

AA228 - Final Project Report

Spencer Diehl - bigdiehl@stanford.edu
 Tyler Pharris - tpharris@stanford.edu
Alp Ozturk - azoturk@stanford.edu

December 7, 2018

Abstract
A Roomba has been powered on and found itself in a familiar room. It now needs to make its
way to the next room in order to begin its task of cleaning the floors. This would normally be a
simple task, but the Roomba’s location and direction in the room are unknown. The Roomba
knows the dimensions of the room it is in and what sensor it has. The sensor on the Roomba is
either a bump sensor or a lidar. Using the sensor, an unknown initial position and direction, and
the room dimensions, the goal is to reach the doorway to the next room while avoiding the flight
of stairs that are also in the room. This Roomba problem can be modeled as a POMDP [1] with
the location and direction of the Roomba as the state uncertainty. Two different sensors were
tested on 3 different types of methods. The bump sensor was tested on a random policy, a
predefined policy, an offline QMDP solver, and an online solver that used QMDP for the offline
portion. The bump sensor’s scores ranged from -9.596 to -5.600 points. The lidar sensor was
tested on a predefined policy and an offline QMDP solver. The lidar sensor scores ranged from
-3.900 to -2.188 points. Each method had a couple of failure modes with the most common being
due to a lack of lookahead depth. In conclusion, when comparing results using the same sensor,
online methods outperformed offline methods,which outperformed predefined policy methods,
which outperformed random policy methods. Each successive method type was more effective,
but required more computational power. The inclusion of the more accurate lidar sensor (which
incurred no penalties for making observations, unlike the bumper sensor) increased the mean
total reward for the different methods using that sensor. These results suggest that POMDP
solution methods are effective methods for solving problems with partially observable state
spaces. It further suggests that it may be more efficient to use POMDP solution techniques to
solve this and similar problems rather than attempting to derive an explicit policy.

Problem Description
Our team was challenged with solving a problem where a Roomba was in an unknown location
in a room and needed to leave the room through a doorway. The room’s dimensions, including
the location of the doorway and a flight of stairs, are known to the Roomba. However, its

1

location in (x,y) coordinates and its heading θ,
where the heading θ = 0° is aligned with the
positive x-direction, are unknown.

Observations
The only sensor available to the Roomba is
either a bump sensor, which returns a signal to
the Roomba when it contacts a wall, or a lidar
which return a noisy measurement of the
closest wall in front of the Roomba. Using the
sensor, an unknown initial position and
direction, and the room dimensions the
Roomba must reach the doorway to the next
room.

Rewards
To quantify positive and negative behaviour,
the Roomba problem is defined to have the
following rewards/penalties:

● Each time that the Roomba hits a wall
it receives -1 point.
The bump sensor provides crucial
informations when it hits the wall, so
this incentivized our Roomba to
balance impacting walls in order to
acquire more information with the
penalty for doing so.

● For falling down the stairs our
Roomba receives a penalty of -10
points. This provides a large incentive
for the Roomba to avoid the stairs.

● Reaching the goal state of the
doorway to the next room gives a
reward of +10 points. This provides a
large incentive for our Roomba to
attempt to reach the goal.

● The last scoring factor is that for
every time step our Roomba receives a

2

-0.1 point penalty. This incentivizes our Roomba to minimize the time taken to reach the
goal

Particle Filter
Our team used a particle filter in order to update our belief state from an initial uniformly
sampled distribution. This particle filter was able to filter out “bad” particles using a couple of
different methods.

1. If the Roomba’s bump sensor is activated then all the particles must be on one of the
walls. A corollary to this is that if the bump sensor is activated but the goal or stairs are
not reached then all of the particles on those locations are thrown out.

2. If a particle is outside of the room’s dimensions then it is thrown out of our sample.
This results in a couple of different methods for updating our belief state to a more accurate
belief state using the bump sensor.

1. We can attempt to run particles out of the room’s dimensions by moving farther than the
state that the particle represents would allow.

2. We can eliminate particles that were not along the walls by running into a wall.
The combination of these two methods allow us to localize our belief state to where our Roomba
actually is and then move to the goal state. Doing these actions has costs however.

1. The longer that it takes us to localize, the longer it takes before the goal is reached, and
the lower our score will be.

2. The more walls we bounce into, the better our localization, but our score is reduced in
large increments.

This means that our Roomba has to balance the decision of collecting information versus
attempting to reach the goal state. Each solution method discussed in the following sections has
its own calculation for balancing these tradeoffs.

Baseline Methods
Two baseline methods were tested and scored to provide a comparison for a series of four
different POMDP methods.

1. The first baseline method was a random policy where the Roomba would begin by
driving straight until it impacted a wall. After hitting the wall it would turn to a random
direction and then drive straight until it hit another wall or an end state (goal or stairs).
This would repeat until an end state was reached or 100 time steps had elapsed.

2. The second baseline method used a Lidar sensor which gave the Roomba a noisy
measurement of the distance to the wall directly in front of it. This method started with
the Roomba rotating for 25 time steps so that it could localize and then it pointed itself
directly at the goal state and drove to it.

POMDP Solution Methods

3

After testing and scoring the baseline methods we used 3 different POMDP methods to attempt
to beat the baseline scores.

1. The first was a simple policy that attempted to use the bump sensor to approximate the
lidar sensor before pointing and driving towards the goal state.

2. The second was a QMDP method where the Roomba initially drove into a wall to
localize and then used the alpha vectors calculated in QMDP and it’s current belief state
to create a policy to take at each time step.

3. The third was an online variation of one-step lookahead where the utility used to
calculate the policy was the sum of the alpha vectors calculated using QMDP multiplied
by the current belief state and the alpha vectors multiplied by the next belief state
assuming that same action. This was not the optimal one-step lookahead method but was
used to see if it would improve on the QMDP method alone.

Solution Methods
This section describes in more detail each of the solution methods implemented. Each solution
method uses a particle filter to update the belief state when given the belief state at the past time
step, the action, and the observation made given that action occurred.

Lidar Baseline
The policy for this method was to initially have the Roomba spin in place for 25 time steps. This
allowed the Roomba to localize itself using lidar measurements. After the first 25 times steps of
localization the Roomba would travel towards the goal state using a simple proportional
controller.

The main failure mode that this method experienced was that if the Roomba was initialized
anywhere with a wall between its starting point and the goal state then it would never reach the
goal state. To overcome this failure mode, a policy could be devised where if the Roomba’s
bump sensor stays active for 10 time steps then it will point in a random direction and travel
forward for 5 time steps before once again travelling to the goal state. Another solution was
implemented in the ​Lidar QMDP Method ​discussed in more detail below.

Bumper Baseline
The policy for this method was to initially have the Roomba travel straight forward until it hit a
wall or an end state. After impacting the wall the Roomba would then turn to a random direction
and then travel straight forward until it again either hit a wall or an end state. This policy would
continue until either an end state was reached or all 100 time steps ran. This method was purely
random.

4

A policy could be devised where the Roomba will generally attempt to travel towards where it
thinks the goal state is. As it impacts walls its localization will improve and its ability to travel to
the goal state will get better. We implemented something similar to this below in the
Localization Bumper Method. This general policy improvement won’t solve every failure
instance, but it would take the random chance out of the system. Many other solutions could be
implemented which would improve the results of this method. Those include the ​QMDP Bumper
Method,​ and the ​ Updated Belief State Lookahead Bumper Method​.

Localization Bumper Method
For this policy, the Roomba travelled straight forward until it hit a wall or an end state. After
impacting the wall the Roomba would then turn to 180 degrees and then travel straight forward
until it reached the initial location that it started at. It would then turn 90 degrees and travel
forward until it hit a wall. It would repeat those steps 4 times which is when it arrived back at its
initial state.

The intent of this procedure was to duplicate the initial localization that would occur with the
Lidar, but with more uncertainty because of the noise in the velocity and angular velocity inputs
to the actions.

Once the localization step was finished the Roomba would point itself in the direction of the goal
state and travel forward. This policy would continue until either an end state was reached or all
100 time steps ran. This method was better than the Bumper Baseline Method but still could be
improved upon. The main failure mode was that this method did not localize well, and it was
guaranteed to hit at least 4 walls before it could use its localization knowledge to direct it.

Another failure mode occurred if there was a wall in between the initial location of the Roomba
and the goal state, as the roomba would get stuck on said wall.. Many better solutions could be
implemented which would improve the results over this method. Those include the ​QMDP
Bumper Method​, and the ​Updated Belief State Lookahead Bumper Method​.

QMDP Bumper Method
To compute the alpha vectors necessary to create a policy from the belief state, the predefined
QMDP solver included in POMDP.jl was used. Once the alpha vectors were computed offline,
the simulation was started. To kickstart the simulation, the Roomba was made to travel straight
forward until it hit a wall or an end state. This allowed the belief state to localize along the walls
rather than being completely uniform. After impacting the wall the Roomba would then dot
product the alpha vector for a given action, ,with the current belief state, ,to calculate theαa

→ b
→

utility of that respective action, . This would be done for all of the action states in our(b)U a

→

5

discretized action space and the action that had the greatest utility for that belief state would be
chosen for our policy. This method is described by the equation below:

Equation 1: ​Equation for finding the policy at each belief state in the ​QMDP Bumper Method​ [2]

This method was proved effective but still failed on occasion. The main failure mode occurred
when two clusters of particles overlapped with each other, but had opposite beliefs of what theta
was. When this occurred the action with the highest utility was to just to drive in a circle with a
small radius. This is because the QMDP solution was based solely on a single step horizon. It is
supposed that a policy where the Roomba could do a lookahead to a certain depth to determine
its highest utility would eliminate that failure mode. We implemented something similar to this
below in the ​Updated Belief State Lookahead Bumper Method.

QMDP Lidar Method
This method was very similar to the ​QMDP Bumper Method. ​The main difference is that the
lidar measurements had to be discretized in order to use the QMDP solver. Another difference is
that at the beginning of the simulation the Roomba spun in place for 15 time steps while the lidar
measured the distance to the nearest wall in front of the Roomba. Once the 15 time steps passed
the Roomba began to choose its actions based on the method laid out in ​QMDP Bumper Method
where the Roomba chose the action that would result in the greatest utility given its belief state
and the alpha vectors computed offline. This method was highly effective and no major failure
method occured.

Updated Belief State Lookahead Bumper Method
We first calculate the alpha vectors for our system using QMDPsolver in the POMDP.jl file . The
simulation then begins with the Roomba travelling straight until it hit a wall or an end state. This
localizes the particles to a more concentrated location along the walls. The Roomba then takes
the dot product of the alpha vector for a given action, , and the current belief state, ,toαa

→ b
→

calculate the utility of that respective action, . This would be done for all 50 of the action(b)U a

→

states in our discretized state space and then we would calculate the utility of the next step,
 ,by taking the dot product of the alpha vector for a given action, , with the next(b |a)U a′

→
 αa

→

belief state given that the first action occurred, | a. Our total utility was calculated by taking theb
→

sum of the dot product of the first step and the dot product of the second step and then the action
that resulted in the maximum utility was chosen for our policy. [3] This method is described by
the equation below:

6

Equation 2​: Equation for finding the policy at each belief state in the ​Updated Belief State Bumper

Method

This policy would continue until either an end state was reached or all 100 time steps ran. This
method was effective, but could still be improved upon by a better online method. The main
failure mode again occurred when two clusters of particles overlapped with each other, but had
opposite beliefs of what theta was. A policy with a greater lookahead depth can reduce the
chances of the circling from happening. In this policy we only looked ahead two steps, but you
could theoretically do this all the way to the 100 time steps available and find the exact actions
that would maximize our utility.

Summary of Results
Below we have summarized the results obtained from testing our different methods. In each case,
the simulator was run for a statistically significant number of times to approximate the mean
total reward obtainable from using a particular method. As can be seen in the tables, the POMDP
solution methods were able to improve on the predefined baseline methods.

Table 1: ​Test results for the Roomba simulation with the bumper sensor. The simulation was done for a
statistically significant number of testing cycles. The results were then averaged to give the mean total
reward and the standard deviation of the total reward.

Solution Method Mean Total Reward StdErr Total Reward Testing Cycles

Bumper Baseline -9.596 3.737 50

Localization Bumper
Method

 -9.452 3.196 50

QMDP Bumper Method -6.444 3.418 50

Updated Belief State
Lookahead Bumper Method

-5.600 2.950 50

7

Table 2: ​Test results for the Roomba simulation with the lidar sensor. The simulation was done for a
statistically significant number of testing cycles. The results were then averaged to give the mean total
reward and the standard deviation of the total reward.

Solution Method Mean Total Reward StdErr Total Reward Testing
Cycles

Lidar Baseline -3.900 4.130 50

QMDP Lidar Method -2.188 3.656 50

Conclusions
In conclusion, when comparing results using the same sensor, online methods such as the
Updated Belief State Lookahead Bumper Method ​outperformed offline methods, such as the ​QMDP
Bumper Method​, which outperformed predefined policy methods, such as the ​Localization
Bumper Metho​d, which outperformed random policy methods, such as the ​Bumper Baseline
Method​. Each successive method type was more effective, but required more computational
power.

The inclusion of the more accurate lidar sensor (which incurred no penalties for making
observations, unlike the bumper sensor) increased the mean total reward for the different
methods using that sensor.

These results suggest that POMDP solution methods are effective methods for solving problems
with partially observable state spaces. It further suggests that it may be more efficient to use
POMDP solution techniques to solve this and similar problems rather than attempting to derive
an explicit policy.

8

References
[1] Kochenderfer, M. J., 2015, “Decision Making Under Uncertainty: Theory and Application,”
State Uncertainty. M. J. Kochenderfer, The MIT Press, Cambridge, Massachusetts, pp. 133.

[2] Kochenderfer, M. J., 2015, “Decision Making Under Uncertainty: Theory and Application,”
State Uncertainty. M. J. Kochenderfer, The MIT Press, Cambridge, Massachusetts, pp. 144.

[3] Kochenderfer, M. J., 2015, “Decision Making Under Uncertainty: Theory and Application,”
State Uncertainty. M. J. Kochenderfer, The MIT Press, Cambridge, Massachusetts, pp. 149.

9

Appendix

Here we list the code files used in the development of this paper. The files are as follows:

Solution methods file listing: ​​The first listing contains the full file code. Subsequent listings
exclude the simulation and testing routines and the import statements:

1. Lidar_Baseline.jl…………………………………………………………………….…..11
2. Bumber_Baseline.jl………………………………………………………………….….15
3. Lidar_QMDP.jl……………………………………………………………………..…...18
4. Bumber_QMDP.jl…………………………………………………………………...…..22
5. Localization_Bumper.jl………………………………………………………………….26
6. Updated_Belief_State_Bumper.jl………………………………………………………..31
7. Two_step_lookahead.jl…………………………………………………………………..36

Support file listing:​​ All the solution methods above used the same support files, as listed below:

1. roomba_env.jl - Contains definitions for the Roomba environment and for the Roombda
POMDP

2. filtering.jl - Contains definitions for the particle filter used during simulations
3. env_room.jl - Contains definitions and functions for creating the room environment
4. line_segment_utils.jl - Contains functions for determining whether the Roomba's path

intersects with a line segment.

10

Lidar_Baseline.jl
activate project environment

include these lines of code in any future scripts/notebooks

import​ Pkg

if​ !haskey(Pkg.installed(), ​"AA228FinalProject"​)
jenv = joinpath(dirname(​@__FILE__​()), ​"."​) ​# this assumes the

notebook is in the same dir

as the Project.toml file, which should be in top level dir of the

project.

Change accordingly if this is not the case.

Pkg.activate(jenv)

end

import necessary packages

using​ AA228FinalProject
using​ POMDPs
using​ POMDPPolicies
using​ BeliefUpdaters
using​ ParticleFilters
using​ POMDPSimulators
using​ Cairo
using​ Gtk
using​ Random
using​ Printf

%%

sensor = Lidar() ​# or Bumper() for the bumper version of the environment
config = ​3​ ​# 1,2, or 3
m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));

%%

num_particles = ​2000
resampler = LidarResampler(num_particles,

LowVarianceResampler(num_particles))

for the bumper environment

resampler = BumperResampler(num_particles)

spf = SimpleParticleFilter(m, resampler)

11

v_noise_coefficient = ​2.0
om_noise_coefficient = ​0.5

belief_updater = RoombaParticleFilter(spf, v_noise_coefficient,

om_noise_coefficient);

%%

Define the policy to test

mutable struct​ ToEnd <: Policy
ts::​Int64​ ​# to track the current time-step.

end

extract goal for heuristic controller

goal_xy = get_goal_xy(m)

define a new function that takes in the policy struct and current belief,

and returns the desired action

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})

spin around to localize for the first 25 time-steps

if​ p.ts < ​25
 p.ts += ​1
 return​ RoombaAct(​0.​,​1.0​) ​# all actions are of type RoombaAct(v,om)

end

p.ts += ​1

after 25 time-steps, we follow a proportional controller to

navigate

directly to the goal, using the mean belief state

compute mean belief of a subset of particles

s = mean(b)

compute the difference between our current heading and one that

would

point to the goal

goal_x, goal_y = goal_xy

x,y,th = s[​1​:​3​]
ang_to_goal = atan(goal_y - y, goal_x - x)

del_angle = wrap_to_pi(ang_to_goal - th)

12

apply proportional control to compute the turn-rate

Kprop = ​1.0
om = Kprop * del_angle

always travel at some fixed velocity

v = ​5.0

return​ RoombaAct(v, om)
end

%%

first seed the environment

Random.seed!(​2​)

reset the policy

p = ToEnd(​0​) ​# here, the argument sets the time-steps elapsed to 0

#RUN THE SIMULATION

c = ​@GtkCanvas​()
win = GtkWindow(c, ​"Roomba Environment"​, ​600​, ​600​)
for​ (t, step) ​in​ enumerate(stepthrough(m, p, belief_updater,
max_steps=​100​))

@guarded​ draw(c) ​do​ widget

 # the following lines render the room, the particles, and the roomba

 ctx = getgc(c)

 set_source_rgb(ctx,​1​,​1​,​1​)
 paint(ctx)

 render(ctx, m, step)

 # render some information that can help with debugging

 # here, we render the time-step, the state, and the observation

 move_to(ctx,​300​,​400​)
 show_text(ctx, ​@sprintf​(​"t=%d, state=%s,
o=%.3f"​,t,string(step.s),step.o))

end

show(c)

sleep(​0.1​) ​# to slow down the simulation
end

%%

13

using​ Statistics

total_rewards = []

for​ exp = ​1​:​50
println(string(exp))

Random.seed!(exp)

p = ToEnd(​0​)
traj_rewards = sum([step.r ​for​ step ​in

stepthrough(m,p,belief_updater, max_steps=​100​)])

push!(total_rewards, traj_rewards)

end

@printf​(​"Mean Total Reward: %.3f, StdErr Total Reward: %.3f"​,
mean(total_rewards), std(total_rewards)/sqrt(​5​))

14

Bumper_Baseline.jl
%%

sensor = Bumper() ​# or Bumper() for the bumper version of the environment
config = ​3​ ​# 1,2, or 3

m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));

%%

num_particles = ​5000
resampler = BumperResampler(num_particles)

for the bumper environments

resampler = BumperResampler(num_particles)

spf = SimpleParticleFilter(m, resampler)

v_noise_coefficient = ​2.0
om_noise_coefficient = ​0.5

belief_updater = RoombaParticleFilter(spf, v_noise_coefficient,

om_noise_coefficient);

%%

Define the policy to test

mutable struct​ ToEnd <: Policy
ts::​Int64​ ​# to track the current time-step.

end

extract goal for heuristic controller

goal_xy = get_goal_xy(m)

#flag for our wall hit policy

previousBumpState = ​false
spinStep = ​1

define a new function that takes in the policy struct and current belief,

and returns the desired action

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})

#Seed the environment

Random.seed!()

15

#Naive approach: Bump the wall, spin in a random direction, and then

drive

#again.

global​ previousBumpState
global​ spinSteps

#Fixed Velocity and spin rate maximums

velMax = m.mdp.v_max

omegaMax = m.mdp.om_max

#Normal driving speed

vel = ​5.0

#Set max and min number of time-steps to spin

maxSpinCount = ​8
minSpinCount = ​2

#Increase time step

p.ts += ​1

#If the wall has been bumped, then all particles are on the wall. If

so,

#then any particle will do for determining wall contact

s = particle(b,​1​)

#Call the wall_contact function to determine if we are in wall

contact

#(returns true or false)

currentBumpState = AA228FinalProject.wall_contact(m,s)

#The bump sensor tells us we are in contact with the wall

if​ (currentBumpState == ​true​)
 #Our memory variable tells us we weren't in contact the previous

timestep

 if​ (previousBumpState == ​false​)
 #Set a random number of time steps to spin

 spinSteps =

floor(minSpinCount+rand()*(maxSpinCount-minSpinCount))

 #Update the previous state

 previousBumpState = currentBumpState

 #Return our trajectory

16

 return​ RoombaAct(​0.0​, omegaMax)
 #Our memory variable tells us we were in contact with the wall in the

 #last time-step as well

 elseif​ (previousBumpState == ​true​)
 #If we are still spinning

 if​ (spinSteps != ​0​)
 #decrement spinSteps

 spinSteps -= ​1

 #Return our trajectory

 return​ RoombaAct(​0.0​, omegaMax)
 #Otherwise we are ready to test to see if we can drive forward

 else

 #Assume that we won't aren't pointed into a wall

 previousBumpState = ​false
 #Attempt to drive forward. If we can't them the logic

flow will

 #reset the spinSteps variable and the Roomba will spin a

random

 #number of time-steps again

 return​ RoombaAct(vel, ​0.0​)
 end

 end

#If we aren't in contact with the wall

elseif​ (currentBumpState == ​false​)
 #Update previous state

 previousBumpState = currentBumpState

 #Drive forward at a fixed velocity

 return​ RoombaAct(vel, ​0.0​)
end

end

17

Lidar_QMDP.jl
%%

#Discretize the observation space

cut_points = collect(​0​:​1​:​30​)
sensor_discrete = DiscreteLidar(cut_points)

#Discretize state space

num_x_pts = ​20
num_y_pts = ​20
num_th_pts = ​10
sspace = DiscreteRoombaStateSpace(num_x_pts,num_y_pts,num_th_pts)

#Discretize action space

vlist = collect(​0​:​2.5​:​10.0​)
omlist = collect(​0​:​0.25​:​1.0​)
aspace = vec(collect(RoombaAct(v, om) ​for​ v ​in​ vlist, om ​in​ omlist))

#Define our sensor and room layout

sensor = Lidar()

config = ​1​ ​# 1,2, or 3

#Define POMDP for the simulation

m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));

#Define the POMDP with discretized state/action/observations for the solver

m_discrete = RoombaPOMDP(sensor=sensor_discrete,

mdp=RoombaMDP(config=config, sspace = sspace,

 aspace = aspace));

%%

#Create our particle filter

num_particles = ​5000
resampler = LidarResampler(num_particles,

LowVarianceResampler(num_particles))

spf = SimpleParticleFilter(m, resampler)

v_noise_coefficient = ​2.0
om_noise_coefficient = ​0.5

18

belief_updater = RoombaParticleFilter(spf, v_noise_coefficient,

om_noise_coefficient);

%%

#Define our solver

solver = QMDPSolver(max_iterations=​20​,
 tolerance=​1e-3​,
 verbose=​true​)

#If we need to compute our policy for the first time

if​ (​1​ == ​1​)
#Use our solver and our POMDP model to find a policy

policy = solve(solver,m_discrete)

#Save our policy so we don't have to recompute

using​ JLD2, FileIO
@JLD2​.save ​"my_policy_lidar.jld"​ policy

#Otherwise use the saved policy we computed previously

else

@JLD2​.load ​"my_policy_lidar.jld"​ policy
end

%%

Define the policy to test

mutable struct​ ToEnd <: Policy
ts::​Int64​ ​# to track the current time-step.

end

%%

states = POMDPs.states(m_discrete)

define a new function that takes in the policy struct and current belief,

and returns the desired action

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})

spin around to localize for the first 25 time-steps

if​ p.ts < ​15
 p.ts += ​1

19

 return​ RoombaAct(​0.​,​1.0​) ​# all actions are of type RoombaAct(v,om)
end

p.ts += ​1

#Get our policy from our solver

global​ policy

#Extract our set of alpha vectors from our policy (one for each

action)

alphas = policy.alphas

greatestUtilityIndex = ​0
greatestUtility = -​Inf

numStates = POMDPs.n_states(m_discrete)

numActions = length(alphas)

#Create our belief vector from our particle filter

belief = zeros(numStates)

for​ i = ​1​:num_particles
 s = particle(b,i)

 index = POMDPs.stateindex(m_discrete,s)

 belief[index] += ​1
end

belief = belief/num_particles

see which action gives the highest util value

for​ i = ​1​:numActions
 utility = dot(alphas[i], belief)

 if​ utility > greatestUtility
 greatestUtility = utility

 greatestUtilityIndex = i

 end

end

map the index to action

a = policy.action_map[greatestUtilityIndex]

if​ greatestUtilityIndex == ​1
 a = policy.action_map[​2​]

end

20

return​ RoombaAct(a[​1​], a[​2​])
end

21

Bumper_QMDP.jl

%%

#Define our sensor

sensor = Bumper()

#Room configuration. Choose from 1,2, or 3

config = ​1

#Discretize state space

num_x_pts = ​50
num_y_pts = ​50
num_th_pts = ​20
sspace = DiscreteRoombaStateSpace(num_x_pts,num_y_pts,num_th_pts)

#Discretize action space

vlist = collect(​0​:​1.0​:​10.0​)
omlist = collect(​0​:​0.2​:​1.0​)
aspace = vec(collect(RoombaAct(v, om) ​for​ v ​in​ vlist, om ​in​ omlist))

#Get rid of first action which is (0,0). Doesn't do us any good

#aspace = aspace[2:length(aspace)]

#Construct the POMPDP for the QMDP solver (Discrete state/action space)

m_discrete = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config, sspace

= sspace,

 aspace = aspace));

#Try increasing the rewards

m_discrete.mdp.goal_reward = ​100
m_discrete.mdp.stairs_penalty = -​100

#Construct the POMDP for the simulator (Continuous state/action space)

m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));

%%

#Create the particle filter

num_particles = ​10000​ ​#2000

22

resampler = BumperResampler(num_particles)

spf = SimpleParticleFilter(m, resampler)

#Create our belief updater using our simple particle filter

v_noise_coefficient = ​2.0
om_noise_coefficient = ​0.5
belief_updater = RoombaParticleFilter(spf, v_noise_coefficient,

om_noise_coefficient);

%%

#Define our solver

#solver = FIBSolver()

solver = QMDPSolver(max_iterations=​20​,
 tolerance=​1e-3​,
 verbose=​true​)

#If we need to compute our policy for the first time

if​ (​1​ == ​0​)
#Use our solver and our POMDP model to find a policy

policy = solve(solver,m_discrete)

#Save our policy so we don't have to recompute

using​ JLD2, FileIO
@JLD2​.save ​"my_policy3.jld"​ policy

#Otherwise use the saved policy we computed previously

else

@JLD2​.load ​"my_policy2.jld"​ policy
end

%%

Define the policy to test

mutable struct​ ToEnd <: Policy
ts::​Int64​ ​# to track the current time-step.
policy::AlphaVectorPolicy

end

%%

23

#flag for our wall hit policy

previousBumpState = ​false

states = POMDPs.states(m_discrete)

define a new function that takes in the policy struct and current belief,

and returns the desired action

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})

global​ previousBumpState

#Drive straight into wall to localize belief state

if​ previousBumpState == ​false
 #If the wall has been bumped, then all particles are on the wall. If

so,

 #then any particle will do for determining wall contact

 s = particle(b,​1​)

 #Call the wall_contact function to determine if we are in wall

contact

 #(returns true or false)

 currentBumpState = AA228FinalProject.wall_contact(m,s)

 if​ currentBumpState == ​false
 return​ RoombaAct(​5.0​, ​0.0​)
 else

 previousBumpState = ​true
 end

end

#Use alpha vectors once first wall contact is made

if​ previousBumpState == ​true
 #Extract our policy from struct p

 policy = p.policy

 #Extract our set of alpha vectors from our policy (one for each

action)

 alphas = policy.alphas

 greatestUtilityIndex = ​6
 greatestUtility = -​Inf

 numStates = POMDPs.n_states(m_discrete)

24

 numActions = length(alphas)

 #Create our belief vector from our particle filter

 belief = zeros(numStates)

 for​ i = ​1​:num_particles
 s = particle(b,i)

 index = POMDPs.stateindex(m_discrete,s)

 belief[index] += ​1
 end

 belief = belief/num_particles

 #print(belief)

 #print("\n")

 # see which action gives the highest util value

 for​ i = ​1​:numActions
 utility = dot(alphas[i], belief)

 if​ utility > greatestUtility
 greatestUtility = utility

 greatestUtilityIndex = i

 end

 end

 # map the index to action

 a = policy.action_map[greatestUtilityIndex]

 if​ greatestUtilityIndex == ​1
 a = policy.action_map[​6​]
 end

 return​ RoombaAct(a[​1​], a[​2​])
end

end

25

Localization_Bumper.jl

%%

sensor = Bumper() ​# or Bumper() for the bumper version of the environment
config = ​1​ ​# 1,2, or 3
m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));

%%

num_particles = ​10000
resampler = BumperResampler(num_particles)

for the bumper environments

resampler = BumperResampler(num_particles)

spf = SimpleParticleFilter(m, resampler)

v_noise_coefficient = ​2.0
om_noise_coefficient = ​0.5

belief_updater = RoombaParticleFilter(spf, v_noise_coefficient,

om_noise_coefficient);

%%

Define the policy to test

mutable struct​ ToEnd <: Policy
 ts::​Int64​ ​# to track the current time-step.
end

extract goal for heuristic controller

goal_xy = get_goal_xy(m)

#flag for our wall hit policy

previousBumpState = ​false
spinStep =

define a new function that takes in the policy struct and current belief,

and returns the desired action

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})

 ​#Seed the environment

26

 Random.seed!()

 ​#Naive approach: Bump the wall, spin in a random direction, and then
drive

 ​#again.
 ​global​ velSteps
 ​global​ previousBumpState
 ​global​ spinSteps
 ​global​ L

 ​#Fixed Velocity and spin rate maximums
 velMax = m.mdp.v_max

 omegaMax = m.mdp.om_max

 ​#Normal driving speed
 vel = ​2

 ​#Set max and min number of time-steps to spin
 maxSpinCount = ​7
 minSpinCount = ​3

 ​#Increase time step
 p.ts += ​1

 ​#If the wall has been bumped, then all particles are on the wall. If
so,

 ​#then any particle will do for determining wall contact
 s = particle(b,​1​)

 ​#Call the wall_contact function to determine if we are in wall contact
 ​#(returns true or false)
 currentBumpState = AA228FinalProject.wall_contact(m,s)

 initialBumpState = AA228FinalProject.wall_contact(m,s)

 OmegaNinetyDegrees=​0.7853981634
 ​if​ (p.ts<​2​ && currentBumpState==​true​)
 L=​1
 velSteps=​0
 ​end
 ​if​ (p.ts<​2​ && currentBumpState==​false​)
 L=​2
 velSteps=​0
 ​end

27

 ​if​ (p.ts>​400​)
 L=​3
 ​end
 ​if​ (p.ts>​420​)
 L=​5
 ​end
 ​if​ (L==​1​)
 ​if​ (currentBumpState==​true​)
 ​if​ (previousBumpState==​false​)
 spinSteps=​4
 previousBumpState=currentBumpState

 ​elseif​ (previousBumpState=​true​)
 ​if​ (spinSteps!=​0​)
 spinSteps-=​1
 p.ts+=​1
 ​return​ RoombaAct(​0.0​,OmegaNinetyDegrees)
 ​else
 previousBumpState=​false
 p.ts+=​1
 L=​2
 ​return​ RoombaAct(vel,​0.0​)
 ​end
 ​end
 ​end
 ​elseif​ (L==​2​)
 ​while​ (currentBumpState==​false​)
 velSteps+=​1
 previousBumpState=currentBumpState

 p.ts+=​1
 ​return​ RoombaAct(vel,​0.0​)
 ​end
 ​while​ (currentBumpState==​true​)
 ​while​ (previousBumpState==​false​)
 spinSteps=​7
 previousBumpState=currentBumpState

 p.ts+=​1
 ​return​ RoombaAct(​0.0​,OmegaNinetyDegrees)
 ​end
 ​while​ (previousBumpState==​true​)
 ​if​ (spinSteps!=​0​)
 spinSteps-=​1
 p.ts+=​1

28

 ​return​ RoombaAct(​0.0​,OmegaNinetyDegrees)
 ​else
 velSteps-=​1
 p.ts+=​1
 L=​4
 ​return​ RoombaAct(vel,​0.0​)
 ​end
 ​end
 ​end
 ​elseif​ (L==​4​)
 ​if​ (velSteps>​0​)
 velSteps-=​1
 p.ts+=​1
 spinSteps=​4
 ​return​ RoombaAct(vel,​0.0​)
 ​else
 ​if​ (spinSteps>​0​)
 spinSteps-=​1
 p.ts+=​1
 ​return​ RoombaAct(​0.0​,OmegaNinetyDegrees)
 ​else
 L=​2
 velSteps+=​1
 p.ts+=​1
 ​return​ RoombaAct(vel,​0.0​)
 ​end
 ​end
 ​elseif​ (L==​3​)
 s = mean(b)

 goal_x, goal_y = goal_xy

 x,y,th = s[​1​:​3​]
 ang_to_goal = atan(goal_y - y, goal_x - x)

 del_angle = wrap_to_pi(ang_to_goal - th)

 Kprop = ​1.0
 om = Kprop * del_angle

 v = ​5.0
 p.ts+=​1
 ​return​ RoombaAct(​0.0​, om)
 ​elseif​ (L==​5​)
 s = mean(b)

 goal_x, goal_y = goal_xy

 x,y,th = s[​1​:​3​]

29

 ang_to_goal = atan(goal_y - y, goal_x - x)

 del_angle = wrap_to_pi(ang_to_goal - th)

 Kprop = ​1.0
 om = Kprop * del_angle

 v = ​5.0
 p.ts+=​1
 ​return​ RoombaAct(v,om)
 ​end
End

30

Updated_Belief_State_Bumper.jl

%%

#Define our sensor

sensor = Bumper()

#Room configuration. Choose from 1,2, or 3

config = ​1

#Discretize state space

num_x_pts = ​50
num_y_pts = ​50
num_th_pts = ​20
sspace = DiscreteRoombaStateSpace(num_x_pts,num_y_pts,num_th_pts)

#Discretize action space

vlist = collect(​0​:​1.0​:​10.0​)
omlist = collect(​0​:​0.2​:​1.0​)
aspace = vec(collect(RoombaAct(v, om) ​for​ v ​in​ vlist, om ​in​ omlist))

#Get rid of first action which is (0,0). Doesn't do us any good

#aspace = aspace(2:length(aspace))

#Construct the POMPDP for the QMDP solver (Discrete state/action space)

m_discrete = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config, sspace

= sspace,

 aspace = aspace));

#Try increasing the rewards

m_discrete.mdp.goal_reward = ​10
m_discrete.mdp.stairs_penalty = -​10

#Construct the POMDP for the simulator (Continuous state/action space)

m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));

%%

#Create the particle filter

31

num_particles = ​5000​ ​#2000
resampler = BumperResampler(num_particles)

spf = SimpleParticleFilter(m, resampler)

#Create our belief updater using our simple particle filter

v_noise_coefficient = ​2.0
om_noise_coefficient = ​0.5
belief_updater = RoombaParticleFilter(spf, v_noise_coefficient,

om_noise_coefficient);

%%

#Define our solver

#solver = FIBSolver()

solver = QMDPSolver(max_iterations=​20​,
 tolerance=​1e-3​,
 verbose=​true​)

#If we need to compute our policy for the first time

if​ (​1​ == ​0​)
 ​#Use our solver and our POMDP model to find a policy
 policy = solve(solver,m_discrete)

 ​#Save our policy so we don't have to recompute
 ​using​ JLD2, FileIO
 ​@JLD2​.save ​"my_policy.jld"​ policy

#Otherwise use the saved policy we computed previously

else

 ​@JLD2​.load ​"my_policy2.jld"​ policy
end

%%

Define the policy to test

mutable struct​ ToEnd <: Policy
 ts::​Int64​ ​# to track the current time-step.
 policy::AlphaVectorPolicy

end

32

%%

#flag for our wall hit policy

previousBumpState = ​false

states = POMDPs.states(m_discrete)

define a new function that takes in the policy struct and current belief,

and returns the desired action

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})

 ​global​ previousBumpState

 ​#Drive straight into wall to localize belief state
 ​if​ previousBumpState == ​false
 ​#If the wall has been bumped, then all particles are on the wall.
If so,

 ​#then any particle will do for determining wall contact
 s = particle(b,​1​)

 ​#Call the wall_contact function to determine if we are in wall
contact

 ​#(returns true or false)
 currentBumpState = AA228FinalProject.wall_contact(m,s)

 ​if​ currentBumpState == ​false
 ​return​ RoombaAct(​5.0​, ​0.0​)
 ​else
 previousBumpState = ​true
 ​end
 ​end

 ​#Use alpha vectors once first wall contact is made
 ​if​ previousBumpState == ​true
 ​#Extract our policy from struct p
 policy = p.policy

 ​#Extract our set of alpha vectors from our policy (one for each
action)

 alphas = policy.alphas

 greatestUtilityIndex = ​6
 greatestUtility = -​Inf

33

 numStates = POMDPs.n_states(m_discrete)

 numActions = length(alphas)

 ​#Create our belief vector from our particle filter
 belief = zeros(numStates)

 ​for​ i = ​1​:num_particles
 s = particle(b,i)

 index = POMDPs.stateindex(m_discrete,s)

 belief[index] += ​1
 ​end
 belief = belief/num_particles

 ​#print(belief)
 ​#print("\n")
 ​global​ s1
 ​# see which action gives the highest util value
 ​for​ i = ​1​:numActions
 bp1=POMDPs.update(belief_updater,

b,RoombaAct(policy.action_map[i]),AA228FinalProject.wall_contact(m_discrete

,s))

 ​for​ j = ​1​:num_particles
 s1 = particle(bp1,j)

 ​end
 bp2=POMDPs.update(belief_updater,

b,RoombaAct(policy.action_map[i]),AA228FinalProject.wall_contact(m_discrete

,s1))

 beliefnew2 = zeros(numStates)

 ​for​ j = ​1​:num_particles
 s2 = particle(bp2,j)

 index2 = POMDPs.stateindex(m_discrete,s2)

 beliefnew2[index2] += ​1
 ​end
 beliefnew2 = beliefnew2/num_particles

 utility = dot(alphas[i], belief)+dot(alphas[i], beliefnew2)

 ​if​ utility > greatestUtility
 greatestUtility = utility

 greatestUtilityIndex = i

 ​end
 ​end

34

 ​# map the index to action
 a = policy.action_map[greatestUtilityIndex]

 ​if​ greatestUtilityIndex == ​1
 a = policy.action_map[​6​]
 ​end
 ​return​ RoombaAct(a[​1​], a[​2​])
 ​end

end

35

Two_Step_Lookahead.jl

%%

#Define our sensor

sensor = Bumper()

#Room configuration. Choose from 1,2, or 3

config = ​1

#Discretize state space

num_x_pts = ​50
num_y_pts = ​50
num_th_pts = ​20
sspace = DiscreteRoombaStateSpace(num_x_pts,num_y_pts,num_th_pts)

#Discretize action space

vlist = collect(​0​:​1.0​:​10.0​)
omlist = collect(​0​:​0.2​:​1.0​)
aspace = vec(collect(RoombaAct(v, om) ​for​ v ​in​ vlist, om ​in​ omlist))

#Get rid of first action which is (0,0). Doesn't do us any good

#aspace = aspace(2:length(aspace))

#Construct the POMPDP for the QMDP solver (Discrete state/action space)

m_discrete = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config, sspace

= sspace,

 aspace = aspace));

#Try increasing the rewards

m_discrete.mdp.goal_reward = ​10
m_discrete.mdp.stairs_penalty = -​10

#Construct the POMDP for the simulator (Continuous state/action space)

m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));

%%

#Create the particle filter

36

num_particles = ​40000​ ​#2000
resampler = BumperResampler(num_particles)

spf = SimpleParticleFilter(m, resampler)

#Create our belief updater using our simple particle filter

v_noise_coefficient = ​2.0
om_noise_coefficient = ​0.5
belief_updater = RoombaParticleFilter(spf, v_noise_coefficient,

om_noise_coefficient);

%%

#Define our solver

#solver = FIBSolver()

solver = QMDPSolver(max_iterations=​20​,
 tolerance=​1e-3​,
 verbose=​true​)

#If we need to compute our policy for the first time

if​ (​1​ == ​0​)
 ​#Use our solver and our POMDP model to find a policy
 policy = solve(solver,m_discrete)

 ​#Save our policy so we don't have to recompute
 ​using​ JLD2, FileIO
 ​@JLD2​.save ​"my_policy.jld"​ policy

#Otherwise use the saved policy we computed previously

else

 ​@JLD2​.load ​"my_policy2.jld"​ policy
end

%%

Define the policy to test

mutable struct​ ToEnd <: Policy
 ts::​Int64​ ​# to track the current time-step.
 policy::AlphaVectorPolicy

end

37

%%

#flag for our wall hit policy

previousBumpState = ​false

states = POMDPs.states(m_discrete)

define a new function that takes in the policy struct and current belief,

and returns the desired action

function​ POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})

 ​global​ previousBumpState

 ​#Drive straight into wall to localize belief state
 ​if​ previousBumpState == ​false
 ​#If the wall has been bumped, then all particles are on the wall.
If so,

 ​#then any particle will do for determining wall contact
 s = particle(b,​1​)

 ​#Call the wall_contact function to determine if we are in wall
contact

 ​#(returns true or false)
 currentBumpState = AA228FinalProject.wall_contact(m,s)

 ​if​ currentBumpState == ​false
 ​return​ RoombaAct(​5.0​, ​0.0​)
 ​else
 previousBumpState = ​true
 ​end
 ​end

 ​#Use alpha vectors once first wall contact is made
 ​if​ previousBumpState == ​true
 ​#Extract our policy from struct p
 policy = p.policy

 ​#Extract our set of alpha vectors from our policy (one for each
action)

 alphas = policy.alphas

 greatestUtilityIndex = ​6
 greatestUtility = -​Inf

38

 greatestUtilityIndex2 = ​6
 greatestUtility2 = -​Inf

 numStates = POMDPs.n_states(m_discrete)

 numActions = length(alphas)

 ​#Create our belief vector from our particle filter
 belief = zeros(numStates)

 ​for​ i = ​1​:num_particles
 s = particle(b,i)

 index = POMDPs.stateindex(m_discrete,s)

 belief[index] += ​1
 ​end
 belief = belief/num_particles

 ​#print(belief)
 ​#print("\n")
 ​global​ s1
 ​# see which action gives the highest util value
 ​for​ i = ​1​:numActions
 bp1=POMDPs.update(belief_updater,

b,RoombaAct(policy.action_map[i]),AA228FinalProject.wall_contact(m_discrete

,s))

 ​for​ j = ​1​:num_particles
 s1 = particle(bp1,j)

 ​end
 bp2=POMDPs.update(belief_updater,

b,RoombaAct(policy.action_map[i]),AA228FinalProject.wall_contact(m_discrete

,s1))

 beliefnew2 = zeros(numStates)

 greatestUtility2=zeros(numActions)

 ​for​ j = ​1​:num_particles
 s2 = particle(bp2,j)

 index2 = POMDPs.stateindex(m_discrete,s2)

 beliefnew2[index2] += ​1
 ​end
 beliefnew2 = beliefnew2/num_particles

 utility2 =dot(alphas[i], beliefnew2)

 greatestUtility2[i] = utility2

 greatestUtilityIndex2 = i

 ​end

39

 ​for​ i = ​1​:numActions
 utility = dot(alphas[i], belief)+greatestUtility2[i]

 ​if​ utility > greatestUtility
 greatestUtility = utility

 greatestUtilityIndex = i

 ​end
 ​end

 ​# map the index to action
 a = policy.action_map[greatestUtilityIndex]

 ​if​ greatestUtilityIndex == ​1
 a = policy.action_map[​6​]
 ​end
 ​return​ RoombaAct(a[​1​], a[​2​])
 ​end

end

40

roomba_env.jl

Defines the environment as a POMDPs.jl MDP and POMDP

maintained by {jmorton2,kmenda}@stanford.edu

Wraps ang to be in (-pi, pi]

function​ wrap_to_pi(ang::​Float64​)
if​ ang > ​pi

 ang -= ​2​*​pi
 ​elseif​ ang <= -​pi
 ang += ​2​*​pi

end

 ang

end

"""

State of a Roomba.

Fields

- `x::Float64` x location in meters

- `y::Float64` y location in meters

- `theta::Float64` orientation in radians

- `status::Bool` indicator whether robot has reached goal state or stairs

"""

struct​ RoombaState <: FieldVector{​4​, ​Float64​}
x::​Float64
y::​Float64
theta::​Float64
status::​Float64

end

Struct for a Roomba action

struct​ RoombaAct <: FieldVector{​2​, ​Float64​}
v::​Float64 # meters per second

omega::​Float64​ ​# theta dot (rad/s)
end

action spaces

struct​ RoombaActions ​end

function​ gen_amap(aspace::RoombaActions)

41

return​ ​nothing
end

function​ gen_amap(aspace::​AbstractVector​{RoombaAct})
return​ ​Dict​(aspace[i]=>i ​for​ i ​in​ ​1​:length(aspace))

end

"""

Define the Roomba MDP.

Fields

- `v_max::Float64` maximum velocity of Roomba [m/s]

- `om_max::Float64` maximum turn-rate of Roombda [rad/s]

- `dt::Float64` simulation time-step [s]

- `contact_pen::Float64` penalty for wall-contact

- `time_pen::Float64` penalty per time-step

- `goal_reward::Float64` reward for reaching goal

- `stairs_penalty::Float64` penalty for reaching stairs

- `config::Int` specifies room configuration (location of stairs/goal)

{1,2,3}

- `room::Room` environment room struct

- `sspace::SS` environment state-space (ContinuousRoombaStateSpace or

DiscreteRoombaStateSpace)

- `aspace::AS` environment action-space struct

"""

@with_kw​ ​mutable struct​ RoombaMDP{SS,AS} <: MDP{RoombaState, RoombaAct}
v_max::​Float64​ = ​10.0​ ​# m/s
om_max::​Float64​ = ​1.0​ ​# rad/s
dt::​Float64 = ​0.5​ ​# s
contact_pen::​Float64​ = -​1.0
time_pen::​Float64​ = -​0.1
goal_reward::​Float64​ = ​10
stairs_penalty::​Float64​ = -​10
config::​Int​ = ​1
room::Room = Room(configuration=config)

sspace::SS = ContinuousRoombaStateSpace()

aspace::AS = RoombaActions()

_amap::​Union​{Nothing, ​Dict​{RoombaAct, ​Int​}} = gen_amap(aspace)
end

state-space definitions

struct​ ContinuousRoombaStateSpace ​end

42

"""

Specify a DiscreteRoombaStateSpace

- `x_step::Float64` distance between discretized points in x

- `y_step::Float64` distance between discretized points in y

- `th_step::Float64` distance between discretized points in theta

- `XLIMS::Vector` boundaries of room (x-dimension)

- `YLIMS::Vector` boundaries of room (y-dimension)

"""

struct​ DiscreteRoombaStateSpace
x_step::​Float64
y_step::​Float64
th_step::​Float64
XLIMS::​Vector
YLIMS::​Vector

end

function to construct DiscreteRoombaStateSpace:

`num_x_pts::Int` number of points to discretize x range to

`num_y_pts::Int` number of points to discretize yrange to

`num_th_pts::Int` number of points to discretize th range to

function​ DiscreteRoombaStateSpace(num_x_pts::​Int​, num_y_pts::​Int​,
num_theta_pts::​Int​)

hardcoded room-limits

watch for consistency with env_room

XLIMS = [-​30.0​, ​20.0​]
YLIMS = [-​30.0​, ​10.0​]

return​ DiscreteRoombaStateSpace((XLIMS[​2​]-XLIMS[​1​])/(num_x_pts-​1​),
 (YLIMS[​2​]-YLIMS[​1​])/(num_y_pts-​1​),
 2​*​pi​/(num_theta_pts-​1​),
 XLIMS,YLIMS)

end

"""

Define the Roomba POMDP

43

Fields:

- `sensor::T` struct specifying the sensor used (Lidar or Bump)

- `mdp::T` underlying RoombaMDP

"""

struct​ RoombaPOMDP{T, O} <: POMDP{RoombaState, RoombaAct, O}
sensor::T

mdp::RoombaMDP

end

observation models

struct​ Bumper

end

POMDPs.obstype(::​Type​{Bumper}) = ​Bool
POMDPs.obstype(::Bumper) = ​Bool

struct​ Lidar
ray_stdev::​Float64​ ​# measurement noise: see POMDPs.observation

definition

 # below for usage

end

Lidar() = Lidar(​0.1​)

POMDPs.obstype(::​Type​{Lidar}) = ​Float64
POMDPs.obstype(::Lidar) = ​Float64​ ​#float64(x)

struct​ DiscreteLidar
ray_stdev::​Float64
disc_points::​Vector​{​Float64​} ​# cutpoints: endpoints of (0, Inf)

assumed

end

POMDPs.obstype(::​Type​{DiscreteLidar}) = ​Int
POMDPs.obstype(::DiscreteLidar) = ​Int
DiscreteLidar(disc_points) = DiscreteLidar(Lidar().ray_stdev, disc_points)

Shorthands

const​ RoombaModel = ​Union​{RoombaMDP, RoombaPOMDP}
const​ BumperPOMDP = RoombaPOMDP{Bumper, ​Bool​}
const​ LidarPOMDP = RoombaPOMDP{Lidar, ​Float64​}

44

const​ DiscreteLidarPOMDP = RoombaPOMDP{DiscreteLidar, ​Int​}

access the mdp of a RoombaModel

mdp(​e​::RoombaMDP) = ​e
mdp(​e​::RoombaPOMDP) = ​e​.mdp

RoombaPOMDP Constructor

function​ RoombaPOMDP(sensor, mdp)
RoombaPOMDP{typeof(sensor), obstype(sensor)}(sensor, mdp)

end

RoombaPOMDP(;sensor=Bumper(), mdp=RoombaMDP()) = RoombaPOMDP(sensor,mdp)

function to determine if there is contact with a wall

wall_contact(​e​::RoombaModel, state) = wall_contact(mdp(​e​).room, state[​1​:​2​])

POMDPs.actions(m::RoombaModel) = mdp(m).aspace

POMDPs.n_actions(m::RoombaModel) = length(mdp(m).aspace)

maps a RoombaAct to an index in a RoombaModel with discrete actions

function​ POMDPs.actionindex(m::RoombaModel, a::RoombaAct)
if​ mdp(m)._amap != ​nothing

 return​ mdp(m)._amap[a]
else

 error(​"Action index not defined for continuous actions."​)
end

end

function to get goal xy location for heuristic controllers

function​ get_goal_xy(m::RoombaModel)
grn = mdp(m).room.goal_rect

gwn = mdp(m).room.goal_wall

gr = mdp(m).room.rectangles[grn]

corners = gr.corners

if​ gwn == ​4
 return​ (corners[​1​,:] + corners[​4​,:]) / ​2.

else

 return​ (corners[gwn,:] + corners[gwn+​1​,:]) / ​2.
end

end

45

initializes x,y,th of Roomba in the room

function​ POMDPs.initialstate(m::RoombaModel, rng::​AbstractRNG​)
e​ = mdp(m)
x, y = init_pos(​e​.room, rng)
th = rand() * ​2​*​pi​ - ​pi

is = RoombaState(x, y, th, ​0.0​)

if​ mdp(m).sspace ​isa​ DiscreteRoombaStateSpace
 isi = stateindex(m, is)

 is = index_to_state(m, isi)

end

return​ is
end

transition Roomba state given curent state and action

function​ POMDPs.transition(m::RoombaModel,
 s::​AbstractVector​{​Float64​},
 a::​AbstractVector​{​Float64​})

e​ = mdp(m)
v, om = a

v = clamp(v, ​0.0​, ​e​.v_max)
om = clamp(om, -​e​.om_max, ​e​.om_max)

propagate dynamics without wall considerations

x, y, th, _ = s

dt = ​e​.dt

dynamics assume robot rotates and then translates

next_th = wrap_to_pi(th + om*dt)

make sure we arent going through a wall

p0 = SVector(x, y)

heading = SVector(cos(next_th), sin(next_th))

des_step = v*dt

next_x, next_y = legal_translate(​e​.room, p0, heading, des_step)

Determine whether goal state or stairs have been reached

grn = mdp(m).room.goal_rect

gwn = mdp(m).room.goal_wall

46

srn = mdp(m).room.stair_rect

swn = mdp(m).room.stair_wall

gr = mdp(m).room.rectangles[grn]

sr = mdp(m).room.rectangles[srn]

next_status = ​1.0​*contact_wall(gr, gwn, [next_x, next_y]) -
1.0​*contact_wall(sr, swn, [next_x, next_y])

define next state

sp = RoombaState(next_x, next_y, next_th, next_status)

if​ mdp(m).sspace ​isa​ DiscreteRoombaStateSpace
 # round the states to nearest grid point

 si = stateindex(m, sp)

 sp = index_to_state(m, si)

end

return​ Deterministic(sp)
end

enumerate all possible states in a DiscreteRoombaStateSpace

function​ POMDPs.states(m::RoombaModel)
if​ mdp(m).sspace ​isa​ DiscreteRoombaStateSpace

 ss = mdp(m).sspace

 x_states = range(ss.XLIMS[​1​], stop=ss.XLIMS[​2​], step=ss.x_step)
 y_states = range(ss.YLIMS[​1​], stop=ss.YLIMS[​2​], step=ss.y_step)
 th_states = range(-​pi​, stop=​pi​, step=ss.th_step)
 statuses = [-​1.​,​0.​,​1.​]
 return​ vec(collect(RoombaState(x,y,th,st) ​for​ x ​in​ x_states, y ​in
y_states, th ​in​ th_states, st ​in​ statuses))

else

 return​ mdp(m).sspace
end

end

return the number of states in a DiscreteRoombaStateSpace

function​ POMDPs.n_states(m::RoombaModel)
if​ mdp(m).sspace ​isa​ DiscreteRoombaStateSpace

 ss = mdp(m).sspace

 nstates = prod((convert(​Int​, diff(ss.XLIMS)[​1​]/ss.x_step)+​1​,
 convert(​Int​, diff(ss.YLIMS)[​1​]/ss.y_step)+​1​,
 round(​Int​, ​2​*​pi​/ss.th_step)+​1​,
 3​))

47

 return​ nstates
else

 error(​"State-space must be DiscreteRoombaStateSpace."​)
end

end

map a RoombaState to an index in a DiscreteRoombaStateSpace

function​ POMDPs.stateindex(m::RoombaModel, s::RoombaState)
if​ mdp(m).sspace ​isa​ DiscreteRoombaStateSpace

 ss = mdp(m).sspace

 xind = floor(​Int​, (s[​1​] - ss.XLIMS[​1​]) / ss.x_step + ​0.5​) + ​1
 yind = floor(​Int​, (s[​2​] - ss.YLIMS[​1​]) / ss.y_step + ​0.5​) + ​1
 thind = floor(​Int​, (s[​3​] - (-​pi​)) / ss.th_step + ​0.5​) + ​1
 stind = convert(​Int​, s[​4​] + ​2​)

 lin = LinearIndices((convert(​Int​, diff(ss.XLIMS)[​1​]/ss.x_step)+​1​,
 convert(​Int​, diff(ss.YLIMS)[​1​]/ss.y_step)+​1​,
 round(​Int​, ​2​*​pi​/ss.th_step)+​1​,
 3​))
 return​ lin[xind,yind,thind,stind]

else

 error(​"State-space must be DiscreteRoombaStateSpace."​)
end

end

map an index in a DiscreteRoombaStateSpace to the corresponding

RoombaState

function​ index_to_state(m::RoombaModel, si::​Int​)
if​ mdp(m).sspace ​isa​ DiscreteRoombaStateSpace

 ss = mdp(m).sspace

 lin = CartesianIndices((convert(​Int​, diff(ss.XLIMS)[​1​]/ss.x_step)+​1​,
 convert(​Int​, diff(ss.YLIMS)[​1​]/ss.y_step)+​1​,
 round(​Int​, ​2​*​pi​/ss.th_step)+​1​,
 3​))

 xi,yi,thi,sti = ​Tuple​(lin[si])

 x = ss.XLIMS[​1​] + (xi-​1​) * ss.x_step
 y = ss.YLIMS[​1​] + (yi-​1​) * ss.y_step
 th = -​pi​ + (thi-​1​) * ss.th_step
 st = sti - ​2

48

 return​ RoombaState(x,y,th,st)

else

 error(​"State-space must be DiscreteRoombaStateSpace."​)
end

end

defines reward function R(s,a,s')

function​ POMDPs.reward(m::RoombaModel,
 s::​AbstractVector​{​Float64​},
 a::​AbstractVector​{​Float64​},
 sp::​AbstractVector​{​Float64​})

#function POMDPs.reward(m::RoombaPOMDP{Bumper,Bool},

s::RoombaState,

a::RoombaAct,

sp::RoombaState)

penalty for each timestep elapsed

cum_reward = mdp(m).time_pen

penalty for bumping into wall (not incurred for consecutive

contacts)

previous_wall_contact = wall_contact(m,s)

current_wall_contact = wall_contact(m,sp)

if​(!previous_wall_contact && current_wall_contact)
 cum_reward += mdp(m).contact_pen

end

terminal rewards

cum_reward += mdp(m).goal_reward*(sp.status == ​1.0​)
cum_reward += mdp(m).stairs_penalty*(sp.status == -​1.0​)

return​ cum_reward
end

determine if a terminal state has been reached

POMDPs.isterminal(m::RoombaModel, s::​AbstractVector​{​Float64​}) =
abs(s.status) > ​0.0

Bumper POMDP observation

49

function​ POMDPs.observation(m::BumperPOMDP,
 a::​AbstractVector​{​Float64​},
 sp::​AbstractVector​{​Float64​})

return​ Deterministic(wall_contact(m, sp)) ​# in {0.0,1.0}
end

POMDPs.n_observations(m::BumperPOMDP) = ​2
POMDPs.observations(m::BumperPOMDP) = [​false​, ​true​]

Lidar POMDP observation

function​ POMDPs.observation(m::LidarPOMDP,
 a::​AbstractVector​{​Float64​},
 sp::​AbstractVector​{​Float64​})

x, y, th = sp

determine uncorrupted observation

rl = ray_length(mdp(m).room, [x, y], [cos(th), sin(th)])

compute observation noise

sigma = m.sensor.ray_stdev * max(rl, ​0.01​)

disallow negative measurements

return​ Truncated(Normal(rl, sigma), ​0.0​, ​Inf​)
end

function​ POMDPs.n_observations(m::LidarPOMDP)
error(​"n_observations not defined for continuous observations."​)

end

function​ POMDPs.observations(m::LidarPOMDP)
error(​"LidarPOMDP has continuous observations. Use DiscreteLidarPOMDP

for discrete observation spaces."​)
end

DiscreteLidar POMDP observation

function​ POMDPs.observation(m::DiscreteLidarPOMDP,
 a::​AbstractVector​{​Float64​},
 sp::​AbstractVector​{​Float64​})

m_lidar = LidarPOMDP(Lidar(m.sensor.ray_stdev), mdp(m))

d = observation(m_lidar, a, sp)

50

disc_points = [-​Inf​, m.sensor.disc_points..., ​Inf​]

d_disc = diff(cdf.(d, disc_points))

return​ SparseCat(​1​:length(d_disc), d_disc)
end

POMDPs.n_observations(m::DiscreteLidarPOMDP) = length(m.sensor.disc_points)

+ ​1
POMDPs.observations(m::DiscreteLidarPOMDP) = vec(​1​:n_observations(m))

define discount factor

POMDPs.discount(m::RoombaModel) = ​0.95

struct to define an initial distribution over Roomba states

struct​ RoombaInitialDistribution{M<:RoombaModel}
m::M

end

definition of initialstate and initialstate_distribution for Roomba

environment

POMDPs.rand(rng::​AbstractRNG​, d::RoombaInitialDistribution) =
initialstate(d.m, rng)

POMDPs.initialstate_distribution(m::RoombaModel) =

RoombaInitialDistribution(m)

Render a room and show robot

function​ render(ctx::CairoContext, m::RoombaModel, step)
env = mdp(m)

state = step[:sp]

radius = ROBOT_W*​6

render particle filter belief

if​ haskey(step, :bp)
 bp = step[:bp]

 if​ bp ​isa​ AbstractParticleBelief
 for​ p ​in​ particles(bp)
 x, y = transform_coords(p[​1​:​2​])
 arc(ctx, x, y, radius, ​0​, ​2​*​pi​)
 set_source_rgba(ctx, ​0.6​, ​0.6​, ​1​, ​0.3​)

51

 fill(ctx)

 end

 end

end

Render room

render(env.room, ctx)

Find center of robot in frame and draw circle

x, y = transform_coords(state[​1​:​2​])
arc(ctx, x, y, radius, ​0​, ​2​*​pi​)
set_source_rgb(ctx, ​1​, ​0.6​, ​0.6​)
fill(ctx)

Draw line indicating orientation

move_to(ctx, x, y)

end_point = [state[​1​] + ROBOT_W*cos(state[​3​])/​2​, state[​2​] +
ROBOT_W*sin(state[​3​])/​2​]

end_x, end_y = transform_coords(end_point)

line_to(ctx, end_x, end_y)

set_source_rgb(ctx, ​0​, ​0​, ​0​)
stroke(ctx)

return​ ctx
end

function​ render(m::RoombaModel, step)
io = ​IOBuffer​()
c = CairoSVGSurface(io, ​800​, ​600​)
ctx = CairoContext(c)

render(ctx, m, step)

finish(c)

return​ ​HTML​(​String​(take!(io)))
end

52

filtering.jl

specification of particle filters for the bumper and lidar Roomba

environments

maintained by {jmorton2,kmenda}@stanford.edu

import​​ POMDPs

structs specifying resamplers for bumper and lidar sensors

struct​​ BumperResampler
n::​​Int​​ ​​# number of particles

end

struct​​ LidarResampler
n::​​Int​​ ​​# number of particles
lvr::LowVarianceResampler

end

"""

Definition of the particle filter for the Roomba environment

Fields:

- `spf::SimpleParticleFilter` standard particle filter struct defined in

ParticleFilters.jl

- `v_noise_coeff::Float64` coefficient to scale particle-propagation noise

in velocity

- `om_noise_coeff::Float64`coefficient to scale particle-propagation noise

in turn-rate

"""

mutable struct​​ RoombaParticleFilter <: POMDPs.Updater
spf::SimpleParticleFilter

v_noise_coeff::​​Float64
om_noise_coeff::​​Float64

end

Resample function for weights in {0,1} necessary for bumper sensor

function​​ ParticleFilters.resample(br::BumperResampler,
b::WeightedParticleBelief{RoombaState}, rng::​​AbstractRNG​​)

new = RoombaState[]

for​​ (p, w) ​​in​​ weighted_particles(b)
 if​​ w == ​​1.0
 push!(new, p)

53

 else

 @assert​​ w == ​​0
 end

end

extras = rand(rng, new, br.n-length(new))

for​​ p ​​in​​ extras
 push!(new, p)

end

return​​ ParticleCollection(new)
end

resample function for unweighted particles

function

ParticleFilters.resample(br::​​Union​​{BumperResampler,LidarResampler}, b,
rng::​​AbstractRNG​​)

ps = ​​Array​​{RoombaState}(undef, br.n)
for​​ i ​​in​​ ​​1​​:br.n

 ps[i] = rand(rng, b)

end

return​​ ParticleCollection(ps)
end

Resample function for continuous weights necessary for lidar sensor

function​​ ParticleFilters.resample(lr::LidarResampler,
b::WeightedParticleBelief{RoombaState}, rng::​​AbstractRNG​​)

ps = resample(lr.lvr, b, rng)

return​​ ps
end

Modified Update function adds noise to the actions that propagate

particles

function​​ POMDPs.update(up::RoombaParticleFilter,
b::ParticleCollection{RoombaState}, a, o)

ps = particles(b)

pm = up.spf._particle_memory

wm = up.spf._weight_memory

resize!(pm, ​​0​​)
resize!(wm, ​​0​​)
sizehint!(pm, n_particles(b))

sizehint!(wm, n_particles(b))

all_terminal = ​​true

54

for​​ i ​​in​​ ​​1​​:n_particles(b)
 s = ps[i]

 if​​ !isterminal(up.spf.model, s)
 all_terminal = ​​false
 # noise added here:

 a_pert = a + SVector(up.v_noise_coeff*(rand(up.spf.rng)-​​0.5​​),
up.om_noise_coeff*(rand(up.spf.rng)-​​0.5​​))
 sp = generate_s(up.spf.model, s, a_pert, up.spf.rng)

 push!(pm, sp)

 push!(wm, obs_weight(up.spf.model, s, a_pert, sp, o))

 end

end

if all particles are terminal, return previous belief state

if​​ all_terminal
 return​​ b

end

return​​ resample(up.spf.resample,
WeightedParticleBelief{RoombaState}(pm, wm, sum(wm), ​​nothing​​), up.spf.rng)
end

initialize belief state

function​​ ParticleFilters.initialize_belief(up::RoombaParticleFilter,
d::​​Any​​)

resample(up.spf.resample, d, up.spf.rng)

end

55

env_room.jl

Code to define the environment room and rectangles used to define it

maintained by {jmorton2,kmenda}@stanford.edu

Define constants -- all units in m

RW = ​5.​ ​# room width
ROBOT_W = ​1.​ ​# robot width
MARGIN = ​1e-12

Define rectangle type for constructing hallway

corners: 4x2 np array specifying

bottom-left, top-left,

top-right, bottom-right corner

walls: length 4 list of bools specifying

if left, top, right, bottom sides are

open (False) or walls (True)

mutable struct​ Rectangle
corners::​Array​{​Float64​, ​2​}
walls::​Array​{​Bool​, ​1​}
segments::​Array​{LineSegment, ​1​}
width::​Float64
height::​Float64
midpoint::​Array​{​Float64​, ​1​}
area::​Float64
xl::​Float64
xu::​Float64
yl::​Float64
yu::​Float64

function​ Rectangle(
 corners::​Array​{​Float64​, ​2​},
 walls::​Array​{​Bool​, ​1​};
 goal_idx::​Int​=​0​,
 stair_idx::​Int​=​0
)

 retval = new()

 retval.corners = corners

 retval.walls = walls

56

 retval.width = corners[​3​, ​1​] - corners[​2​, ​1​]
 retval.height = corners[​2​, ​2​] - corners[​1​, ​2​]
 mean_vals = mean(corners, dims=​1​)
 retval.midpoint = SVector(mean_vals[​1​, ​1​], mean_vals[​1​, ​2​])

 # compute area in which robot could be initialized

 retval.xl = corners[​2​, ​1​]
 retval.xu = corners[​3​, ​1​]
 retval.yl = corners[​1​, ​2​]
 retval.yu = corners[​2​, ​2​]
 if​ walls[​1​]
 retval.width -= ROBOT_W/​2
 retval.xl += ROBOT_W/​2
 end

 if​ walls[​2​]
 retval.height -= ROBOT_W/​2
 retval.yu -= ROBOT_W/​2
 end

 if​ walls[​3​]
 retval.width -= ROBOT_W/​2
 retval.xu -= ROBOT_W/​2
 end

 if​ walls[​4​]
 retval.height -= ROBOT_W/​2
 retval.yl += ROBOT_W/​2
 end

 @assert​ retval.width > ​0.0​ && retval.height > ​0.0​ ​"Negative width or
height"

 retval.area = retval.width * retval.height

 retval.segments = [LineSegment(corners[i, :], corners[i+​1​, :],
(goal_idx == i), (stair_idx == i)) ​for​ i =​1​:​3​ ​if​ walls[i]]
 if​ walls[​4​]
 push!(retval.segments, LineSegment(corners[​1​, :], corners[​4​,
:], (goal_idx == ​4​), (stair_idx == ​4​)))
 end

 retval

end

end

57

Randomly initializes the robot in this rectangle

function​ init_pos(rect::Rectangle, rng)
w = rect.xu - rect.xl

h = rect.yu - rect.yl

init_pos = SVector(rand(rng)*w + rect.xl, rand(rng)*h + rect.yl)

init_pos

end

Determines if pos (center of robot) is within the rectangle

function​ in_rectangle(rect::Rectangle, pos::​AbstractVector​{​Float64​})
corners = rect.corners

xlims = SVector(rect.xl - MARGIN, rect.xu + MARGIN)

ylims = SVector(rect.yl - MARGIN, rect.yu + MARGIN)

if​ xlims[​1​] < pos[​1​] < xlims[​2​]
 if​ ylims[​1​] < pos[​2​] < ylims[​2​]
 return​ ​true
 end

end

return​ ​false
end

determines if pos (center of robot) is intersecting with a wall

returns: -2, -Inf if center of robot not in room

-1, -Inf if not in wall contact

0~3, violation mag, indicating which wall has contact

if multiple, returns largest violation

function​ wall_contact(rect::Rectangle, pos::​AbstractVector​{​Float64​})
if​ !(in_rectangle(rect, pos))

 return​ -​2​, -​Inf
end

corners = rect.corners

xlims = SVector(corners[​2​, ​1​], corners[​3​, ​1​])
ylims = SVector(corners[​1​, ​2​], corners[​2​, ​2​])

contacts = []

contact_mags = []

if​ pos[​1​] - ROBOT_W/​2​ <= xlims[​1​] + MARGIN && rect.walls[​1​]
 # in contact with left wall

 push!(contacts, ​1​)
 push!(contact_mags, abs(pos[​1​] - ROBOT_W/​2​ - xlims[​1​]))

end

58

if​ pos[​2​] + ROBOT_W/​2​ + MARGIN >= ylims[​2​] && rect.walls[​2​]
 # in contact with top wall

 push!(contacts, ​2​)
 push!(contact_mags, abs(pos[​2​] + ROBOT_W/​2​ - ylims[​2​]))

end

if​ pos[​1​] + ROBOT_W/​2​ + MARGIN >= xlims[​2​] && rect.walls[​3​]
 # in contact with right wall

 push!(contacts, ​3​)
 push!(contact_mags, abs(pos[​1​] + ROBOT_W/​2​ - xlims[​2​]))

end

if​ pos[​2​] - ROBOT_W/​2​ <= ylims[​1​] + MARGIN && rect.walls[​4​]
 # in contact with bottom wall

 push!(contacts, ​4​)
 push!(contact_mags, abs(pos[​2​] - ROBOT_W/​2​ - ylims[​1​]))

end

if​ length(contacts) == ​0
 return​ -​1​, -​Inf

else

 return​ contacts[argmax(contact_mags)], maximum(contact_mags)
end

end

Find closest distance to any wall

function​ furthest_step(rect::Rectangle, pos::​AbstractVector​{​Float64​},
heading::​AbstractVector​{​Float64​})

return​ minimum(furthest_step(seg, pos, heading, ROBOT_W/​2​) ​for​ seg ​in
rect.segments)

end

computes the length of a ray from robot center to closest segment

from p0 pointing in direction heading

function​ ray_length(rect::Rectangle, pos::​AbstractVector​{​Float64​},
heading::​AbstractVector​{​Float64​})

return​ minimum(ray_length(seg, pos, heading) ​for​ seg ​in
rect.segments)

end

Render rectangle based on segments

function​ render(rect::Rectangle, ctx::CairoContext)
for​ seg ​in​ rect.segments

 render(seg, ctx)

59

end

end

generate consecutive rectangles that make up the room

all rectangles share a full "wall" with an adjacent rectangle

shared walls are not solid - just used to specify geometry

mutable struct​ Room
rectangles::​Array​{Rectangle, ​1​}
areas::​Array​{​Float64​, ​1​}
goal_rect::​Int​ ​# Index of rectangle with goal state
goal_wall::​Int​ ​# Index of wall that leads to goal
stair_rect::​Int​ ​# Index of rectangle with stairs
stair_wall::​Int​ ​# Index of wall that leads to stairs

function​ Room(; configuration=​1​)

 retval = new()

 # Define different configurations for stair and goal locations

 goal_idxs = [​0​, ​0​, ​0​, ​0​]
 stair_idxs = [​0​, ​0​, ​0​, ​0​]
 if​ configuration == ​2
 retval.goal_rect = ​1
 retval.goal_wall = ​4
 retval.stair_rect = ​2
 retval.stair_wall = ​1
 elseif​ configuration == ​3
 retval.goal_rect = ​4
 retval.goal_wall = ​3
 retval.stair_rect = ​2
 retval.stair_wall = ​1
 else

 retval.goal_rect = ​4
 retval.goal_wall = ​3
 retval.stair_rect = ​4
 retval.stair_wall = ​4
 end

 goal_idxs[retval.goal_rect] = retval.goal_wall

 stair_idxs[retval.stair_rect] = retval.stair_wall

 # Initialize array of rectangles

 rectangles = []

60

 # Rectangle 1

 corners = [[-​20​-RW -​20​]; [-​20​-RW ​0​-RW]; [-​20​+RW ​0​-RW]; [-​20​+RW -​20​]]
 walls = [​true​, ​false​, ​true​, ​true​] ​# top wall shared
 push!(rectangles, Rectangle(corners, walls, goal_idx=goal_idxs[​1​],
stair_idx=stair_idxs[​1​]))

 # Rectangle 2

 corners = [[-​20​-RW ​0​-RW]; [-​20​-RW ​0​+RW]; [-​20​+RW ​0​+RW]; [-​20​+RW
0​-RW]]
 walls = [​true​, ​true​, ​false​, ​false​] ​# bottom, right wall shared
 push!(rectangles, Rectangle(corners, walls, goal_idx=goal_idxs[​2​],
stair_idx=stair_idxs[​2​]))

 # Rectangle 3

 corners = [[-​20​+RW ​0​-RW]; [-​20​+RW ​0​+RW]; [​10​ ​0​+RW]; [​10​ ​0​-RW]]
 walls = [​false​, ​true​, ​false​, ​true​] ​# left wall shared
 push!(rectangles, Rectangle(corners, walls, goal_idx=goal_idxs[​3​],
stair_idx=stair_idxs[​3​]))

 # Rectangle 4

 corners = [[​10​ ​0​-RW]; [​10​ ​0​+RW]; [​10​+RW ​0​+RW]; [​10​+RW ​0​-RW]]
 walls = [​false​, ​true​, ​true​, ​true​] ​# left wall shared
 push!(rectangles, Rectangle(corners, walls, goal_idx=goal_idxs[​4​],
stair_idx=stair_idxs[​4​]))

 retval.rectangles = rectangles

 retval.areas = [r.area ​for​ r ​in​ rectangles]

 retval

end

end

Sample from multinomial distribution

function​ multinomial_sample(p::​AbstractVector​{​Float64​})
rand_num = rand()

for​ i = ​1​:length(p)
 if​ rand_num < sum(p[​1​:i])
 return​ i
 end

end

end

61

Initialize the robot randomly in the room

Randomly select a rectangle weighted by initializable area

function​ init_pos(r::Room, rng::​AbstractRNG​)
norm_areas = r.areas/sum(r.areas)

rect = multinomial_sample(norm_areas)

return​ init_pos(r.rectangles[rect], rng)
end

Determines if pos is in contact with a wall

returns bool indicating contact

function​ wall_contact(r::Room, pos::​AbstractVector​{​Float64​})
for​ (i, rect) ​in​ enumerate(r.rectangles)

 wc, _ = wall_contact(rect, pos)

 if​ wc >= ​0
 return​ ​true
 end

end

return​ ​false
end

Determines if pos is in contact with a specific wall

returns true if true

function​ contact_wall(r::Rectangle, wall::​Int​, pos::​Array​{​Float64​, ​1​})
wc,_ = wall_contact(r, pos)

return​ wc == wall
end

Determines if pos (center of robot) is within the room

function​ in_room(r::Room, pos::​AbstractVector​{​Float64​})
return​ any([in_rectangle(rect, pos) ​for​ rect ​in​ r.rectangles])

end

Attempts to translate from pos0 in direction heading for des_step without

violating boundaries

function​ legal_translate(r::Room, pos0::​AbstractVector​{​Float64​},
heading::​AbstractVector​{​Float64​}, des_step::​Float64​)

fs = minimum(furthest_step(rect, pos0, heading) ​for​ rect ​in
r.rectangles)

fs = min(des_step, fs)

pos1 = pos0 + fs*heading

if​ !in_room(r, pos1)

62

 return​ pos0
else

 return​ pos1
end

end

computes the length of a ray from robot center to closest segment

from p0 pointing in direction heading

inputs: p0: array specifying initial point

heading: array specifying heading unit vector

R: robot radius [m]

outputs: ray_length [m]

function​ ray_length(r::Room, pos0::​AbstractVector​{​Float64​},
heading::​AbstractVector​{​Float64​})

return​ minimum(ray_length(rect, pos0, heading) ​for​ rect ​in
r.rectangles)

end

Render room based on individual rectangles

function​ render(r::Room, ctx::CairoContext)
for​ rect ​in​ r.rectangles

 render(rect, ctx)

end

end

63

line_segment_utils.jl

functions for determining whether the Roomba's path interects

with a line segment and struct defining line segments

maintained by {jmorton2,kmenda}@stanford.edu

MARGIN = ​1e-8
"""

finds the real points of intersection between a line and a circle

inputs:

- `p0::AbstractVector{Float64}` anchor point

- `uvec::AbstractVector{Float64}` unit vector specifying heading

- `p1::AbstractVector{Float64}` centroid (x,y) of a circle

- `R::Float64` radius of a circle

returns:

- `R1,R2::Float64` where R1,R2 are lengths of vec to get from p0 to the

intersecting

 points. If intersecting points are imaginary, returns `nothing` in

their place

"""

function​ real_intersect_line_circle(p0::​AbstractVector​{​Float64​},
 uvec::​AbstractVector​{​Float64​},
 p1::​AbstractVector​{​Float64​},
 R::​Float64​)

these equations were generated by Mathematica using the following

command:

Simplify[Solve[x0 + dx0 * R0 == x &&

y0 + dy0 *R0 == y &&

(x - x1)^2 + (y - y1)^2 == R,

{x, y, R0}]]

Where the solutions for R0 are called R1 and R2 here

x0, y0 = p0

dx0, dy0 = uvec

x1, y1 = p1

radicand = dx0 ​̂2​ * (dy0 ​̂2​ * (R - (x0 - x1) ​̂2​) + dx0 ​̂2​ * (R - (y0 -
y1) ​̂2​) + ​2​*dx0*dy0*(x0 - x1)*(y0 - y1))

if​ radicand < ​0​ ​# intersecting points are imaginary
 return​ ​nothing​, ​nothing

else

64

 R1 = (​1​/(dx0*(dx0 ​̂2​ + dy0 ​̂2​)))*(dx0 ​̂2​ * (-x0 + x1) + sqrt(radicand) +
dx0*dy0*(-y0 + y1))

 R2 = (​1​/(dx0*(dx0 ​̂2​ + dy0 ​̂2​)))*(dx0 ​̂2​ * (-x0 + x1) - sqrt(radicand) +
dx0*dy0*(-y0 + y1))

 return​ R1, R2
end

end

"""

finds the intersection between a line and a line segment

inputs:

- `p0::AbstractVector{Float64}` anchor point

- `uvec::AbstractVector{Float64}` unit vector specifying heading

- `p1, p2::AbstractVector{Float64}` x,y of the endpoints of the segment

returns:

- `sol::AbstractVector{Float64}` x,y of intersection or `nothing` if

doesn't intersect

"""

function​ intersect_line_linesegment(p0::​AbstractVector​{​Float64​},
uvec::​AbstractVector​{​Float64​}, p1::​AbstractVector​{​Float64​},
p2::​AbstractVector​{​Float64​})

dx, dy = uvec

n = [-dy, dx]

dprod1 = dot(n, p1-p0)

dprod2 = dot(n, p2-p0)

if​ sign(dprod1) != sign(dprod2)
 # there's an intersection

 # these equations were generated by Mathematica using the following

command:

 # Simplify[Solve[x0 + dx0 * R0 == x1 + dx1 * R1 && y0 + dy0 *R0 == y1

+ dy1 *R1, {R0,R1}]]

 # Where R0 is the length of the segment originating from p0

 x0, y0 = p0

 x1, y1 = p1

 x2, y2 = p2

 dx0, dy0 = uvec

 dx1 = x2 - x1

 dy1 = y2 - y1

 R = (dy1*x0 - dy1*x1 - dx1*y0 + dx1*y1)/(dx1*dy0 - dx0*dy1)

65

 if​ R >= ​0
 return​ R
 else

 return​ ​nothing
 end

else

 return​ ​nothing
end

end

Define LineSegment

mutable struct​ LineSegment
p1::​Array​{​Float64​, ​1​} ​# anchor point of line-segment
p2::​Array​{​Float64​, ​1​} ​# anchor point of line-segment
goal::​Bool​ ​# used for rendering purposes
stairs::​Bool​ ​# used for rendering purposes

end

"""

determines if traveling in heading from p0 intersects the line passing

through this segment

inputs:

- `ls::LineSegment` line segment under test

- `p0::AbstractVector{Float64}` initial point being travelled from

- `heading::AbstractVector{Float64}` heading unit vector

returns:

- `::Bool` that is true if pointing toward segment

"""

function​ pointing_toward_segment(ls::LineSegment,
p0::​AbstractVector​{​Float64​}, heading::​AbstractVector​{​Float64​})

dp12 = ls.p2 - ls.p1

normalize!(dp12)

np12 = [-dp12[​2​], dp12[​1​]]

ensure it points toward p0

if​ dot(np12, p0 - ls.p1) < ​0
 np12 *= -​1.0

end

return true if heading projects in the opposite direction of np12

dot(np12, heading) < ​0.0
end

66

"""

computes the length of a ray from robot center to segment from p0 pointing

in direction heading

inputs:

- `ls: functions for determining whether the Roomba's path interects

with a line segment and struct defining line segments

maintained by {jmorton2,kmenda}@stanford.edu

MARGIN = 1e-8

"""

finds the real points of intersection between a line and a circle

inputs:

- ​`p0::AbstractVector{Float64} ​̀ anchor point
- ​`uvec::AbstractVector{Float64} ​̀ unit vector specifying heading
- ​`p1::AbstractVector{Float64} ​̀ centroid (x,y) of a circle
- ​`R::Float64 ​̀ radius of a circle
returns:

- ​`R1,R2::Float64 ​̀ ​where​ R1,R2 are lengths of vec to get from p0 to the
intersecting

 points. If intersecting points are imaginary, returns ​`nothing ​̀ ​in
their place

"""

function real_intersect_line_circle(p0::AbstractVector{Float64},

 uvec::AbstractVector{Float64},

 p1::AbstractVector{Float64},

 R::Float64)

these equations were generated by Mathematica using the following

command:

Simplify[Solve[x0 + dx0 * R0 == x &&

y0 + dy0 *R0 == y &&

(x - x1)^2 + (y - y1)^2 == R,

{x, y, R0}]]

Where the solutions for R0 are called R1 and R2 here

x0, y0 = p0

dx0, dy0 = uvec

x1, y1 = p1

radicand = dx0^2 * (dy0^2 * (R - (x0 - x1)^2) + dx0^2 * (R - (y0 -

y1)^2) + 2*dx0*dy0*(x0 - x1)*(y0 - y1))

67

if radicand < 0 # intersecting points are imaginary

 return nothing, nothing

else

 R1 = (1/(dx0*(dx0^2 + dy0^2)))*(dx0^2 * (-x0 + x1) + sqrt(radicand) +

dx0*dy0*(-y0 + y1))

 R2 = (1/(dx0*(dx0^2 + dy0^2)))*(dx0^2 * (-x0 + x1) - sqrt(radicand) +

dx0*dy0*(-y0 + y1))

 return R1, R2

end

end

"""

finds the intersection between a line and a line segment

inputs:

- ​`p0::AbstractVector{Float64} ​̀ anchor point
- ​`uvec::AbstractVector{Float64} ​̀ unit vector specifying heading
- ​`p1, p2::AbstractVector{Float64} ​̀ x,y of the endpoints of the segment
returns:

- ​`sol::AbstractVector{Float64} ​̀ x,y of intersection or ​`nothing ​̀ ​if
doesn't intersect

"""

function intersect_line_linesegment(p0::AbstractVector{Float64},

uvec::AbstractVector{Float64}, p1::AbstractVector{Float64},

p2::AbstractVector{Float64})

dx, dy = uvec

n = [-dy, dx]

dprod1 = dot(n, p1-p0)

dprod2 = dot(n, p2-p0)

if sign(dprod1) != sign(dprod2)

 # there's an intersection

 # these equations were generated by Mathematica using the following

command:

 # Simplify[Solve[x0 + dx0 * R0 == x1 + dx1 * R1 && y0 + dy0 *R0 == y1

+ dy1 *R1, {R0,R1}]]

 # Where R0 is the length of the segment originating from p0

 x0, y0 = p0

 x1, y1 = p1

 x2, y2 = p2

 dx0, dy0 = uvec

68

 dx1 = x2 - x1

 dy1 = y2 - y1

 R = (dy1*x0 - dy1*x1 - dx1*y0 + dx1*y1)/(dx1*dy0 - dx0*dy1)

 if R >= 0

 return R

 else

 return nothing

 end

else

 return nothing

end

end

Define LineSegment

mutable struct LineSegment

p1::Array{Float64, 1} # anchor point of line-segment

p2::Array{Float64, 1} # anchor point of line-segment

goal::Bool # used for rendering purposes

stairs::Bool # used for rendering purposes

end

"""

determines ​if​ traveling ​in​ heading from p0 intersects the line passing
through this segment

inputs:

- ​`ls::LineSegment ​̀ line segment under test
- ​`p0::AbstractVector{Float64} ​̀ initial point being travelled from
- ​`heading::AbstractVector{Float64} ​̀ heading unit vector
returns:

- ​`::Bool ​̀ that is ​true​ ​if​ pointing toward segment
"""

function pointing_toward_segment(ls::LineSegment,

p0::AbstractVector{Float64}, heading::AbstractVector{Float64})

dp12 = ls.p2 - ls.p1

normalize!(dp12)

np12 = [-dp12[2], dp12[1]]

ensure it points toward p0

if dot(np12, p0 - ls.p1) < 0

 np12 *= -1.0

end

69

return true if heading projects in the opposite direction of np12

dot(np12, heading) < 0.0

end

"""

computes the length of a ray from robot center to segment from p0 pointing

in​ direction heading
inputs:

- ​`ls::LineSegment ​̀ line segment under test
- ​`p0::AbstractVector{Float64} ​̀ initial point being travelled from
- ​`heading::AbstractVector{Float64} ​̀ heading unit vector
returns:

- ​`::Float64 ​̀ that is the length of the ray
"""

function ray_length(ls::LineSegment, p0::AbstractVector{Float64},

heading::AbstractVector{Float64})

p1 = ls.p1

p2 = ls.p2

ray_length = Inf

if !(pointing_toward_segment(ls, p0, heading))

 return ray_length

else

 intr = intersect_line_linesegment(p0, heading, p1, p2)

 if intr != nothing

 return intr

 else

 return Inf

 end

end

end

"""

computes the furthest step a robot of radius R can take

inputs:

- ​`ls::LineSegment ​̀ line segment under test
- ​`p0::AbstractVector{Float64} ​̀ initial point being travelled from
- ​`heading::AbstractVector{Float64} ​̀ heading unit vector
- ​`R::Float64 ​̀ radius of robot

70

returns:

- ​`furthest_step::Float64 ​̀ furthest step the robot can take
--

The way this is computed is by seeing ​if​ a ray originating from
p0 ​in​ direction heading intersects the following object. Consider
the shape made by moving the robot along the length of the segment.

We can construct this shape by placing a circle with radius of

the robot radius R at each ​end​, and connecting their sides by shifting
segment line out to its left and right by R.

If the line from p0 intersects this object, then choosing the closest

intersection gives the point at which the robot would stop ​if​ traveling
along this line.

"""

function furthest_step(ls::LineSegment, p0::AbstractVector{Float64},

heading::AbstractVector{Float64}, R::Float64)

furthest_step = Inf

if !(pointing_toward_segment(ls, p0, heading))

 return furthest_step

end

heading along segment

dp12 = ls.p2 - ls.p1

normalize!(dp12)

np12 = [-dp12[2], dp12[1]]

project sides out a robot radius

p1l = ls.p1 - R*np12

p1r = ls.p1 + R*np12

p2l = ls.p2 - R*np12

p2r = ls.p2 + R*np12

intesection with p1

R1,R2 = real_intersect_line_circle(p0, heading, ls.p1, R/2)

if R1 != nothing

 if R1 > -MARGIN && R1 < furthest_step

 furthest_step = max(R1, 0.0)

 end

 if R2 > -MARGIN && R2 < furthest_step

 furthest_step = max(R2, 0.0)

 end

71

end

intesection with p2

R1, R2 = real_intersect_line_circle(p0, heading, ls.p2, R/2)

if R1 != nothing

 if R1 > -MARGIN && R1 < furthest_step

 furthest_step = max(R1, 0.0)

 end

 if R2 > -MARGIN && R2 < furthest_step

 furthest_step = max(R2, 0.0)

 end

end

intersection with the segment

Rl = intersect_line_linesegment(p0, heading, p1l, p2l)

if Rl != nothing

 if Rl > -MARGIN && Rl < furthest_step

 furthest_step = max(Rl, 0.0)

 end

end

Rr = intersect_line_linesegment(p0, heading, p1r, p2r)

if Rr != nothing

 if Rr > -MARGIN && Rr < furthest_step

 furthest_step = max(Rr, 0.0)

 end

end

if Rl != nothing && Rr != nothing

 if Rl > 0 && Rr < 0

 # something wrong

 println("Travelling through a wall!!")

 end

end

furthest_step

end

Transform coordinates in world frame to coordinates used for rendering

function transform_coords(pos::AbstractVector{Float64})

x, y = pos

72

Specify dimensions of window

h = 600

w = 600

Perform conversion

x_trans = (x + 30.0)/50.0*h

y_trans = -(y - 20.0)/50.0*w

x_trans, y_trans

end

Draw line in gtk window based on start and end coordinates

function render(ls::LineSegment, ctx::CairoContext)

start_x, start_y = transform_coords(ls.p1)

if ls.goal

 set_source_rgb(ctx, 0, 1, 0)

elseif ls.stairs

 set_source_rgb(ctx, 1, 0, 0)

else

 set_source_rgb(ctx, 0, 0, 0)

end

move_to(ctx, start_x, start_y)

end_x, end_y = transform_coords(ls.p2)

line_to(ctx, end_x, end_y)

stroke(ctx)

end

73

