------------------------------------------------- 

#Define our solver 

#solver = FIBSolver() 

solver = QMDPSolver(max_iterations=​20​, 
                    tolerance=​1e-3​, 
                    verbose=​true​) 
 

 

#If we need to compute our policy for the first time 

if​ (​1​ == ​0​) 
    ​#Use our solver and our POMDP model to find a policy 
    policy = solve(solver,m_discrete) 

    ​#Save our policy so we don't have to recompute 
    ​using​ JLD2, FileIO 
    ​@JLD2​.save ​"my_policy.jld"​ policy 
 

 

#Otherwise use the saved policy we computed previously 

else 

    ​@JLD2​.load ​"my_policy2.jld"​ policy 
end 

 

# %% 

----------------------------------------------------------------------- 

 

# Define the policy to test 

mutable struct​ ToEnd <: Policy 
    ts::​Int64​ ​# to track the current time-step. 
    policy::AlphaVectorPolicy 

end 
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# %% 

----------------------------------------------------------------------- 

#flag for our wall hit policy 

previousBumpState = ​false 
 

states = POMDPs.states(m_discrete) 

 

# define a new function that takes in the policy struct and current belief, 

# and returns the desired action 

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState}) 
 

    ​global​ previousBumpState 
 

    ​#Drive straight into wall to localize belief state 
    ​if​ previousBumpState == ​false 
        ​#If the wall has been bumped, then all particles are on the wall. 
If so, 

        ​#then any particle will do for determining wall contact 
        s = particle(b,​1​) 
 

        ​#Call the wall_contact function to determine if we are in wall 
contact 

        ​#(returns true or false) 
        currentBumpState = AA228FinalProject.wall_contact(m,s) 

 

        ​if​ currentBumpState == ​false 
            ​return​ RoombaAct(​5.0​, ​0.0​) 
        ​else 
            previousBumpState = ​true 
        ​end 
    ​end 
 

    ​#Use alpha vectors once first wall contact is made 
    ​if​ previousBumpState == ​true 
        ​#Extract our policy from struct p 
        policy = p.policy 

        ​#Extract our set of alpha vectors from our policy (one for each 
action) 

        alphas = policy.alphas 

 

        greatestUtilityIndex = ​6 
        greatestUtility = -​Inf 
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        greatestUtilityIndex2 = ​6 
        greatestUtility2 = -​Inf 
 

        numStates = POMDPs.n_states(m_discrete) 

        numActions = length(alphas) 

 

 

        ​#Create our belief vector from our particle filter 
        belief = zeros(numStates) 

        ​for​ i = ​1​:num_particles 
            s = particle(b,i) 

            index = POMDPs.stateindex(m_discrete,s) 

            belief[index] += ​1 
        ​end 
        belief = belief/num_particles 

 

        ​#print(belief) 
        ​#print("\n") 
        ​global​ s1 
        ​# see which action gives the highest util value 
        ​for​ i = ​1​:numActions 
            bp1=POMDPs.update(belief_updater, 

b,RoombaAct(policy.action_map[i]),AA228FinalProject.wall_contact(m_discrete

,s)) 

            ​for​ j = ​1​:num_particles 
                s1 = particle(bp1,j) 

            ​end 
            bp2=POMDPs.update(belief_updater, 

b,RoombaAct(policy.action_map[i]),AA228FinalProject.wall_contact(m_discrete

,s1)) 

            beliefnew2 = zeros(numStates) 

            greatestUtility2=zeros(numActions) 

            ​for​ j = ​1​:num_particles 
                s2 = particle(bp2,j) 

                index2 = POMDPs.stateindex(m_discrete,s2) 

                beliefnew2[index2] += ​1 
            ​end 
            beliefnew2 = beliefnew2/num_particles 

            utility2 =dot(alphas[i], beliefnew2) 

            greatestUtility2[i] = utility2 

            greatestUtilityIndex2 = i 

        ​end 

39 



 

        ​for​ i = ​1​:numActions 
            utility = dot(alphas[i], belief)+greatestUtility2[i] 

            ​if​ utility > greatestUtility 
                greatestUtility = utility 

                greatestUtilityIndex = i 

            ​end 
        ​end 
 

        ​# map the index to action 
        a = policy.action_map[greatestUtilityIndex] 

 

        ​if​ greatestUtilityIndex == ​1 
            a = policy.action_map[​6​] 
        ​end 
        ​return​ RoombaAct(a[​1​], a[​2​]) 
    ​end 
 

end 
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roomba_env.jl 
 
# Defines the environment as a POMDPs.jl MDP and POMDP 

# maintained by {jmorton2,kmenda}@stanford.edu 

 

# Wraps ang to be in (-pi, pi] 

function​ wrap_to_pi(ang::​Float64​) 
if​ ang > ​pi 

  ang -= ​2​*​pi 
    ​elseif​ ang <= -​pi 
  ang += ​2​*​pi 

end 

    ang 

end 

 

""" 

State of a Roomba. 

 

# Fields 

- `x::Float64` x location in meters 

- `y::Float64` y location in meters 

- `theta::Float64` orientation in radians 

- `status::Bool` indicator whether robot has reached goal state or stairs 

""" 

struct​ RoombaState <: FieldVector{​4​, ​Float64​} 
x::​Float64 
y::​Float64 
theta::​Float64 
status::​Float64 

end 

 

# Struct for a Roomba action 

struct​ RoombaAct <: FieldVector{​2​, ​Float64​} 
v::​Float64 # meters per second 

omega::​Float64​ ​# theta dot (rad/s) 
end 

 

# action spaces 

struct​ RoombaActions ​end 
 

function​ gen_amap(aspace::RoombaActions) 
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return​ ​nothing 
end 

 

function​ gen_amap(aspace::​AbstractVector​{RoombaAct}) 
return​ ​Dict​(aspace[i]=>i ​for​ i ​in​ ​1​:length(aspace)) 

end 

 

""" 

Define the Roomba MDP. 

 

# Fields 

- `v_max::Float64` maximum velocity of Roomba [m/s] 

- `om_max::Float64` maximum turn-rate of Roombda [rad/s] 

- `dt::Float64` simulation time-step [s] 

- `contact_pen::Float64` penalty for wall-contact 

- `time_pen::Float64` penalty per time-step 

- `goal_reward::Float64` reward for reaching goal 

- `stairs_penalty::Float64` penalty for reaching stairs 

- `config::Int` specifies room configuration (location of stairs/goal) 

{1,2,3} 

- `room::Room` environment room struct 

- `sspace::SS` environment state-space (ContinuousRoombaStateSpace or 

DiscreteRoombaStateSpace) 

- `aspace::AS` environment action-space struct 

""" 

@with_kw​ ​mutable struct​ RoombaMDP{SS,AS} <: MDP{RoombaState, RoombaAct} 
v_max::​Float64​  = ​10.0​  ​# m/s 
om_max::​Float64​ = ​1.0​   ​# rad/s 
dt::​Float64 = ​0.5​   ​# s 
contact_pen::​Float64​ = -​1.0 
time_pen::​Float64​ = -​0.1 
goal_reward::​Float64​ = ​10 
stairs_penalty::​Float64​ = -​10 
config::​Int​ = ​1 
room::Room  = Room(configuration=config) 

sspace::SS = ContinuousRoombaStateSpace() 

aspace::AS = RoombaActions() 

_amap::​Union​{Nothing, ​Dict​{RoombaAct, ​Int​}} = gen_amap(aspace) 
end 

 

# state-space definitions 

struct​ ContinuousRoombaStateSpace ​end 
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""" 

Specify a DiscreteRoombaStateSpace 

- `x_step::Float64` distance between discretized points in x 

- `y_step::Float64` distance between discretized points in y 

- `th_step::Float64` distance between discretized points in theta 

- `XLIMS::Vector` boundaries of room (x-dimension) 

- `YLIMS::Vector` boundaries of room (y-dimension) 

 

""" 

struct​ DiscreteRoombaStateSpace 
x_step::​Float64 
y_step::​Float64 
th_step::​Float64 
XLIMS::​Vector 
YLIMS::​Vector 

end 

 

# function to construct DiscreteRoombaStateSpace: 

# `num_x_pts::Int` number of points to discretize x range to 

# `num_y_pts::Int` number of points to discretize yrange to 

# `num_th_pts::Int` number of points to discretize th range to 

function​ DiscreteRoombaStateSpace(num_x_pts::​Int​, num_y_pts::​Int​, 
num_theta_pts::​Int​) 
 

# hardcoded room-limits 

# watch for consistency with env_room 

XLIMS = [-​30.0​, ​20.0​] 
YLIMS = [-​30.0​, ​10.0​] 

 

return​ DiscreteRoombaStateSpace((XLIMS[​2​]-XLIMS[​1​])/(num_x_pts-​1​), 
 (YLIMS[​2​]-YLIMS[​1​])/(num_y_pts-​1​), 
 2​*​pi​/(num_theta_pts-​1​), 
 XLIMS,YLIMS) 

end 

 

 

 

 

""" 

Define the Roomba POMDP 
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Fields: 

- `sensor::T` struct specifying the sensor used (Lidar or Bump) 

- `mdp::T` underlying RoombaMDP 

""" 

struct​ RoombaPOMDP{T, O} <: POMDP{RoombaState, RoombaAct, O} 
sensor::T 

mdp::RoombaMDP 

end 

 

# observation models 

struct​ Bumper 
 

end 

POMDPs.obstype(::​Type​{Bumper}) = ​Bool 
POMDPs.obstype(::Bumper) = ​Bool 
 

struct​ Lidar 
ray_stdev::​Float64​ ​# measurement noise: see POMDPs.observation 

definition 

 # below for usage 

end 

Lidar() = Lidar(​0.1​) 
 

POMDPs.obstype(::​Type​{Lidar}) = ​Float64 
POMDPs.obstype(::Lidar) = ​Float64​ ​#float64(x) 
 

struct​ DiscreteLidar 
ray_stdev::​Float64 
disc_points::​Vector​{​Float64​} ​# cutpoints: endpoints of (0, Inf) 

assumed 

end 

 

POMDPs.obstype(::​Type​{DiscreteLidar}) = ​Int 
POMDPs.obstype(::DiscreteLidar) = ​Int 
DiscreteLidar(disc_points) = DiscreteLidar(Lidar().ray_stdev, disc_points) 

 

 

 

# Shorthands 

const​ RoombaModel = ​Union​{RoombaMDP, RoombaPOMDP} 
const​ BumperPOMDP = RoombaPOMDP{Bumper, ​Bool​} 
const​ LidarPOMDP = RoombaPOMDP{Lidar, ​Float64​} 
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const​ DiscreteLidarPOMDP = RoombaPOMDP{DiscreteLidar, ​Int​} 
 

# access the mdp of a RoombaModel 

mdp(​e​::RoombaMDP) = ​e 
mdp(​e​::RoombaPOMDP) = ​e​.mdp 
 

 

# RoombaPOMDP Constructor 

function​ RoombaPOMDP(sensor, mdp) 
RoombaPOMDP{typeof(sensor), obstype(sensor)}(sensor, mdp) 

end 

 

RoombaPOMDP(;sensor=Bumper(), mdp=RoombaMDP()) = RoombaPOMDP(sensor,mdp) 

 

# function to determine if there is contact with a wall 

wall_contact(​e​::RoombaModel, state) = wall_contact(mdp(​e​).room, state[​1​:​2​]) 
 

POMDPs.actions(m::RoombaModel) = mdp(m).aspace 

POMDPs.n_actions(m::RoombaModel) = length(mdp(m).aspace) 

 

# maps a RoombaAct to an index in a RoombaModel with discrete actions 

function​ POMDPs.actionindex(m::RoombaModel, a::RoombaAct) 
if​ mdp(m)._amap != ​nothing 

 return​ mdp(m)._amap[a] 
else 

 error(​"Action index not defined for continuous actions."​) 
end 

end 

 

# function to get goal xy location for heuristic controllers 

function​ get_goal_xy(m::RoombaModel) 
grn = mdp(m).room.goal_rect 

gwn = mdp(m).room.goal_wall 

gr = mdp(m).room.rectangles[grn] 

corners = gr.corners 

if​ gwn == ​4 
 return​ (corners[​1​,:] + corners[​4​,:]) / ​2. 

else 

 return​ (corners[gwn,:] + corners[gwn+​1​,:]) / ​2. 
end 

end 
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# initializes x,y,th of Roomba in the room 

function​ POMDPs.initialstate(m::RoombaModel, rng::​AbstractRNG​) 
e​ = mdp(m) 
x, y = init_pos(​e​.room, rng) 
th = rand() * ​2​*​pi​ - ​pi 

 

is = RoombaState(x, y, th, ​0.0​) 
 

if​ mdp(m).sspace ​isa​ DiscreteRoombaStateSpace 
 isi = stateindex(m, is) 

 is = index_to_state(m, isi) 

end 

 

return​ is 
end 

 

# transition Roomba state given curent state and action 

function​ POMDPs.transition(m::RoombaModel, 
 s::​AbstractVector​{​Float64​}, 
 a::​AbstractVector​{​Float64​}) 
 

e​ = mdp(m) 
v, om = a 

v = clamp(v, ​0.0​, ​e​.v_max) 
om = clamp(om, -​e​.om_max, ​e​.om_max) 

 

# propagate dynamics without wall considerations 

x, y, th, _ = s 

dt = ​e​.dt 
 

# dynamics assume robot rotates and then translates 

next_th = wrap_to_pi(th + om*dt) 

 

# make sure we arent going through a wall 

p0 = SVector(x, y) 

heading = SVector(cos(next_th), sin(next_th)) 

des_step = v*dt 

next_x, next_y = legal_translate(​e​.room, p0, heading, des_step) 
 

# Determine whether goal state or stairs have been reached 

grn = mdp(m).room.goal_rect 

gwn = mdp(m).room.goal_wall 
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srn = mdp(m).room.stair_rect 

swn = mdp(m).room.stair_wall 

gr = mdp(m).room.rectangles[grn] 

sr = mdp(m).room.rectangles[srn] 

next_status = ​1.0​*contact_wall(gr, gwn, [next_x, next_y]) - 
1.0​*contact_wall(sr, swn, [next_x, next_y]) 
 

# define next state 

sp = RoombaState(next_x, next_y, next_th, next_status) 

 

if​ mdp(m).sspace ​isa​ DiscreteRoombaStateSpace 
 # round the states to nearest grid point 

 si = stateindex(m, sp) 

 sp = index_to_state(m, si) 

end 

 

return​ Deterministic(sp) 
end 

 

# enumerate all possible states in a DiscreteRoombaStateSpace 

function​ POMDPs.states(m::RoombaModel) 
if​ mdp(m).sspace ​isa​ DiscreteRoombaStateSpace 

 ss = mdp(m).sspace 

 x_states = range(ss.XLIMS[​1​], stop=ss.XLIMS[​2​], step=ss.x_step) 
 y_states = range(ss.YLIMS[​1​], stop=ss.YLIMS[​2​], step=ss.y_step) 
 th_states = range(-​pi​, stop=​pi​, step=ss.th_step) 
 statuses = [-​1.​,​0.​,​1.​] 
 return​ vec(collect(RoombaState(x,y,th,st) ​for​ x ​in​ x_states, y ​in 
y_states, th ​in​ th_states, st ​in​ statuses)) 

else 

 return​ mdp(m).sspace 
end 

end 

 

# return the number of states in a DiscreteRoombaStateSpace 

function​ POMDPs.n_states(m::RoombaModel) 
if​ mdp(m).sspace ​isa​ DiscreteRoombaStateSpace 

 ss = mdp(m).sspace 

 nstates = prod((convert(​Int​, diff(ss.XLIMS)[​1​]/ss.x_step)+​1​, 
 convert(​Int​, diff(ss.YLIMS)[​1​]/ss.y_step)+​1​, 
 round(​Int​, ​2​*​pi​/ss.th_step)+​1​, 
 3​)) 
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 return​ nstates 
else 

 error(​"State-space must be DiscreteRoombaStateSpace."​) 
end 

end 

 

# map a RoombaState to an index in a DiscreteRoombaStateSpace 

function​ POMDPs.stateindex(m::RoombaModel, s::RoombaState) 
if​ mdp(m).sspace ​isa​ DiscreteRoombaStateSpace 

 ss = mdp(m).sspace 

 xind = floor(​Int​, (s[​1​] - ss.XLIMS[​1​]) / ss.x_step + ​0.5​) + ​1 
 yind = floor(​Int​, (s[​2​] - ss.YLIMS[​1​]) / ss.y_step + ​0.5​) + ​1 
 thind = floor(​Int​, (s[​3​] - (-​pi​)) / ss.th_step + ​0.5​) + ​1 
 stind = convert(​Int​, s[​4​] + ​2​) 
 

 lin = LinearIndices((convert(​Int​, diff(ss.XLIMS)[​1​]/ss.x_step)+​1​, 
 convert(​Int​, diff(ss.YLIMS)[​1​]/ss.y_step)+​1​, 
 round(​Int​, ​2​*​pi​/ss.th_step)+​1​, 
 3​)) 
 return​ lin[xind,yind,thind,stind] 

else 

 error(​"State-space must be DiscreteRoombaStateSpace."​) 
end 

end 

 

# map an index in a DiscreteRoombaStateSpace to the corresponding 

RoombaState 

function​ index_to_state(m::RoombaModel, si::​Int​) 
if​ mdp(m).sspace ​isa​ DiscreteRoombaStateSpace 

 ss = mdp(m).sspace 

 lin = CartesianIndices((convert(​Int​, diff(ss.XLIMS)[​1​]/ss.x_step)+​1​, 
 convert(​Int​, diff(ss.YLIMS)[​1​]/ss.y_step)+​1​, 
 round(​Int​, ​2​*​pi​/ss.th_step)+​1​, 
 3​)) 
 

 xi,yi,thi,sti = ​Tuple​(lin[si]) 
 

 x = ss.XLIMS[​1​] + (xi-​1​) * ss.x_step 
 y = ss.YLIMS[​1​] + (yi-​1​) * ss.y_step 
 th = -​pi​ + (thi-​1​) * ss.th_step 
 st = sti - ​2 
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 return​ RoombaState(x,y,th,st) 
 

else 

 error(​"State-space must be DiscreteRoombaStateSpace."​) 
end 

end 

 

 

# defines reward function R(s,a,s') 

function​ POMDPs.reward(m::RoombaModel, 
 s::​AbstractVector​{​Float64​}, 
 a::​AbstractVector​{​Float64​}, 
 sp::​AbstractVector​{​Float64​}) 
 

#function POMDPs.reward(m::RoombaPOMDP{Bumper,Bool}, 

#  s::RoombaState, 

#  a::RoombaAct, 

#  sp::RoombaState) 

 

# penalty for each timestep elapsed 

cum_reward = mdp(m).time_pen 

 

# penalty for bumping into wall (not incurred for consecutive 

contacts) 

previous_wall_contact = wall_contact(m,s) 

current_wall_contact = wall_contact(m,sp) 

if​(!previous_wall_contact && current_wall_contact) 
 cum_reward += mdp(m).contact_pen 

end 

 

# terminal rewards 

cum_reward += mdp(m).goal_reward*(sp.status == ​1.0​) 
cum_reward += mdp(m).stairs_penalty*(sp.status == -​1.0​) 

 

return​ cum_reward 
end 

 

# determine if a terminal state has been reached 

POMDPs.isterminal(m::RoombaModel, s::​AbstractVector​{​Float64​}) = 
abs(s.status) > ​0.0 
 

# Bumper POMDP observation 
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function​ POMDPs.observation(m::BumperPOMDP, 
 a::​AbstractVector​{​Float64​}, 
 sp::​AbstractVector​{​Float64​}) 

return​ Deterministic(wall_contact(m, sp)) ​# in {0.0,1.0} 
end 

 

POMDPs.n_observations(m::BumperPOMDP) = ​2 
POMDPs.observations(m::BumperPOMDP) = [​false​, ​true​] 
 

# Lidar POMDP observation 

function​ POMDPs.observation(m::LidarPOMDP, 
 a::​AbstractVector​{​Float64​}, 
 sp::​AbstractVector​{​Float64​}) 

x, y, th = sp 

 

# determine uncorrupted observation 

rl = ray_length(mdp(m).room, [x, y], [cos(th), sin(th)]) 

 

# compute observation noise 

sigma = m.sensor.ray_stdev * max(rl, ​0.01​) 
 

# disallow negative measurements 

return​ Truncated(Normal(rl, sigma), ​0.0​, ​Inf​) 
end 

 

function​ POMDPs.n_observations(m::LidarPOMDP) 
error(​"n_observations not defined for continuous observations."​) 

end 

 

function​ POMDPs.observations(m::LidarPOMDP) 
error(​"LidarPOMDP has continuous observations. Use DiscreteLidarPOMDP 

for discrete observation spaces."​) 
end 

 

# DiscreteLidar POMDP observation 

function​ POMDPs.observation(m::DiscreteLidarPOMDP, 
 a::​AbstractVector​{​Float64​}, 
 sp::​AbstractVector​{​Float64​}) 
 

m_lidar = LidarPOMDP(Lidar(m.sensor.ray_stdev), mdp(m)) 

 

d = observation(m_lidar, a, sp) 
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disc_points = [-​Inf​, m.sensor.disc_points..., ​Inf​] 
 

d_disc = diff(cdf.(d, disc_points)) 

 

return​ SparseCat(​1​:length(d_disc), d_disc) 
end 

 

POMDPs.n_observations(m::DiscreteLidarPOMDP) = length(m.sensor.disc_points) 

+ ​1 
POMDPs.observations(m::DiscreteLidarPOMDP) = vec(​1​:n_observations(m)) 
 

# define discount factor 

POMDPs.discount(m::RoombaModel) = ​0.95 
 

# struct to define an initial distribution over Roomba states 

struct​ RoombaInitialDistribution{M<:RoombaModel} 
m::M 

end 

 

# definition of initialstate and initialstate_distribution for Roomba 

environment 

POMDPs.rand(rng::​AbstractRNG​, d::RoombaInitialDistribution) = 
initialstate(d.m, rng) 

POMDPs.initialstate_distribution(m::RoombaModel) = 

RoombaInitialDistribution(m) 

 

# Render a room and show robot 

function​ render(ctx::CairoContext, m::RoombaModel, step) 
env = mdp(m) 

state = step[:sp] 

 

radius = ROBOT_W*​6 
 

# render particle filter belief 

if​ haskey(step, :bp) 
 bp = step[:bp] 

 if​ bp ​isa​ AbstractParticleBelief 
 for​ p ​in​ particles(bp) 
 x, y = transform_coords(p[​1​:​2​]) 
 arc(ctx, x, y, radius, ​0​, ​2​*​pi​) 
 set_source_rgba(ctx, ​0.6​, ​0.6​, ​1​, ​0.3​) 
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 fill(ctx) 

 end 

 end 

end 

 

# Render room 

render(env.room, ctx) 

 

# Find center of robot in frame and draw circle 

x, y = transform_coords(state[​1​:​2​]) 
arc(ctx, x, y, radius, ​0​, ​2​*​pi​) 
set_source_rgb(ctx, ​1​, ​0.6​, ​0.6​) 
fill(ctx) 

 

# Draw line indicating orientation 

move_to(ctx, x, y) 

end_point = [state[​1​] + ROBOT_W*cos(state[​3​])/​2​, state[​2​] + 
ROBOT_W*sin(state[​3​])/​2​] 

end_x, end_y = transform_coords(end_point) 

line_to(ctx, end_x, end_y) 

set_source_rgb(ctx, ​0​, ​0​, ​0​) 
stroke(ctx) 

return​ ctx 
end 

 

function​ render(m::RoombaModel, step) 
io = ​IOBuffer​() 
c = CairoSVGSurface(io, ​800​, ​600​) 
ctx = CairoContext(c) 

render(ctx, m, step) 

finish(c) 

return​ ​HTML​(​String​(take!(io))) 
end 
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filtering.jl 
 
# specification of particle filters for the bumper and lidar Roomba 

environments 

# maintained by {jmorton2,kmenda}@stanford.edu 

 

import​​ POMDPs 
 

# structs specifying resamplers for bumper and lidar sensors 

struct​​ BumperResampler 
n::​​Int​​ ​​# number of particles 

end 

 

struct​​ LidarResampler 
n::​​Int​​ ​​# number of particles 
lvr::LowVarianceResampler 

end 

 

""" 

Definition of the particle filter for the Roomba environment 

Fields: 

- `spf::SimpleParticleFilter` standard particle filter struct defined in 

ParticleFilters.jl 

- `v_noise_coeff::Float64` coefficient to scale particle-propagation noise 

in velocity 

- `om_noise_coeff::Float64`coefficient to scale particle-propagation noise 

in turn-rate 

""" 

mutable struct​​ RoombaParticleFilter <: POMDPs.Updater 
spf::SimpleParticleFilter 

v_noise_coeff::​​Float64 
om_noise_coeff::​​Float64 

end 

 

# Resample function for weights in {0,1} necessary for bumper sensor 

function​​ ParticleFilters.resample(br::BumperResampler, 
b::WeightedParticleBelief{RoombaState}, rng::​​AbstractRNG​​) 

new = RoombaState[] 

for​​ (p, w) ​​in​​ weighted_particles(b) 
 if​​ w == ​​1.0 
 push!(new, p) 
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 else 

 @assert​​ w == ​​0 
 end 

end 

extras = rand(rng, new, br.n-length(new)) 

for​​ p ​​in​​ extras 
 push!(new, p) 

end 

return​​ ParticleCollection(new) 
end 

 

# resample function for unweighted particles 

function 

ParticleFilters.resample(br::​​Union​​{BumperResampler,LidarResampler}, b, 
rng::​​AbstractRNG​​) 

ps = ​​Array​​{RoombaState}(undef, br.n) 
for​​ i ​​in​​ ​​1​​:br.n 

 ps[i] = rand(rng, b) 

end 

return​​ ParticleCollection(ps) 
end 

 

# Resample function for continuous weights necessary for lidar sensor 

function​​ ParticleFilters.resample(lr::LidarResampler, 
b::WeightedParticleBelief{RoombaState}, rng::​​AbstractRNG​​) 
 

ps = resample(lr.lvr, b, rng) 

return​​ ps 
end 

 

# Modified Update function adds noise to the actions that propagate 

particles 

function​​ POMDPs.update(up::RoombaParticleFilter, 
b::ParticleCollection{RoombaState}, a, o) 

ps = particles(b) 

pm = up.spf._particle_memory 

wm = up.spf._weight_memory 

resize!(pm, ​​0​​) 
resize!(wm, ​​0​​) 
sizehint!(pm, n_particles(b)) 

sizehint!(wm, n_particles(b)) 

all_terminal = ​​true 
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for​​ i ​​in​​ ​​1​​:n_particles(b) 
 s = ps[i] 

 if​​ !isterminal(up.spf.model, s) 
 all_terminal = ​​false 
 # noise added here: 

 a_pert = a + SVector(up.v_noise_coeff*(rand(up.spf.rng)-​​0.5​​), 
up.om_noise_coeff*(rand(up.spf.rng)-​​0.5​​)) 
 sp = generate_s(up.spf.model, s, a_pert, up.spf.rng) 

 push!(pm, sp) 

 push!(wm, obs_weight(up.spf.model, s, a_pert, sp, o)) 

 end 

end 

# if all particles are terminal, return previous belief state 

if​​ all_terminal 
 return​​ b 

end 

 

return​​ resample(up.spf.resample, 
WeightedParticleBelief{RoombaState}(pm, wm, sum(wm), ​​nothing​​), up.spf.rng) 
end 

 

# initialize belief state 

function​​ ParticleFilters.initialize_belief(up::RoombaParticleFilter, 
d::​​Any​​) 

resample(up.spf.resample, d, up.spf.rng) 

end 
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env_room.jl 
 
# Code to define the environment room and rectangles used to define it 

# maintained by {jmorton2,kmenda}@stanford.edu 

 

# Define constants  -- all units in m 

RW = ​5.​ ​# room width 
ROBOT_W = ​1.​ ​# robot width 
MARGIN = ​1e-12 
 

# Define rectangle type for constructing hallway 

# corners: 4x2 np array specifying 

# bottom-left, top-left, 

# top-right, bottom-right corner 

# walls: length 4 list of bools specifying 

#   if left, top, right, bottom sides are 

#   open (False) or walls (True) 

mutable struct​ Rectangle 
corners::​Array​{​Float64​, ​2​} 
walls::​Array​{​Bool​, ​1​} 
segments::​Array​{LineSegment, ​1​} 
width::​Float64 
height::​Float64 
midpoint::​Array​{​Float64​, ​1​} 
area::​Float64 
xl::​Float64 
xu::​Float64 
yl::​Float64 
yu::​Float64 

 

function​ Rectangle( 
 corners::​Array​{​Float64​, ​2​}, 
 walls::​Array​{​Bool​, ​1​}; 
 goal_idx::​Int​=​0​, 
 stair_idx::​Int​=​0 
 ) 

 

 retval = new() 

 

 retval.corners = corners 

 retval.walls = walls 
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 retval.width = corners[​3​, ​1​] - corners[​2​, ​1​] 
 retval.height = corners[​2​, ​2​] - corners[​1​, ​2​] 
 mean_vals = mean(corners, dims=​1​) 
 retval.midpoint = SVector(mean_vals[​1​, ​1​], mean_vals[​1​, ​2​]) 
   

 # compute area in which robot could be initialized 

 retval.xl = corners[​2​, ​1​] 
 retval.xu = corners[​3​, ​1​] 
 retval.yl = corners[​1​, ​2​] 
 retval.yu = corners[​2​, ​2​] 
 if​ walls[​1​] 
 retval.width -= ROBOT_W/​2 
 retval.xl += ROBOT_W/​2 
 end 

 if​ walls[​2​] 
 retval.height -= ROBOT_W/​2 
 retval.yu -= ROBOT_W/​2 
 end 

 if​ walls[​3​] 
 retval.width -= ROBOT_W/​2 
 retval.xu -= ROBOT_W/​2 
 end 

 if​ walls[​4​] 
 retval.height -= ROBOT_W/​2 
 retval.yl += ROBOT_W/​2 
 end 

 @assert​ retval.width > ​0.0​ && retval.height > ​0.0​ ​"Negative width or 
height" 

 retval.area = retval.width * retval.height 

   

 retval.segments = [LineSegment(corners[i, :], corners[i+​1​, :], 
(goal_idx == i), (stair_idx == i)) ​for​ i =​1​:​3​ ​if​ walls[i]] 
 if​ walls[​4​] 
 push!(retval.segments, LineSegment(corners[​1​, :], corners[​4​, 
:], (goal_idx == ​4​), (stair_idx == ​4​))) 
 end 

 

 retval 

end 

end 
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# Randomly initializes the robot in this rectangle 

function​ init_pos(rect::Rectangle, rng) 
w = rect.xu - rect.xl 

h = rect.yu - rect.yl 

init_pos = SVector(rand(rng)*w + rect.xl, rand(rng)*h + rect.yl) 

  

init_pos 

end 

 

# Determines if pos (center of robot) is within the rectangle 

function​ in_rectangle(rect::Rectangle, pos::​AbstractVector​{​Float64​}) 
corners = rect.corners 

xlims = SVector(rect.xl - MARGIN, rect.xu + MARGIN) 

ylims = SVector(rect.yl - MARGIN, rect.yu + MARGIN) 

if​ xlims[​1​] < pos[​1​] < xlims[​2​] 
 if​ ylims[​1​] < pos[​2​] < ylims[​2​] 
 return​ ​true 
 end 

end 

return​ ​false 
end 

 

# determines if pos (center of robot) is intersecting with a wall 

# returns: -2, -Inf if center of robot not in room 

# -1, -Inf if not in wall contact 

# 0~3, violation mag, indicating which wall has contact 

# if multiple, returns largest violation 

function​ wall_contact(rect::Rectangle, pos::​AbstractVector​{​Float64​}) 
if​ !(in_rectangle(rect, pos)) 

 return​ -​2​, -​Inf 
end 

corners = rect.corners 

xlims = SVector(corners[​2​, ​1​], corners[​3​, ​1​]) 
ylims = SVector(corners[​1​, ​2​], corners[​2​, ​2​]) 

 

contacts = [] 

contact_mags = [] 

if​ pos[​1​] - ROBOT_W/​2​ <= xlims[​1​] + MARGIN && rect.walls[​1​] 
 # in contact with left wall 

 push!(contacts, ​1​) 
 push!(contact_mags, abs(pos[​1​] - ROBOT_W/​2​ - xlims[​1​])) 

end 
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if​ pos[​2​] + ROBOT_W/​2​ + MARGIN >= ylims[​2​] && rect.walls[​2​] 
 # in contact with top wall 

 push!(contacts, ​2​) 
 push!(contact_mags, abs(pos[​2​] + ROBOT_W/​2​ - ylims[​2​])) 

end 

if​ pos[​1​] + ROBOT_W/​2​ + MARGIN >= xlims[​2​] && rect.walls[​3​] 
 # in contact with right wall 

 push!(contacts, ​3​) 
 push!(contact_mags, abs(pos[​1​] + ROBOT_W/​2​ - xlims[​2​])) 

end 

if​ pos[​2​] - ROBOT_W/​2​ <= ylims[​1​] + MARGIN && rect.walls[​4​] 
 # in contact with bottom wall 

 push!(contacts, ​4​) 
 push!(contact_mags, abs(pos[​2​] - ROBOT_W/​2​ - ylims[​1​])) 

end 

 

if​ length(contacts) == ​0 
 return​ -​1​, -​Inf 

else 

 return​ contacts[argmax(contact_mags)], maximum(contact_mags) 
end 

end 

 

# Find closest distance to any wall 

function​ furthest_step(rect::Rectangle, pos::​AbstractVector​{​Float64​}, 
heading::​AbstractVector​{​Float64​}) 

return​ minimum(furthest_step(seg, pos, heading, ROBOT_W/​2​) ​for​ seg ​in 
rect.segments) 

end 

 

# computes the length of a ray from robot center to closest segment 

# from p0 pointing in direction heading 

function​ ray_length(rect::Rectangle, pos::​AbstractVector​{​Float64​}, 
heading::​AbstractVector​{​Float64​}) 

return​ minimum(ray_length(seg, pos, heading) ​for​ seg ​in 
rect.segments) 

end 

 

# Render rectangle based on segments 

function​ render(rect::Rectangle, ctx::CairoContext) 
for​ seg ​in​ rect.segments 

 render(seg, ctx) 
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end 

end 

 

# generate consecutive rectangles that make up the room 

# all rectangles share a full "wall" with an adjacent rectangle 

# shared walls are not solid - just used to specify geometry 

mutable struct​ Room 
rectangles::​Array​{Rectangle, ​1​} 
areas::​Array​{​Float64​, ​1​} 
goal_rect::​Int​  ​# Index of rectangle with goal state 
goal_wall::​Int​  ​# Index of wall that leads to goal 
stair_rect::​Int​ ​# Index of rectangle with stairs 
stair_wall::​Int​ ​# Index of wall that leads to stairs 

 

function​ Room(; configuration=​1​) 
 

 retval = new() 

 

 # Define different configurations for stair and goal locations 

 goal_idxs = [​0​, ​0​, ​0​, ​0​] 
 stair_idxs = [​0​, ​0​, ​0​, ​0​] 
 if​ configuration == ​2 
 retval.goal_rect = ​1 
 retval.goal_wall = ​4 
 retval.stair_rect = ​2 
 retval.stair_wall = ​1 
 elseif​ configuration == ​3 
 retval.goal_rect = ​4 
 retval.goal_wall = ​3 
 retval.stair_rect = ​2 
 retval.stair_wall = ​1 
 else 

 retval.goal_rect = ​4 
 retval.goal_wall = ​3 
 retval.stair_rect = ​4 
 retval.stair_wall = ​4 
 end 

 goal_idxs[retval.goal_rect] = retval.goal_wall 

 stair_idxs[retval.stair_rect] = retval.stair_wall 

 

 # Initialize array of rectangles 

 rectangles = [] 
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 # Rectangle 1 

 corners = [[-​20​-RW -​20​]; [-​20​-RW ​0​-RW]; [-​20​+RW ​0​-RW]; [-​20​+RW -​20​]] 
 walls = [​true​, ​false​, ​true​, ​true​] ​# top wall shared 
 push!(rectangles, Rectangle(corners, walls, goal_idx=goal_idxs[​1​], 
stair_idx=stair_idxs[​1​])) 
 

 # Rectangle 2 

 corners = [[-​20​-RW ​0​-RW]; [-​20​-RW ​0​+RW]; [-​20​+RW ​0​+RW]; [-​20​+RW 
0​-RW]] 
 walls = [​true​, ​true​, ​false​, ​false​] ​# bottom, right wall shared 
 push!(rectangles, Rectangle(corners, walls, goal_idx=goal_idxs[​2​], 
stair_idx=stair_idxs[​2​])) 
 

 # Rectangle 3 

 corners = [[-​20​+RW ​0​-RW]; [-​20​+RW ​0​+RW]; [​10​ ​0​+RW]; [​10​ ​0​-RW]] 
 walls = [​false​, ​true​, ​false​, ​true​] ​# left wall shared 
 push!(rectangles, Rectangle(corners, walls, goal_idx=goal_idxs[​3​], 
stair_idx=stair_idxs[​3​])) 
 

 # Rectangle 4 

 corners = [[​10​ ​0​-RW]; [​10​ ​0​+RW]; [​10​+RW ​0​+RW]; [​10​+RW ​0​-RW]] 
 walls = [​false​, ​true​, ​true​, ​true​] ​# left wall shared 
 push!(rectangles, Rectangle(corners, walls, goal_idx=goal_idxs[​4​], 
stair_idx=stair_idxs[​4​])) 
 

 retval.rectangles = rectangles 

 retval.areas = [r.area ​for​ r ​in​ rectangles] 
   

 retval 

end 

end 

 

# Sample from multinomial distribution 

function​ multinomial_sample(p::​AbstractVector​{​Float64​}) 
rand_num = rand() 

for​ i = ​1​:length(p) 
 if​ rand_num < sum(p[​1​:i]) 
 return​ i 
 end 

end 

end 
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# Initialize the robot randomly in the room 

# Randomly select a rectangle weighted by initializable area 

function​ init_pos(r::Room, rng::​AbstractRNG​) 
norm_areas = r.areas/sum(r.areas) 

rect = multinomial_sample(norm_areas) 

return​ init_pos(r.rectangles[rect], rng) 
end 

 

# Determines if pos is in contact with a wall 

# returns bool indicating contact 

function​ wall_contact(r::Room, pos::​AbstractVector​{​Float64​}) 
for​ (i, rect) ​in​ enumerate(r.rectangles) 

 wc, _ = wall_contact(rect, pos) 

 if​ wc >= ​0 
 return​ ​true 
 end 

end 

return​ ​false 
end 

 

# Determines if pos is in contact with a specific wall 

# returns true if true 

function​ contact_wall(r::Rectangle, wall::​Int​, pos::​Array​{​Float64​, ​1​}) 
wc,_ = wall_contact(r, pos) 

return​ wc == wall 
end  

 

# Determines if pos (center of robot) is within the room 

function​ in_room(r::Room, pos::​AbstractVector​{​Float64​}) 
return​ any([in_rectangle(rect, pos) ​for​ rect ​in​ r.rectangles]) 

end 

 

# Attempts to translate from pos0 in direction heading for des_step without 

violating boundaries 

function​ legal_translate(r::Room, pos0::​AbstractVector​{​Float64​}, 
heading::​AbstractVector​{​Float64​}, des_step::​Float64​) 

fs = minimum(furthest_step(rect, pos0, heading) ​for​ rect ​in 
r.rectangles) 

fs = min(des_step, fs) 

pos1 = pos0 + fs*heading 

if​ !in_room(r, pos1) 
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 return​ pos0 
else 

 return​ pos1 
end 

end 

 

# computes the length of a ray from robot center to closest segment 

# from p0 pointing in direction heading 

# inputs: p0: array specifying initial point 

# heading: array specifying heading unit vector 

# R: robot radius [m] 

# outputs: ray_length [m] 

function​ ray_length(r::Room, pos0::​AbstractVector​{​Float64​}, 
heading::​AbstractVector​{​Float64​}) 

return​ minimum(ray_length(rect, pos0, heading) ​for​ rect ​in 
r.rectangles) 

end 

 

# Render room based on individual rectangles 

function​ render(r::Room, ctx::CairoContext) 
for​ rect ​in​ r.rectangles 

 render(rect, ctx) 

end 

end 
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line_segment_utils.jl 
 
# functions for determining whether the Roomba's path interects 

# with a line segment and struct defining line segments 

# maintained by {jmorton2,kmenda}@stanford.edu 

 

 

MARGIN = ​1e-8 
""" 

finds the real points of intersection between a line and a circle 

inputs: 

- `p0::AbstractVector{Float64}` anchor point 

- `uvec::AbstractVector{Float64}` unit vector specifying heading 

- `p1::AbstractVector{Float64}` centroid (x,y) of a circle 

- `R::Float64` radius of a circle 

returns: 

- `R1,R2::Float64` where R1,R2 are lengths of vec to get from p0 to the 

intersecting 

 points. If intersecting points are imaginary, returns `nothing` in 

their place 

""" 

function​ real_intersect_line_circle(p0::​AbstractVector​{​Float64​}, 
 uvec::​AbstractVector​{​Float64​}, 
 p1::​AbstractVector​{​Float64​}, 
 R::​Float64​) 

# these equations were generated by Mathematica using the following 

command: 

# Simplify[Solve[x0 + dx0 * R0 == x && 

# y0 + dy0 *R0 == y && 

# (x - x1)^2 + (y - y1)^2 == R, 

# {x, y, R0}]] 

# Where the solutions for R0 are called R1 and R2 here 

x0, y0 = p0 

dx0, dy0 = uvec 

x1, y1 = p1 

 

radicand = dx0 ​̂2​ * (dy0 ​̂2​ * (R - (x0 - x1) ​̂2​) + dx0 ​̂2​ * (R - (y0 - 
y1) ​̂2​) + ​2​*dx0*dy0*(x0 - x1)*(y0 - y1)) 

if​ radicand < ​0​ ​# intersecting points are imaginary 
 return​ ​nothing​, ​nothing 

else 
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 R1 = (​1​/(dx0*(dx0 ​̂2​ + dy0 ​̂2​)))*(dx0 ​̂2​ * (-x0 + x1) + sqrt(radicand) + 
dx0*dy0*(-y0 + y1)) 

 R2 = (​1​/(dx0*(dx0 ​̂2​ + dy0 ​̂2​)))*(dx0 ​̂2​ * (-x0 + x1) - sqrt(radicand) + 
dx0*dy0*(-y0 + y1)) 

 return​ R1, R2 
end 

end 

 

""" 

finds the intersection between a line and a line segment 

inputs: 

- `p0::AbstractVector{Float64}` anchor point 

- `uvec::AbstractVector{Float64}` unit vector specifying heading 

- `p1, p2::AbstractVector{Float64}` x,y of the endpoints of the segment 

returns: 

- `sol::AbstractVector{Float64}` x,y of intersection or `nothing` if 

doesn't intersect 

""" 

function​ intersect_line_linesegment(p0::​AbstractVector​{​Float64​}, 
uvec::​AbstractVector​{​Float64​}, p1::​AbstractVector​{​Float64​}, 
p2::​AbstractVector​{​Float64​}) 

dx, dy = uvec 

n = [-dy, dx] 

dprod1 = dot(n, p1-p0) 

dprod2 = dot(n, p2-p0) 

 

if​ sign(dprod1) != sign(dprod2) 
 # there's an intersection 

 

 # these equations were generated by Mathematica using the following 

command: 

 # Simplify[Solve[x0 + dx0 * R0 == x1 + dx1 * R1 && y0 + dy0 *R0 == y1 

+ dy1 *R1, {R0,R1}]] 

 # Where R0 is the length of the segment originating from p0 

 

 x0, y0 = p0 

 x1, y1 = p1 

 x2, y2 = p2 

 dx0, dy0 = uvec 

 dx1 = x2 - x1 

 dy1 = y2 - y1 

 R = (dy1*x0 - dy1*x1 - dx1*y0 + dx1*y1)/(dx1*dy0 - dx0*dy1) 
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 if​ R >= ​0 
 return​ R 
 else 

 return​ ​nothing 
 end 

else 

 return​ ​nothing 
end 

end 

 

# Define LineSegment 

mutable struct​ LineSegment 
p1::​Array​{​Float64​, ​1​} ​# anchor point of line-segment 
p2::​Array​{​Float64​, ​1​} ​# anchor point of line-segment 
goal::​Bool​ ​# used for rendering purposes 
stairs::​Bool​ ​# used for rendering purposes 

end 

 

""" 

determines if traveling in heading from p0 intersects the line passing 

through this segment 

inputs: 

- `ls::LineSegment` line segment under test 

- `p0::AbstractVector{Float64}` initial point being travelled from 

- `heading::AbstractVector{Float64}` heading unit vector 

returns: 

- `::Bool` that is true if pointing toward segment 

""" 

function​ pointing_toward_segment(ls::LineSegment, 
p0::​AbstractVector​{​Float64​}, heading::​AbstractVector​{​Float64​}) 

dp12 = ls.p2 - ls.p1 

normalize!(dp12) 

np12 = [-dp12[​2​], dp12[​1​]] 
 

# ensure it points toward p0 

if​ dot(np12, p0 - ls.p1) < ​0 
 np12 *= -​1.0 

end 

 

# return true if heading projects in the opposite direction of np12 

dot(np12, heading) < ​0.0 
end 
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""" 

computes the length of a ray from robot center to segment from p0 pointing 

in direction heading 

inputs: 

- `ls: functions for determining whether the Roomba's path interects 

# with a line segment and struct defining line segments 

# maintained by {jmorton2,kmenda}@stanford.edu 

 

 

MARGIN = 1e-8 

""" 

finds the real points of intersection between a line and a circle 

inputs: 

- ​`p0::AbstractVector{Float64} ​̀ anchor point 
- ​`uvec::AbstractVector{Float64} ​̀ unit vector specifying heading 
- ​`p1::AbstractVector{Float64} ​̀ centroid (x,y) of a circle 
- ​`R::Float64 ​̀ radius of a circle 
returns: 

- ​`R1,R2::Float64 ​̀ ​where​ R1,R2 are lengths of vec to get from p0 to the 
intersecting 

 points. If intersecting points are imaginary, returns ​`nothing ​̀ ​in 
their place 

""" 

function real_intersect_line_circle(p0::AbstractVector{Float64}, 

 uvec::AbstractVector{Float64}, 

 p1::AbstractVector{Float64}, 

 R::Float64) 

# these equations were generated by Mathematica using the following 

command: 

# Simplify[Solve[x0 + dx0 * R0 == x && 

# y0 + dy0 *R0 == y && 

# (x - x1)^2 + (y - y1)^2 == R, 

# {x, y, R0}]] 

# Where the solutions for R0 are called R1 and R2 here 

x0, y0 = p0 

dx0, dy0 = uvec 

x1, y1 = p1 

 

radicand = dx0^2 * (dy0^2 * (R - (x0 - x1)^2) + dx0^2 * (R - (y0 - 

y1)^2) + 2*dx0*dy0*(x0 - x1)*(y0 - y1)) 
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if radicand < 0 # intersecting points are imaginary 

 return nothing, nothing 

else 

 R1 = (1/(dx0*(dx0^2 + dy0^2)))*(dx0^2 * (-x0 + x1) + sqrt(radicand) + 

dx0*dy0*(-y0 + y1)) 

 R2 = (1/(dx0*(dx0^2 + dy0^2)))*(dx0^2 * (-x0 + x1) - sqrt(radicand) + 

dx0*dy0*(-y0 + y1)) 

 return R1, R2 

end 

end 

 

""" 

finds the intersection between a line and a line segment 

inputs: 

- ​`p0::AbstractVector{Float64} ​̀ anchor point 
- ​`uvec::AbstractVector{Float64} ​̀ unit vector specifying heading 
- ​`p1, p2::AbstractVector{Float64} ​̀ x,y of the endpoints of the segment 
returns: 

- ​`sol::AbstractVector{Float64} ​̀ x,y of intersection or ​`nothing ​̀ ​if 
doesn't intersect 

""" 

function intersect_line_linesegment(p0::AbstractVector{Float64}, 

uvec::AbstractVector{Float64}, p1::AbstractVector{Float64}, 

p2::AbstractVector{Float64}) 

dx, dy = uvec 

n = [-dy, dx] 

dprod1 = dot(n, p1-p0) 

dprod2 = dot(n, p2-p0) 

 

if sign(dprod1) != sign(dprod2) 

 # there's an intersection 

 

 # these equations were generated by Mathematica using the following 

command: 

 # Simplify[Solve[x0 + dx0 * R0 == x1 + dx1 * R1 && y0 + dy0 *R0 == y1 

+ dy1 *R1, {R0,R1}]] 

 # Where R0 is the length of the segment originating from p0 

 

 x0, y0 = p0 

 x1, y1 = p1 

 x2, y2 = p2 

 dx0, dy0 = uvec 
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 dx1 = x2 - x1 

 dy1 = y2 - y1 

 R = (dy1*x0 - dy1*x1 - dx1*y0 + dx1*y1)/(dx1*dy0 - dx0*dy1) 

 if R >= 0 

 return R 

 else 

 return nothing 

 end 

else 

 return nothing 

end 

end 

 

# Define LineSegment 

mutable struct LineSegment 

p1::Array{Float64, 1} # anchor point of line-segment 

p2::Array{Float64, 1} # anchor point of line-segment 

goal::Bool # used for rendering purposes 

stairs::Bool # used for rendering purposes 

end 

 

""" 

determines ​if​ traveling ​in​ heading from p0 intersects the line passing 
through this segment 

inputs: 

- ​`ls::LineSegment ​̀ line segment under test 
- ​`p0::AbstractVector{Float64} ​̀ initial point being travelled from 
- ​`heading::AbstractVector{Float64} ​̀ heading unit vector 
returns: 

- ​`::Bool ​̀ that is ​true​ ​if​ pointing toward segment 
""" 

function pointing_toward_segment(ls::LineSegment, 

p0::AbstractVector{Float64}, heading::AbstractVector{Float64}) 

dp12 = ls.p2 - ls.p1 

normalize!(dp12) 

np12 = [-dp12[2], dp12[1]] 

 

# ensure it points toward p0 

if dot(np12, p0 - ls.p1) < 0 

 np12 *= -1.0 

end 
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# return true if heading projects in the opposite direction of np12 

dot(np12, heading) < 0.0 

end 

 

 

""" 

computes the length of a ray from robot center to segment from p0 pointing 

in​ direction heading 
inputs: 

- ​`ls::LineSegment ​̀ line segment under test 
- ​`p0::AbstractVector{Float64} ​̀ initial point being travelled from 
- ​`heading::AbstractVector{Float64} ​̀ heading unit vector 
returns: 

- ​`::Float64 ​̀ that is the length of the ray 
""" 

function ray_length(ls::LineSegment, p0::AbstractVector{Float64}, 

heading::AbstractVector{Float64}) 

p1 = ls.p1 

p2 = ls.p2 

 

ray_length = Inf 

 

if !(pointing_toward_segment(ls, p0, heading)) 

 return ray_length 

else 

 intr = intersect_line_linesegment(p0, heading, p1, p2) 

 if intr != nothing 

 return intr 

 else 

 return Inf 

 end 

end 

end 

 

 

""" 

computes the furthest step a robot of radius R can take 

inputs: 

- ​`ls::LineSegment ​̀ line segment under test 
- ​`p0::AbstractVector{Float64} ​̀ initial point being travelled from 
- ​`heading::AbstractVector{Float64} ​̀ heading unit vector 
- ​`R::Float64 ​̀ radius of robot 
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returns: 

- ​`furthest_step::Float64 ​̀ furthest step the robot can take 
-- 

The way this is computed is by seeing ​if​ a ray originating from 
p0 ​in​ direction heading intersects the following object. Consider 
the shape made by moving the robot along the length of the segment. 

We can construct this shape by placing a circle with radius of 

the robot radius R at each ​end​, and connecting their sides by shifting 
segment line out to its left and right by R. 

If the line from p0 intersects this object, then choosing the closest 

intersection gives the point at which the robot would stop ​if​ traveling 
along this line. 

""" 

function furthest_step(ls::LineSegment, p0::AbstractVector{Float64}, 

heading::AbstractVector{Float64}, R::Float64) 

furthest_step = Inf 

 

if !(pointing_toward_segment(ls, p0, heading)) 

 return furthest_step 

end 

 

# heading along segment 

dp12 = ls.p2 - ls.p1 

normalize!(dp12) 

np12 = [-dp12[2], dp12[1]] 

 

# project sides out a robot radius 

p1l = ls.p1 - R*np12 

p1r = ls.p1 + R*np12 

p2l = ls.p2 - R*np12 

p2r = ls.p2 + R*np12 

 

# intesection with p1 

R1,R2 = real_intersect_line_circle(p0, heading, ls.p1, R/2) 

 

if R1 != nothing 

 if R1 > -MARGIN && R1 < furthest_step 

 furthest_step = max(R1, 0.0) 

 end 

 if R2 > -MARGIN && R2 < furthest_step 

 furthest_step = max(R2, 0.0) 

 end 
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end 

 

# intesection with p2 

R1, R2 = real_intersect_line_circle(p0, heading, ls.p2, R/2) 

if R1 != nothing 

 if R1 > -MARGIN && R1 < furthest_step   

 furthest_step = max(R1, 0.0) 

 end 

 if R2 > -MARGIN && R2 < furthest_step 

 furthest_step = max(R2, 0.0) 

 end 

end 

 

# intersection with the segment 

Rl = intersect_line_linesegment(p0, heading, p1l, p2l) 

if Rl != nothing 

 if Rl > -MARGIN && Rl < furthest_step 

 furthest_step = max(Rl, 0.0) 

 end 

end 

 

Rr = intersect_line_linesegment(p0, heading, p1r, p2r) 

if Rr != nothing 

 if Rr > -MARGIN && Rr < furthest_step 

 furthest_step = max(Rr, 0.0) 

 end 

end 

 

if Rl != nothing && Rr != nothing 

 if Rl > 0 && Rr < 0 

 # something wrong 

 println("Travelling through a wall!!") 

 end 

end 

 

furthest_step 

end 

 

# Transform coordinates in world frame to coordinates used for rendering 

function transform_coords(pos::AbstractVector{Float64}) 

x, y = pos 
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# Specify dimensions of window 

h = 600 

w = 600 

 

# Perform conversion 

x_trans = (x + 30.0)/50.0*h 

y_trans = -(y - 20.0)/50.0*w 

 

x_trans, y_trans 

end 

 

# Draw line in gtk window based on start and end coordinates 

function render(ls::LineSegment, ctx::CairoContext) 

start_x, start_y = transform_coords(ls.p1) 

if ls.goal 

 set_source_rgb(ctx, 0, 1, 0) 

elseif ls.stairs 

 set_source_rgb(ctx, 1, 0, 0) 

else 

 set_source_rgb(ctx, 0, 0, 0) 

end 

move_to(ctx, start_x, start_y) 

end_x, end_y = transform_coords(ls.p2) 

line_to(ctx, end_x, end_y) 

stroke(ctx) 

end 
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