AA228 - Final Project Report

Spencer Diehl - bigdiehl@stanford.edu Tyler Pharris - tpharris@stanford.edu Alp Ozturk - azoturk@stanford.edu

December 7, 2018

Abstract

A Roomba has been powered on and found itself in a familiar room. It now needs to make its way to the next room in order to begin its task of cleaning the floors. This would normally be a simple task, but the Roomba's location and direction in the room are unknown. The Roomba knows the dimensions of the room it is in and what sensor it has. The sensor on the Roomba is either a bump sensor or a lidar. Using the sensor, an unknown initial position and direction, and the room dimensions, the goal is to reach the doorway to the next room while avoiding the flight of stairs that are also in the room. This Roomba problem can be modeled as a POMDP [1] with the location and direction of the Roomba as the state uncertainty. Two different sensors were tested on 3 different types of methods. The bump sensor was tested on a random policy, a predefined policy, an offline QMDP solver, and an online solver that used QMDP for the offline portion. The bump sensor's scores ranged from -9.596 to -5.600 points. The lidar sensor was tested on a predefined policy and an offline QMDP solver. The lidar sensor scores ranged from -3.900 to -2.188 points. Each method had a couple of failure modes with the most common being due to a lack of lookahead depth. In conclusion, when comparing results using the same sensor, online methods outperformed offline methods, which outperformed predefined policy methods, which outperformed random policy methods. Each successive method type was more effective, but required more computational power. The inclusion of the more accurate lidar sensor (which incurred no penalties for making observations, unlike the bumper sensor) increased the mean total reward for the different methods using that sensor. These results suggest that POMDP solution methods are effective methods for solving problems with partially observable state spaces. It further suggests that it may be more efficient to use POMDP solution techniques to solve this and similar problems rather than attempting to derive an explicit policy.

Problem Description

Our team was challenged with solving a problem where a Roomba was in an unknown location in a room and needed to leave the room through a doorway. The room's dimensions, including the location of the doorway and a flight of stairs, are known to the Roomba. However, its

location in (x,y) coordinates and its heading θ , where the heading $\theta = 0^{\circ}$ is aligned with the positive x-direction, are unknown.

Observations

The only sensor available to the Roomba is either a bump sensor, which returns a signal to the Roomba when it contacts a wall, or a lidar which return a noisy measurement of the closest wall in front of the Roomba. Using the sensor, an unknown initial position and direction, and the room dimensions the Roomba must reach the doorway to the next room.

Rewards

To quantify positive and negative behaviour, the Roomba problem is defined to have the following rewards/penalties:

- Each time that the Roomba hits a wall it receives -1 point.
 The bump sensor provides crucial informations when it hits the wall, so this incentivized our Roomba to balance impacting walls in order to acquire more information with the penalty for doing so.
- For falling down the stairs our Roomba receives a penalty of -10 points. This provides a large incentive for the Roomba to avoid the stairs.
- Reaching the goal state of the doorway to the next room gives a reward of +10 points. This provides a large incentive for our Roomba to attempt to reach the goal.
- The last scoring factor is that for every time step our Roomba receives a

Figure 1: View of the Roomba, the room, and the particle filter state at t=0. It can be seen that the particle filter has a fairly uniform distribution across the room. The goal is indicated by the green line and the stairs by the red line. The blue dots are the particles.

Figure 2: When the bumper sensor is used, the particle filter localizes to points along the wall when contact is made.

Figure 3: As the particle filter localizes around the true Roomba state (through either lidar or bumper measurements) the Roomba is better able to form an optimal policy and head towards the goal while avoiding the stairs.

-0.1 point penalty. This incentivizes our Roomba to minimize the time taken to reach the goal

Particle Filter

Our team used a particle filter in order to update our belief state from an initial uniformly sampled distribution. This particle filter was able to filter out "bad" particles using a couple of different methods.

- 1. If the Roomba's bump sensor is activated then all the particles must be on one of the walls. A corollary to this is that if the bump sensor is activated but the goal or stairs are not reached then all of the particles on those locations are thrown out.
- 2. If a particle is outside of the room's dimensions then it is thrown out of our sample. This results in a couple of different methods for updating our belief state to a more accurate belief state using the bump sensor.
 - 1. We can attempt to run particles out of the room's dimensions by moving farther than the state that the particle represents would allow.
 - 2. We can eliminate particles that were not along the walls by running into a wall.

The combination of these two methods allow us to localize our belief state to where our Roomba actually is and then move to the goal state. Doing these actions has costs however.

- 1. The longer that it takes us to localize, the longer it takes before the goal is reached, and the lower our score will be.
- 2. The more walls we bounce into, the better our localization, but our score is reduced in large increments.

This means that our Roomba has to balance the decision of collecting information versus attempting to reach the goal state. Each solution method discussed in the following sections has its own calculation for balancing these tradeoffs.

Baseline Methods

Two baseline methods were tested and scored to provide a comparison for a series of four different POMDP methods.

- 1. The first baseline method was a random policy where the Roomba would begin by driving straight until it impacted a wall. After hitting the wall it would turn to a random direction and then drive straight until it hit another wall or an end state (goal or stairs). This would repeat until an end state was reached or 100 time steps had elapsed.
- 2. The second baseline method used a Lidar sensor which gave the Roomba a noisy measurement of the distance to the wall directly in front of it. This method started with the Roomba rotating for 25 time steps so that it could localize and then it pointed itself directly at the goal state and drove to it.

POMDP Solution Methods

After testing and scoring the baseline methods we used 3 different POMDP methods to attempt to beat the baseline scores.

- 1. The first was a simple policy that attempted to use the bump sensor to approximate the lidar sensor before pointing and driving towards the goal state.
- 2. The second was a QMDP method where the Roomba initially drove into a wall to localize and then used the alpha vectors calculated in QMDP and it's current belief state to create a policy to take at each time step.
- 3. The third was an online variation of one-step lookahead where the utility used to calculate the policy was the sum of the alpha vectors calculated using QMDP multiplied by the current belief state and the alpha vectors multiplied by the next belief state assuming that same action. This was not the optimal one-step lookahead method but was used to see if it would improve on the QMDP method alone.

Solution Methods

This section describes in more detail each of the solution methods implemented. Each solution method uses a particle filter to update the belief state when given the belief state at the past time step, the action, and the observation made given that action occurred.

Lidar Baseline

The policy for this method was to initially have the Roomba spin in place for 25 time steps. This allowed the Roomba to localize itself using lidar measurements. After the first 25 times steps of localization the Roomba would travel towards the goal state using a simple proportional controller.

The main failure mode that this method experienced was that if the Roomba was initialized anywhere with a wall between its starting point and the goal state then it would never reach the goal state. To overcome this failure mode, a policy could be devised where if the Roomba's bump sensor stays active for 10 time steps then it will point in a random direction and travel forward for 5 time steps before once again travelling to the goal state. Another solution was implemented in the *Lidar QMDP Method* discussed in more detail below.

Bumper Baseline

The policy for this method was to initially have the Roomba travel straight forward until it hit a wall or an end state. After impacting the wall the Roomba would then turn to a random direction and then travel straight forward until it again either hit a wall or an end state. This policy would continue until either an end state was reached or all 100 time steps ran. This method was purely random.

A policy could be devised where the Roomba will generally attempt to travel towards where it thinks the goal state is. As it impacts walls its localization will improve and its ability to travel to the goal state will get better. We implemented something similar to this below in the Localization Bumper Method. This general policy improvement won't solve every failure instance, but it would take the random chance out of the system. Many other solutions could be implemented which would improve the results of this method. Those include the *QMDP Bumper Method*, and the *Updated Belief State Lookahead Bumper Method*.

Localization Bumper Method

For this policy, the Roomba travelled straight forward until it hit a wall or an end state. After impacting the wall the Roomba would then turn to 180 degrees and then travel straight forward until it reached the initial location that it started at. It would then turn 90 degrees and travel forward until it hit a wall. It would repeat those steps 4 times which is when it arrived back at its initial state.

The intent of this procedure was to duplicate the initial localization that would occur with the Lidar, but with more uncertainty because of the noise in the velocity and angular velocity inputs to the actions.

Once the localization step was finished the Roomba would point itself in the direction of the goal state and travel forward. This policy would continue until either an end state was reached or all 100 time steps ran. This method was better than the Bumper Baseline Method but still could be improved upon. The main failure mode was that this method did not localize well, and it was guaranteed to hit at least 4 walls before it could use its localization knowledge to direct it.

Another failure mode occurred if there was a wall in between the initial location of the Roomba and the goal state, as the roomba would get stuck on said wall. Many better solutions could be implemented which would improve the results over this method. Those include the *QMDP Bumper Method*, and the *Updated Belief State Lookahead Bumper Method*.

QMDP Bumper Method

To compute the alpha vectors necessary to create a policy from the belief state, the predefined QMDP solver included in POMDP.jl was used. Once the alpha vectors were computed offline, the simulation was started. To kickstart the simulation, the Roomba was made to travel straight forward until it hit a wall or an end state. This allowed the belief state to localize along the walls rather than being completely uniform. After impacting the wall the Roomba would then dot product the alpha vector for a given action, $\vec{\alpha_a}$, with the current belief state, \vec{b} , to calculate the utility of that respective action, $U_a(\vec{b})$. This would be done for all of the action states in our

discretized action space and the action that had the greatest utility for that belief state would be chosen for our policy. This method is described by the equation below:

$$\pi(\vec{b}) = argmax_a(\vec{\alpha}_a^T \cdot \vec{b})$$

Equation 1: Equation for finding the policy at each belief state in the QMDP Bumper Method [2]

This method was proved effective but still failed on occasion. The main failure mode occurred when two clusters of particles overlapped with each other, but had opposite beliefs of what theta was. When this occurred the action with the highest utility was to just to drive in a circle with a small radius. This is because the QMDP solution was based solely on a single step horizon. It is supposed that a policy where the Roomba could do a lookahead to a certain depth to determine its highest utility would eliminate that failure mode. We implemented something similar to this below in the *Updated Belief State Lookahead Bumper Method*.

QMDP Lidar Method

This method was very similar to the *QMDP Bumper Method*. The main difference is that the lidar measurements had to be discretized in order to use the QMDP solver. Another difference is that at the beginning of the simulation the Roomba spun in place for 15 time steps while the lidar measured the distance to the nearest wall in front of the Roomba. Once the 15 time steps passed the Roomba began to choose its actions based on the method laid out in *QMDP Bumper Method* where the Roomba chose the action that would result in the greatest utility given its belief state and the alpha vectors computed offline. This method was highly effective and no major failure method occured.

Updated Belief State Lookahead Bumper Method

We first calculate the alpha vectors for our system using QMDPsolver in the POMDP.jl file . The simulation then begins with the Roomba travelling straight until it hit a wall or an end state. This localizes the particles to a more concentrated location along the walls. The Roomba then takes the dot product of the alpha vector for a given action, $\vec{\alpha_a}$, and the current belief state, \vec{b} , to calculate the utility of that respective action, $U_a(\vec{b})$. This would be done for all 50 of the action states in our discretized state space and then we would calculate the utility of the next step, $U_a'(\vec{b}\,|a)$, by taking the dot product of the alpha vector for a given action, $\vec{\alpha_a}$, with the next belief state given that the first action occurred, $\vec{b}\,|a$. Our total utility was calculated by taking the sum of the dot product of the first step and the dot product of the second step and then the action that resulted in the maximum utility was chosen for our policy. [3] This method is described by the equation below:

$$\pi(\vec{b}) = argmax_a(\vec{\alpha}_a^T \cdot \vec{b} + max_{a'}[\vec{\alpha}_a^T \cdot \vec{b} | a])$$

Equation 2: Equation for finding the policy at each belief state in the *Updated Belief State Bumper*Method

This policy would continue until either an end state was reached or all 100 time steps ran. This method was effective, but could still be improved upon by a better online method. The main failure mode again occurred when two clusters of particles overlapped with each other, but had opposite beliefs of what theta was. A policy with a greater lookahead depth can reduce the chances of the circling from happening. In this policy we only looked ahead two steps, but you could theoretically do this all the way to the 100 time steps available and find the exact actions that would maximize our utility.

Summary of Results

Below we have summarized the results obtained from testing our different methods. In each case, the simulator was run for a statistically significant number of times to approximate the mean total reward obtainable from using a particular method. As can be seen in the tables, the POMDP solution methods were able to improve on the predefined baseline methods.

Table 1: Test results for the Roomba simulation with the bumper sensor. The simulation was done for a statistically significant number of testing cycles. The results were then averaged to give the mean total reward and the standard deviation of the total reward.

Solution Method	Mean Total Reward	StdErr Total Reward	Testing Cycles
Bumper Baseline	-9.596	3.737	50
Localization Bumper Method	-9.452	3.196	50
QMDP Bumper Method	-6.444	3.418	50
Updated Belief State Lookahead Bumper Method	-5.600	2.950	50

Table 2: Test results for the Roomba simulation with the lidar sensor. The simulation was done for a statistically significant number of testing cycles. The results were then averaged to give the mean total reward and the standard deviation of the total reward.

Solution Method	Mean Total Reward	StdErr Total Reward	Testing Cycles
Lidar Baseline	-3.900	4.130	50
QMDP Lidar Method	-2.188	3.656	50

Conclusions

In conclusion, when comparing results using the same sensor, online methods such as the *Updated Belief State Lookahead Bumper Method* outperformed offline methods, such as the *QMDP Bumper Method*, which outperformed predefined policy methods, such as the *Localization Bumper Method*, which outperformed random policy methods, such as the *Bumper Baseline Method*. Each successive method type was more effective, but required more computational power.

The inclusion of the more accurate lidar sensor (which incurred no penalties for making observations, unlike the bumper sensor) increased the mean total reward for the different methods using that sensor.

These results suggest that POMDP solution methods are effective methods for solving problems with partially observable state spaces. It further suggests that it may be more efficient to use POMDP solution techniques to solve this and similar problems rather than attempting to derive an explicit policy.

References

- [1] Kochenderfer, M. J., 2015, "Decision Making Under Uncertainty: Theory and Application," State Uncertainty. M. J. Kochenderfer, The MIT Press, Cambridge, Massachusetts, pp. 133.
- [2] Kochenderfer, M. J., 2015, "Decision Making Under Uncertainty: Theory and Application," State Uncertainty. M. J. Kochenderfer, The MIT Press, Cambridge, Massachusetts, pp. 144.
- [3] Kochenderfer, M. J., 2015, "Decision Making Under Uncertainty: Theory and Application," State Uncertainty. M. J. Kochenderfer, The MIT Press, Cambridge, Massachusetts, pp. 149.

Appendix

Here we list the code files used in the development of this paper. The files are as follows:

Solution methods file listing: The first listing contains the full file code. Subsequent listings exclude the simulation and testing routines and the import statements:

1.	Lidar_Baseline.jl	11
2.	Bumber_Baseline.jl	.15
3.	Lidar_QMDP.jl	.18
	Bumber_QMDP.jl	
5.	Localization_Bumper.jl	26
6.	Updated_Belief_State_Bumper.jl	31
7.	Two_step_lookahead.jl	36

Support file listing: All the solution methods above used the same support files, as listed below:

- 1. roomba_env.jl Contains definitions for the Roomba environment and for the Roombda POMDP
- 2. filtering.jl Contains definitions for the particle filter used during simulations
- 3. env room.jl Contains definitions and functions for creating the room environment
- 4. line_segment_utils.jl Contains functions for determining whether the Roomba's path intersects with a line segment.

Lidar_Baseline.jl

```
import Pkg
if !haskey(Pkg.installed(), "AA228FinalProject")
     jenv = joinpath(dirname(@_FILE__()), ".") # this assumes the
notebook is in the same dir
     # as the Project.toml file, which should be in top level dir of the
     # Change accordingly if this is not the case.
     Pkg.activate(jenv)
end
# import necessary packages
using AA228FinalProject
using POMDPs
using POMDPPolicies
using BeliefUpdaters
using ParticleFilters
using POMDPSimulators
using Cairo
using Gtk
using Random
using Printf
sensor = Lidar() # or Bumper() for the bumper version of the environment
config = 3 # 1,2, or 3
m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));
num_particles = 2000
resampler = LidarResampler(num_particles,
LowVarianceResampler(num particles))
# for the bumper environment
# resampler = BumperResampler(num_particles)
spf = SimpleParticleFilter(m, resampler)
```

```
v noise coefficient = 2.0
om_noise_coefficient = 0.5
belief_updater = RoombaParticleFilter(spf, v_noise_coefficient,
om noise coefficient);
# Define the policy to test
mutable struct ToEnd <: Policy</pre>
     ts::Int64 # to track the current time-step.
end
# extract goal for heuristic controller
goal_xy = get_goal_xy(m)
# and returns the desired action
function POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})
     if p.ts < 25
     p.ts += 1
     return RoombaAct(0.,1.0) # all actions are of type RoombaAct(v,om)
     end
     p.ts += 1
     # after 25 time-steps, we follow a proportional controller to
     # compute mean belief of a subset of particles
      s = mean(b)
     # compute the difference between our current heading and one that
     goal_x, goal_y = goal_xy
     x,y,th = s[1:3]
     ang_to_goal = atan(goal_y - y, goal_x - x)
     del_angle = wrap_to_pi(ang_to_goal - th)
```

```
# apply proportional control to compute the turn-rate
      Kprop = 1.0
      om = Kprop * del_angle
      # always travel at some fixed velocity
      v = 5.0
      return RoombaAct(v, om)
end
# first seed the environment
Random.seed!(2)
# reset the policy
p = ToEnd(\emptyset) # here, the argument sets the time-steps elapsed to 0
#RUN THE SIMULATION
c = @GtkCanvas()
win = GtkWindow(c, "Roomba Environment", 600, 600)
for (t, step) in enumerate(stepthrough(m, p, belief_updater,
max steps=100))
      @guarded draw(c) do widget
      # the following lines render the room, the particles, and the roomba
      ctx = getgc(c)
      set_source_rgb(ctx,1,1,1)
      paint(ctx)
      render(ctx, m, step)
      move_to(ctx,300,400)
      show_text(ctx, @sprintf("t=%d, state=%s,
o=%.3f",t,string(step.s),step.o))
      end
      show(c)
      sleep(0.1) # to slow down the simulation
end
```

```
using Statistics

total_rewards = []

for exp = 1:50
    println(string(exp))

    Random.seed!(exp)

    p = ToEnd(0)
    traj_rewards = sum([step.r for step in stepthrough(m,p,belief_updater, max_steps=100)])

    push!(total_rewards, traj_rewards)
end

@printf("Mean Total Reward: %.3f, StdErr Total Reward: %.3f", mean(total_rewards), std(total_rewards)/sqrt(5))
```

Bumper_Baseline.jl

```
sensor = Bumper() # or Bumper() for the bumper version of the environment
config = 3 # 1,2, or 3
m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));
num particles = 5000
resampler = BumperResampler(num_particles)
# for the bumper environments
# resampler = BumperResampler(num_particles)
spf = SimpleParticleFilter(m, resampler)
v_noise_coefficient = 2.0
om_noise_coefficient = 0.5
belief_updater = RoombaParticleFilter(spf, v_noise_coefficient,
om_noise_coefficient);
mutable struct ToEnd <: Policy</pre>
      ts::Int64 # to track the current time-step.
end
# extract goal for heuristic controller
goal_xy = get_goal_xy(m)
previousBumpState = false
spinStep = 1
function POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})
      #Seed the environment
      Random.seed!()
```

```
drive
     global previousBumpState
      global spinSteps
     #Fixed Velocity and spin rate maximums
     velMax = m.mdp.v max
     omegaMax = m.mdp.om_max
     #Normal driving speed
     vel = 5.0
     maxSpinCount = 8
     minSpinCount = 2
     p.ts += 1
     #If the wall has been bumped, then all particles are on the wall. If
     #then any particle will do for determining wall contact
     s = particle(b,1)
     #Call the wall contact function to determine if we are in wall
contact
      currentBumpState = AA228FinalProject.wall_contact(m,s)
     #The bump sensor tells us we are in contact with the wall
     if (currentBumpState == true)
     #Our memory variable tells us we weren't in contact the previous
timestep
     if (previousBumpState == false)
            spinSteps =
floor(minSpinCount+rand()*(maxSpinCount-minSpinCount))
            #Update the previous state
            previousBumpState = currentBumpState
            #Return our trajectory
```

```
return RoombaAct(0.0, omegaMax)
     #Our memory variable tells us we were in contact with the wall in the
     elseif (previousBumpState == true)
           #If we are still spinning
           if (spinSteps != 0)
                 spinSteps -= 1
                 #Return our trajectory
                 return RoombaAct(0.0, omegaMax)
           else
                  previousBumpState = false
                  #Attempt to drive forward. If we can't them the logic
flow will
                 #reset the spinSteps variable and the Roomba will spin a
random
                  #number of time-steps again
                  return RoombaAct(vel, 0.0)
           end
     end
     #If we aren't in contact with the wall
     elseif (currentBumpState == false)
     #Update previous state
     previousBumpState = currentBumpState
     return RoombaAct(vel, 0.0)
     end
end
```

Lidar_QMDP.jl

```
#Discretize the observation space
cut_points = collect(0:1:30)
sensor_discrete = DiscreteLidar(cut_points)
#Discretize state space
num_x_pts = 20
num_y_pts = 20
num_th_pts = 10
sspace = DiscreteRoombaStateSpace(num x pts,num y pts,num th pts)
#Discretize action space
vlist = collect(0:2.5:10.0)
omlist = collect(0:0.25:1.0)
aspace = vec(collect(RoombaAct(v, om) for v in vlist, om in omlist))
#Define our sensor and room layout
sensor = Lidar()
config = 1 # 1,2, or 3
#Define POMDP for the simulation
m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));
#Define the POMDP with discretized state/action/observations for the solver
m_discrete = RoombaPOMDP(sensor=sensor_discrete,
mdp=RoombaMDP(config=config, sspace = sspace,
                        aspace = aspace));
#Create our particle filter
num particles = 5000
resampler = LidarResampler(num_particles,
LowVarianceResampler(num_particles))
spf = SimpleParticleFilter(m, resampler)
v_noise_coefficient = 2.0
om_noise_coefficient = 0.5
```

```
belief updater = RoombaParticleFilter(spf, v_noise_coefficient,
om_noise_coefficient);
#Define our solver
solver = QMDPSolver(max_iterations=20,
                  tolerance=1e-3,
                  verbose=true)
#If we need to compute our policy for the first time
if (1 == 1)
      #Use our solver and our POMDP model to find a policy
      policy = solve(solver,m_discrete)
      using JLD2, FileIO
      @JLD2.save "my_policy_lidar.jld" policy
#Otherwise use the saved policy we computed previously
else
      @JLD2.load "my_policy_lidar.jld" policy
end
mutable struct ToEnd <: Policy</pre>
      ts::Int64 # to track the current time-step.
end
states = POMDPs.states(m_discrete)
# and returns the desired action
function POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})
      if p.ts < 15
      p.ts += 1
```

```
return RoombaAct(0.,1.0) # all actions are of type RoombaAct(v,om)
end
p.ts += 1
#Get our policy from our solver
global policy
alphas = policy.alphas
greatestUtilityIndex = 0
greatestUtility = -Inf
numStates = POMDPs.n_states(m_discrete)
numActions = length(alphas)
#Create our belief vector from our particle filter
belief = zeros(numStates)
for i = 1:num particles
s = particle(b,i)
index = POMDPs.stateindex(m_discrete,s)
belief[index] += 1
end
belief = belief/num_particles
# see which action gives the highest util value
for i = 1:numActions
utility = dot(alphas[i], belief)
if utility > greatestUtility
      greatestUtility = utility
      greatestUtilityIndex = i
end
end
# map the index to action
a = policy.action_map[greatestUtilityIndex]
if greatestUtilityIndex == 1
a = policy.action_map[2]
end
```

return RoombaAct(a[1], a[2])

end

Bumper_QMDP.jl

```
#Define our sensor
sensor = Bumper()
config = 1
#Discretize state space
num_x_pts = 50
num_y_pts = 50
num th pts = 20
sspace = DiscreteRoombaStateSpace(num x pts,num y pts,num th pts)
#Discretize action space
vlist = collect(0:1.0:10.0)
omlist = collect(0:0.2:1.0)
aspace = vec(collect(RoombaAct(v, om) for v in vlist, om in omlist))
#aspace = aspace[2:length(aspace)]
#Construct the POMPDP for the QMDP solver (Discrete state/action space)
m_discrete = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config, sspace
= sspace,
                        aspace = aspace));
m_discrete.mdp.goal_reward = 100
m_discrete.mdp.stairs_penalty = -100
#Construct the POMDP for the simulator (Continuous state/action space)
m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));
#Create the particle filter
num_particles = 10000 #2000
```

```
resampler = BumperResampler(num_particles)
spf = SimpleParticleFilter(m, resampler)
#Create our belief updater using our simple particle filter
v noise coefficient = 2.0
om_noise_coefficient = 0.5
belief updater = RoombaParticleFilter(spf, v_noise_coefficient,
om noise coefficient);
#Define our solver
solver = QMDPSolver(max_iterations=20,
                  tolerance=1e-3,
                  verbose=true)
#If we need to compute our policy for the first time
if (1 == 0)
     #Use our solver and our POMDP model to find a policy
     policy = solve(solver,m_discrete)
     #Save our policy so we don't have to recompute
     using JLD2, FileIO
     @JLD2.save "my_policy3.jld" policy
#Otherwise use the saved policy we computed previously
else
     @JLD2.load "my_policy2.jld" policy
end
mutable struct ToEnd <: Policy</pre>
     ts::Int64 # to track the current time-step.
     policy::AlphaVectorPolicy
end
```

```
#flag for our wall hit policy
previousBumpState = false
states = POMDPs.states(m_discrete)
# and returns the desired action
function POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})
     global previousBumpState
     #Drive straight into wall to localize belief state
     if previousBumpState == false
     #If the wall has been bumped, then all particles are on the wall. If
     #then any particle will do for determining wall contact
      s = particle(b,1)
     #Call the wall contact function to determine if we are in wall
contact
     currentBumpState = AA228FinalProject.wall_contact(m,s)
     if currentBumpState == false
            return RoombaAct(5.0, 0.0)
      else
            previousBumpState = true
     end
      end
     #Use alpha vectors once first wall contact is made
     if previousBumpState == true
     policy = p.policy
action)
     alphas = policy.alphas
      greatestUtilityIndex = 6
     greatestUtility = -Inf
     numStates = POMDPs.n_states(m_discrete)
```

```
numActions = length(alphas)
     #Create our belief vector from our particle filter
     belief = zeros(numStates)
     for i = 1:num_particles
            s = particle(b,i)
            index = POMDPs.stateindex(m_discrete,s)
            belief[index] += 1
     end
     belief = belief/num_particles
     # see which action gives the highest util value
     for i = 1:numActions
            utility = dot(alphas[i], belief)
            if utility > greatestUtility
                  greatestUtility = utility
                 greatestUtilityIndex = i
            end
     end
     # map the index to action
     a = policy.action_map[greatestUtilityIndex]
     if greatestUtilityIndex == 1
            a = policy.action_map[6]
     end
     return RoombaAct(a[1], a[2])
     end
end
```

Localization_Bumper.jl

```
sensor = Bumper() # or Bumper() for the bumper version of the environment
config = 1 # 1,2, or 3
m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));
num particles = 10000
resampler = BumperResampler(num particles)
# for the bumper environments
# resampler = BumperResampler(num_particles)
spf = SimpleParticleFilter(m, resampler)
v_noise_coefficient = 2.0
om_noise_coefficient = 0.5
belief_updater = RoombaParticleFilter(spf, v_noise_coefficient,
om_noise_coefficient);
# Define the policy to test
mutable struct ToEnd <: Policy</pre>
    ts::Int64 # to track the current time-step.
end
# extract goal for heuristic controller
goal_xy = get_goal_xy(m)
#flag for our wall hit policy
previousBumpState = false
spinStep =
# and returns the desired action
function POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})
    #Seed the environment
```

```
Random.seed!()
drive
   global velSteps
   global previousBumpState
   global spinSteps
   global L
   velMax = m.mdp.v_max
   omegaMax = m.mdp.om_max
   #Normal driving speed
   vel = 2
   maxSpinCount = 7
   minSpinCount = 3
   p.ts += 1
   #If the wall has been bumped, then all particles are on the wall. If
   #then any particle will do for determining wall contact
   s = particle(b,1)
   #Call the wall_contact function to determine if we are in wall contact
   #(returns true or false)
   currentBumpState = AA228FinalProject.wall_contact(m,s)
   initialBumpState = AA228FinalProject.wall_contact(m,s)
   OmegaNinetyDegrees=0.7853981634
   if (p.ts<2 && currentBumpState==true)</pre>
        L=1
        velSteps=0
   end
   if (p.ts<2 && currentBumpState==false)</pre>
        L=2
        velSteps=0
   end
```

```
if (p.ts>400)
    L=3
end
if (p.ts>420)
    L=5
end
if (L==1)
    if (currentBumpState==true)
        if (previousBumpState==false)
            spinSteps=4
            previousBumpState=currentBumpState
        elseif (previousBumpState=true)
            if (spinSteps!=0)
                spinSteps-=1
                p.ts+=1
                return RoombaAct(0.0,OmegaNinetyDegrees)
            else
                previousBumpState=false
                p.ts+=1
                L=2
                return RoombaAct(vel,0.0)
            end
        end
    end
elseif (L==2)
    while (currentBumpState==false)
        velSteps+=1
        previousBumpState=currentBumpState
        p.ts+=1
        return RoombaAct(vel,0.0)
    end
    while (currentBumpState==true)
        while (previousBumpState==false)
            spinSteps=7
            previousBumpState=currentBumpState
            p.ts+=1
            return RoombaAct(0.0,OmegaNinetyDegrees)
        end
        while (previousBumpState==true)
            if (spinSteps!=0)
                spinSteps-=1
                p.ts+=1
```

```
return RoombaAct(0.0,OmegaNinetyDegrees)
            else
                velSteps-=1
                p.ts+=1
                L=4
                return RoombaAct(vel,0.0)
            end
        end
    end
elseif (L==4)
    if (velSteps>0)
        velSteps-=1
        p.ts+=1
        spinSteps=4
        return RoombaAct(vel,0.0)
    else
        if (spinSteps>0)
            spinSteps-=1
            p.ts+=1
            return RoombaAct(0.0,OmegaNinetyDegrees)
        else
            L=2
            velSteps+=1
            p.ts+=1
            return RoombaAct(vel,0.0)
        end
    end
elseif (L==3)
    s = mean(b)
    goal_x, goal_y = goal_xy
    x,y,th = s[1:3]
    ang_to_goal = atan(goal_y - y, goal_x - x)
    del_angle = wrap_to_pi(ang_to_goal - th)
    Kprop = 1.0
    om = Kprop * del_angle
    v = 5.0
    p.ts+=1
    return RoombaAct(0.0, om)
elseif (L==5)
    s = mean(b)
    goal_x, goal_y = goal_xy
    x,y,th = s[1:3]
```

```
ang_to_goal = atan(goal_y - y, goal_x - x)
del_angle = wrap_to_pi(ang_to_goal - th)
Kprop = 1.0
om = Kprop * del_angle
v = 5.0
p.ts+=1
return RoombaAct(v,om)
end
End
```

Updated_Belief_State_Bumper.jl

```
#Define our sensor
sensor = Bumper()
config = 1
#Discretize state space
num_x_pts = 50
num_y_pts = 50
num_th_pts = 20
sspace = DiscreteRoombaStateSpace(num x pts,num y pts,num th pts)
#Discretize action space
vlist = collect(0:1.0:10.0)
omlist = collect(0:0.2:1.0)
aspace = vec(collect(RoombaAct(v, om) for v in vlist, om in omlist))
#aspace = aspace(2:length(aspace))
#Construct the POMPDP for the OMDP solver (Discrete state/action space)
m_discrete = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config, sspace)
= sspace,
                      aspace = aspace));
m_discrete.mdp.goal_reward = 10
m_discrete.mdp.stairs_penalty = -10
#Construct the POMDP for the simulator (Continuous state/action space)
m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));
#Create the particle filter
```

```
num particles = 5000 #2000
resampler = BumperResampler(num_particles)
spf = SimpleParticleFilter(m, resampler)
#Create our belief updater using our simple particle filter
v_noise_coefficient = 2.0
om noise coefficient = 0.5
belief updater = RoombaParticleFilter(spf, v_noise_coefficient,
om noise coefficient);
#Define our solver
#solver = FIBSolver()
solver = QMDPSolver(max_iterations=20,
                    tolerance=1e-3,
                    verbose=true)
#If we need to compute our policy for the first time
if (1 == 0)
    #Use our solver and our POMDP model to find a policy
    policy = solve(solver,m discrete)
    using JLD2, FileIO
    @JLD2.save "my_policy.jld" policy
else
    @JLD2.load "my_policy2.jld" policy
end
mutable struct ToEnd <: Policy</pre>
    ts::Int64 # to track the current time-step.
    policy::AlphaVectorPolicy
end
```

```
previousBumpState = false
states = POMDPs.states(m_discrete)
# and returns the desired action
function POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})
    global previousBumpState
    #Drive straight into wall to localize belief state
    if previousBumpState == false
        #If the wall has been bumped, then all particles are on the wall.
        #then any particle will do for determining wall contact
        s = particle(b,1)
        #Call the wall_contact function to determine if we are in wall
contact
        #(returns true or false)
        currentBumpState = AA228FinalProject.wall_contact(m,s)
        if currentBumpState == false
            return RoombaAct(5.0, 0.0)
        else
            previousBumpState = true
        end
    end
    #Use alpha vectors once first wall contact is made
    if previousBumpState == true
        policy = p.policy
action)
        alphas = policy.alphas
        greatestUtilityIndex = 6
        greatestUtility = -Inf
```

```
numStates = POMDPs.n_states(m_discrete)
       numActions = length(alphas)
       #Create our belief vector from our particle filter
       belief = zeros(numStates)
       for i = 1:num particles
            s = particle(b,i)
            index = POMDPs.stateindex(m_discrete,s)
            belief[index] += 1
       end
       belief = belief/num_particles
       #print(belief)
       #print("\n")
       global s1
       for i = 1:numActions
            bp1=POMDPs.update(belief updater,
b,RoombaAct(policy.action_map[i]),AA228FinalProject.wall_contact(m_discrete
,s))
            for j = 1:num particles
                s1 = particle(bp1,j)
            end
            bp2=POMDPs.update(belief_updater,
b,RoombaAct(policy.action map[i]),AA228FinalProject.wall contact(m discrete
,s1))
            beliefnew2 = zeros(numStates)
            for j = 1:num particles
                s2 = particle(bp2,j)
                index2 = POMDPs.stateindex(m_discrete,s2)
                beliefnew2[index2] += 1
            end
            beliefnew2 = beliefnew2/num_particles
            utility = dot(alphas[i], belief)+dot(alphas[i], beliefnew2)
            if utility > greatestUtility
                greatestUtility = utility
                greatestUtilityIndex = i
            end
       end
```

```
# map the index to action
a = policy.action_map[greatestUtilityIndex]

if greatestUtilityIndex == 1
    a = policy.action_map[6]
    end
    return RoombaAct(a[1], a[2])
end

end

end
```

Two_Step_Lookahead.jl

```
#Define our sensor
sensor = Bumper()
config = 1
#Discretize state space
num_x_pts = 50
num_y_pts = 50
num_th_pts = 20
sspace = DiscreteRoombaStateSpace(num x pts,num y pts,num th pts)
#Discretize action space
vlist = collect(0:1.0:10.0)
omlist = collect(0:0.2:1.0)
aspace = vec(collect(RoombaAct(v, om) for v in vlist, om in omlist))
#aspace = aspace(2:length(aspace))
#Construct the POMPDP for the OMDP solver (Discrete state/action space)
m_discrete = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config, sspace
= sspace,
                      aspace = aspace));
m_discrete.mdp.goal_reward = 10
m_discrete.mdp.stairs_penalty = -10
#Construct the POMDP for the simulator (Continuous state/action space)
m = RoombaPOMDP(sensor=sensor, mdp=RoombaMDP(config=config));
#Create the particle filter
```

```
num particles = 40000 #2000
resampler = BumperResampler(num_particles)
spf = SimpleParticleFilter(m, resampler)
#Create our belief updater using our simple particle filter
v_noise_coefficient = 2.0
om noise coefficient = 0.5
belief updater = RoombaParticleFilter(spf, v_noise_coefficient,
om noise coefficient);
#Define our solver
#solver = FIBSolver()
solver = QMDPSolver(max_iterations=20,
                    tolerance=1e-3,
                    verbose=true)
#If we need to compute our policy for the first time
if (1 == 0)
    #Use our solver and our POMDP model to find a policy
    policy = solve(solver,m discrete)
    using JLD2, FileIO
    @JLD2.save "my_policy.jld" policy
else
    @JLD2.load "my_policy2.jld" policy
end
mutable struct ToEnd <: Policy</pre>
    ts::Int64 # to track the current time-step.
    policy::AlphaVectorPolicy
end
```

```
previousBumpState = false
states = POMDPs.states(m_discrete)
# and returns the desired action
function POMDPs.action(p::ToEnd, b::ParticleCollection{RoombaState})
    global previousBumpState
    #Drive straight into wall to localize belief state
    if previousBumpState == false
        #If the wall has been bumped, then all particles are on the wall.
        #then any particle will do for determining wall contact
        s = particle(b,1)
        #Call the wall_contact function to determine if we are in wall
contact
        #(returns true or false)
        currentBumpState = AA228FinalProject.wall_contact(m,s)
        if currentBumpState == false
            return RoombaAct(5.0, 0.0)
        else
            previousBumpState = true
        end
    end
    #Use alpha vectors once first wall contact is made
    if previousBumpState == true
        policy = p.policy
action)
        alphas = policy.alphas
        greatestUtilityIndex = 6
        greatestUtility = -Inf
```

```
greatestUtilityIndex2 = 6
       greatestUtility2 = -Inf
       numStates = POMDPs.n_states(m_discrete)
       numActions = length(alphas)
       #Create our belief vector from our particle filter
       belief = zeros(numStates)
       for i = 1:num_particles
            s = particle(b,i)
            index = POMDPs.stateindex(m_discrete,s)
            belief[index] += 1
       end
       belief = belief/num_particles
       global s1
       # see which action gives the highest util value
       for i = 1:numActions
            bp1=POMDPs.update(belief_updater,
b,RoombaAct(policy.action_map[i]),AA228FinalProject.wall_contact(m_discrete
,s))
            for j = 1:num_particles
                s1 = particle(bp1,j)
            end
            bp2=POMDPs.update(belief_updater,
b,RoombaAct(policy.action_map[i]),AA228FinalProject.wall_contact(m_discrete
,s1))
            beliefnew2 = zeros(numStates)
            greatestUtility2=zeros(numActions)
            for j = 1:num_particles
                s2 = particle(bp2,j)
                index2 = POMDPs.stateindex(m_discrete,s2)
                beliefnew2[index2] += 1
            end
            beliefnew2 = beliefnew2/num particles
            utility2 =dot(alphas[i], beliefnew2)
            greatestUtility2[i] = utility2
            greatestUtilityIndex2 = i
       end
```

```
for i = 1:numActions
    utility = dot(alphas[i], belief)+greatestUtility2[i]
    if utility > greatestUtility
        greatestUtility = utility
        greatestUtilityIndex = i
    end
end

# map the index to action
a = policy.action_map[greatestUtilityIndex]

if greatestUtilityIndex == 1
    a = policy.action_map[6]
end
return RoombaAct(a[1], a[2])
end
end
```

roomba_env.jl

```
# Defines the environment as a POMDPs.jl MDP and POMDP
# Wraps ang to be in (-pi, pi]
function wrap_to_pi(ang::Float64)
      if ang > pi
       ang -= 2*pi
    elseif ang <= -pi</pre>
       ang += 2*pi
      end
    ang
end
State of a Roomba.
# Fields
- `x::Float64` x location in meters
- `y::Float64` y location in meters
- `theta::Float64` orientation in radians
- `status::Bool` indicator whether robot has reached goal state or stairs
struct RoombaState <: FieldVector{4, Float64}</pre>
      x::Float64
      y::Float64
      theta::Float64
      status::Float64
end
# Struct for a Roomba action
struct RoombaAct <: FieldVector{2, Float64}</pre>
      v::Float64 # meters per second
      omega::Float64 # theta dot (rad/s)
end
# action spaces
struct RoombaActions end
function gen_amap(aspace::RoombaActions)
```

```
return nothing
end
function gen amap(aspace::AbstractVector{RoombaAct})
      return Dict(aspace[i]=>i for i in 1:length(aspace))
end
.....
Define the Roomba MDP.
# Fields
- `v max::Float64` maximum velocity of Roomba [m/s]
- `om_max::Float64` maximum turn-rate of Roombda [rad/s]
- `dt::Float64` simulation time-step [s]
- `contact pen::Float64` penalty for wall-contact
- `time pen::Float64` penalty per time-step
- `goal_reward::Float64` reward for reaching goal
- `stairs_penalty::Float64` penalty for reaching stairs
- `config::Int` specifies room configuration (location of stairs/goal)
{1,2,3}
- `room::Room` environment room struct
- `sspace::SS` environment state-space (ContinuousRoombaStateSpace or
DiscreteRoombaStateSpace)
- `aspace::AS` environment action-space struct
@with_kw mutable struct RoombaMDP{SS,AS} <: MDP{RoombaState, RoombaAct}</pre>
      v max::Float64 = 10.0 # m/s
     om_max::Float64 = 1.0 # rad/s
     dt::Float64
                    = 0.5 # s
      contact pen::Float64 = -1.0
     time pen::Float64 = -0.1
      goal reward::Float64 = 10
      stairs penalty::Float64 = -10
      config::Int = 1
      room::Room = Room(configuration=config)
      sspace::SS = ContinuousRoombaStateSpace()
      aspace::AS = RoombaActions()
      _amap::Union{Nothing, Dict{RoombaAct, Int}} = gen_amap(aspace)
end
# state-space definitions
struct ContinuousRoombaStateSpace end
```

```
Specify a DiscreteRoombaStateSpace
- `x step::Float64` distance between discretized points in x
- `y step::Float64` distance between discretized points in y
- `th_step::Float64` distance between discretized points in theta
- `XLIMS::Vector` boundaries of room (x-dimension)
- `YLIMS::Vector` boundaries of room (y-dimension)
struct DiscreteRoombaStateSpace
      x step::Float64
     y_step::Float64
     th step::Float64
      XLIMS::Vector
      YLIMS::Vector
end
# function to construct DiscreteRoombaStateSpace:
# `num x pts::Int` number of points to discretize x range to
# `num_y_pts::Int` number of points to discretize yrange to
# `num_th_pts::Int` number of points to discretize th range to
function DiscreteRoombaStateSpace(num x pts::Int, num y pts::Int,
num_theta_pts::Int)
      # hardcoded room-limits
     # watch for consistency with env room
      XLIMS = [-30.0, 20.0]
      YLIMS = [-30.0, 10.0]
      return DiscreteRoombaStateSpace((XLIMS[2]-XLIMS[1])/(num x pts-1),
                                    (YLIMS[2]-YLIMS[1])/(num_y_pts-1),
                                    2*pi/(num_theta_pts-1),
                                    XLIMS, YLIMS)
end
Define the Roomba POMDP
```

```
Fields:
- `sensor::T` struct specifying the sensor used (Lidar or Bump)
- `mdp::T` underlying RoombaMDP
struct RoombaPOMDP{T, 0} <: POMDP{RoombaState, RoombaAct, 0}</pre>
      sensor::T
     mdp::RoombaMDP
end
# observation models
struct Bumper
end
POMDPs.obstype(::Type{Bumper}) = Bool
POMDPs.obstype(::Bumper) = Bool
struct Lidar
     ray_stdev::Float64 # measurement noise: see POMDPs.observation
definition
end
Lidar() = Lidar(0.1)
POMDPs.obstype(::Type{Lidar}) = Float64
POMDPs.obstype(::Lidar) = Float64 #float64(x)
struct DiscreteLidar
     ray_stdev::Float64
     disc_points::Vector{Float64} # cutpoints: endpoints of (0, Inf)
end
POMDPs.obstype(::Type{DiscreteLidar}) = Int
POMDPs.obstype(::DiscreteLidar) = Int
DiscreteLidar(disc_points) = DiscreteLidar(Lidar().ray_stdev, disc_points)
# Shorthands
const RoombaModel = Union{RoombaMDP, RoombaPOMDP}
const BumperPOMDP = RoombaPOMDP{Bumper, Bool}
const LidarPOMDP = RoombaPOMDP{Lidar, Float64}
```

```
const DiscreteLidarPOMDP = RoombaPOMDP{DiscreteLidar, Int}
# access the mdp of a RoombaModel
mdp(e::RoombaMDP) = e
mdp(e::RoombaPOMDP) = e.mdp
# RoombaPOMDP Constructor
function RoombaPOMDP(sensor, mdp)
      RoombaPOMDP{typeof(sensor), obstype(sensor)}(sensor, mdp)
end
RoombaPOMDP(;sensor=Bumper(), mdp=RoombaMDP()) = RoombaPOMDP(sensor,mdp)
# function to determine if there is contact with a wall
wall_contact(e::RoombaModel, state) = wall_contact(mdp(e).room, state[1:2])
POMDPs.actions(m::RoombaModel) = mdp(m).aspace
POMDPs.n_actions(m::RoombaModel) = length(mdp(m).aspace)
# maps a RoombaAct to an index in a RoombaModel with discrete actions
function POMDPs.actionindex(m::RoombaModel, a::RoombaAct)
      if mdp(m). amap != nothing
     return mdp(m)._amap[a]
     else
      error("Action index not defined for continuous actions.")
      end
end
# function to get goal xy location for heuristic controllers
function get goal xy(m::RoombaModel)
     grn = mdp(m).room.goal_rect
      gwn = mdp(m).room.goal_wall
      gr = mdp(m).room.rectangles[grn]
      corners = gr.corners
     if gwn == 4
     return (corners[1,:] + corners[4,:]) / 2.
      return (corners[gwn,:] + corners[gwn+1,:]) / 2.
     end
end
```

```
function POMDPs.initialstate(m::RoombaModel, rng::AbstractRNG)
     e = mdp(m)
     x, y = init_pos(e.room, rng)
     th = rand() * 2*pi - pi
     is = RoombaState(x, y, th, 0.0)
     if mdp(m).sspace isa DiscreteRoombaStateSpace
     isi = stateindex(m, is)
     is = index_to_state(m, isi)
     end
     return is
end
function POMDPs.transition(m::RoombaModel,
                        s::AbstractVector{Float64},
                        a::AbstractVector{Float64})
     e = mdp(m)
     v, om = a
     v = clamp(v, 0.0, e.v_max)
     om = clamp(om, -e.om_max, e.om_max)
     # propagate dynamics without wall considerations
     x, y, th, _{-} = s
     dt = e.dt
     # dynamics assume robot rotates and then translates
     next_th = wrap_to_pi(th + om*dt)
     # make sure we arent going through a wall
     p0 = SVector(x, y)
     heading = SVector(cos(next_th), sin(next_th))
     des step = v*dt
     next_x, next_y = legal_translate(e.room, p0, heading, des_step)
     grn = mdp(m).room.goal_rect
     gwn = mdp(m).room.goal_wall
```

```
srn = mdp(m).room.stair rect
      swn = mdp(m).room.stair_wall
      gr = mdp(m).room.rectangles[grn]
      sr = mdp(m).room.rectangles[srn]
      next status = 1.0*contact_wall(gr, gwn, [next_x, next_y]) -
1.0*contact_wall(sr, swn, [next_x, next_y])
     # define next state
      sp = RoombaState(next_x, next_y, next_th, next_status)
     if mdp(m).sspace isa DiscreteRoombaStateSpace
      si = stateindex(m, sp)
      sp = index to state(m, si)
     end
     return Deterministic(sp)
end
# enumerate all possible states in a DiscreteRoombaStateSpace
function POMDPs.states(m::RoombaModel)
     if mdp(m).sspace isa DiscreteRoombaStateSpace
     ss = mdp(m).sspace
     x_states = range(ss.XLIMS[1], stop=ss.XLIMS[2], step=ss.x_step)
     y_states = range(ss.YLIMS[1], stop=ss.YLIMS[2], step=ss.y_step)
     th_states = range(-pi, stop=pi, step=ss.th_step)
      statuses = [-1.,0.,1.]
      return vec(collect(RoombaState(x,y,th,st) for x in x_states, y in
y_states, th in th_states, st in statuses))
     return mdp(m).sspace
      end
end
function POMDPs.n_states(m::RoombaModel)
     if mdp(m).sspace isa DiscreteRoombaStateSpace
     ss = mdp(m).sspace
      nstates = prod((convert(Int, diff(ss.XLIMS)[1]/ss.x_step)+1,
                              convert(Int, diff(ss.YLIMS)[1]/ss.y_step)+1,
                              round(Int, 2*pi/ss.th_step)+1,
                              3))
```

```
return nstates
     else
     error("State-space must be DiscreteRoombaStateSpace.")
     end
end
# map a RoombaState to an index in a DiscreteRoombaStateSpace
function POMDPs.stateindex(m::RoombaModel, s::RoombaState)
     if mdp(m).sspace isa DiscreteRoombaStateSpace
     ss = mdp(m).sspace
     xind = floor(Int, (s[1] - ss.XLIMS[1]) / ss.x_step + 0.5) + 1
     yind = floor(Int, (s[2] - ss.YLIMS[1]) / ss.y_step + 0.5) + 1
     thind = floor(Int, (s[3] - (-pi)) / ss.th_step + 0.5) + 1
     stind = convert(Int, s[4] + 2)
     lin = LinearIndices((convert(Int, diff(ss.XLIMS)[1]/ss.x step)+1,
                              convert(Int, diff(ss.YLIMS)[1]/ss.y_step)+1,
                              round(Int, 2*pi/ss.th_step)+1,
     return lin[xind, yind, thind, stind]
     else
     error("State-space must be DiscreteRoombaStateSpace.")
end
# map an index in a DiscreteRoombaStateSpace to the corresponding
RoombaState
function index_to_state(m::RoombaModel, si::Int)
     if mdp(m).sspace isa DiscreteRoombaStateSpace
     ss = mdp(m).sspace
     lin = CartesianIndices((convert(Int, diff(ss.XLIMS)[1]/ss.x step)+1,
                              convert(Int, diff(ss.YLIMS)[1]/ss.y_step)+1,
                              round(Int, 2*pi/ss.th_step)+1,
                              3))
     xi,yi,thi,sti = Tuple(lin[si])
     x = ss.XLIMS[1] + (xi-1) * ss.x_step
     y = ss.YLIMS[1] + (yi-1) * ss.y_step
     th = -pi + (thi-1) * ss.th_step
     st = sti - 2
```

```
return RoombaState(x,y,th,st)
     else
     error("State-space must be DiscreteRoombaStateSpace.")
end
# defines reward function R(s,a,s')
function POMDPs.reward(m::RoombaModel,
                  s::AbstractVector{Float64},
                  a::AbstractVector{Float64},
                  sp::AbstractVector{Float64})
#function POMDPs.reward(m::RoombaPOMDP{Bumper,Bool},
                        s::RoombaState,
                        a::RoombaAct,
     # penalty for each timestep elapsed
      cum_reward = mdp(m).time_pen
     # penalty for bumping into wall (not incurred for consecutive
contacts)
     previous_wall_contact = wall_contact(m,s)
     current_wall_contact = wall_contact(m,sp)
     if(!previous wall contact && current wall contact)
      cum_reward += mdp(m).contact_pen
     end
     # terminal rewards
      cum_reward += mdp(m).goal_reward*(sp.status == 1.0)
      cum_reward += mdp(m).stairs_penalty*(sp.status == -1.0)
     return cum_reward
end
# determine if a terminal state has been reached
POMDPs.isterminal(m::RoombaModel, s::AbstractVector{Float64}) =
abs(s.status) > 0.0
# Bumper POMDP observation
```

```
function POMDPs.observation(m::BumperPOMDP,
                              a::AbstractVector{Float64},
                              sp::AbstractVector{Float64})
     return Deterministic(wall contact(m, sp)) # in {0.0,1.0}
end
POMDPs.n observations(m::BumperPOMDP) = 2
POMDPs.observations(m::BumperPOMDP) = [false, true]
# Lidar POMDP observation
function POMDPs.observation(m::LidarPOMDP,
                              a::AbstractVector{Float64},
                              sp::AbstractVector{Float64})
     x, y, th = sp
     # determine uncorrupted observation
     rl = ray_length(mdp(m).room, [x, y], [cos(th), sin(th)])
     # compute observation noise
     sigma = m.sensor.ray_stdev * max(rl, 0.01)
     # disallow negative measurements
     return Truncated(Normal(rl, sigma), 0.0, Inf)
end
function POMDPs.n observations(m::LidarPOMDP)
     error("n observations not defined for continuous observations.")
end
function POMDPs.observations(m::LidarPOMDP)
      error("LidarPOMDP has continuous observations. Use DiscreteLidarPOMDP
for discrete observation spaces.")
end
# DiscreteLidar POMDP observation
function POMDPs.observation(m::DiscreteLidarPOMDP,
                              a::AbstractVector{Float64},
                              sp::AbstractVector{Float64})
     m_lidar = LidarPOMDP(Lidar(m.sensor.ray_stdev), mdp(m))
     d = observation(m lidar, a, sp)
```

```
disc_points = [-Inf, m.sensor.disc_points..., Inf]
      d_disc = diff(cdf.(d, disc_points))
      return SparseCat(1:length(d_disc), d_disc)
end
POMDPs.n_observations(m::DiscreteLidarPOMDP) = length(m.sensor.disc_points)
+ 1
POMDPs.observations(m::DiscreteLidarPOMDP) = vec(1:n_observations(m))
# define discount factor
POMDPs.discount(m::RoombaModel) = 0.95
# struct to define an initial distribution over Roomba states
struct RoombaInitialDistribution{M<:RoombaModel}</pre>
     m::M
end
environment
POMDPs.rand(rng::AbstractRNG, d::RoombaInitialDistribution) =
initialstate(d.m, rng)
POMDPs.initialstate_distribution(m::RoombaModel) =
RoombaInitialDistribution(m)
# Render a room and show robot
function render(ctx::CairoContext, m::RoombaModel, step)
     env = mdp(m)
     state = step[:sp]
     radius = ROBOT_W*6
     # render particle filter belief
     if haskey(step, :bp)
     bp = step[:bp]
      if bp isa AbstractParticleBelief
            for p in particles(bp)
                  x, y = transform_coords(p[1:2])
                  arc(ctx, x, y, radius, 0, 2*pi)
                  set_source_rgba(ctx, 0.6, 0.6, 1, 0.3)
```

```
fill(ctx)
            end
     end
     end
     # Render room
     render(env.room, ctx)
     # Find center of robot in frame and draw circle
     x, y = transform_coords(state[1:2])
     arc(ctx, x, y, radius, 0, 2*pi)
     set_source_rgb(ctx, 1, 0.6, 0.6)
     fill(ctx)
     move_to(ctx, x, y)
     end_point = [state[1] + ROBOT_W*cos(state[3])/2, state[2] +
ROBOT_W*sin(state[3])/2]
     end_x, end_y = transform_coords(end_point)
     line_to(ctx, end_x, end_y)
     set_source_rgb(ctx, 0, 0, 0)
     stroke(ctx)
     return ctx
end
function render(m::RoombaModel, step)
     io = IOBuffer()
     c = CairoSVGSurface(io, 800, 600)
     ctx = CairoContext(c)
     render(ctx, m, step)
     finish(c)
     return HTML(String(take!(io)))
end
```

filtering.jl

```
# specification of particle filters for the bumper and lidar Roomba
environments
# maintained by {jmorton2,kmenda}@stanford.edu
import POMDPs
# structs specifying resamplers for bumper and lidar sensors
struct BumperResampler
      n::Int # number of particles
end
struct LidarResampler
      n::Int # number of particles
     lvr::LowVarianceResampler
end
Definition of the particle filter for the Roomba environment
- `spf::SimpleParticleFilter` standard particle filter struct defined in
ParticleFilters.jl
- `v_noise_coeff::Float64` coefficient to scale particle-propagation noise
in velocity
- `om noise coeff::Float64`coefficient to scale particle-propagation noise
in turn-rate
.....
mutable struct RoombaParticleFilter <: POMDPs.Updater</pre>
      spf::SimpleParticleFilter
     v noise coeff::Float64
      om_noise_coeff::Float64
end
# Resample function for weights in {0,1} necessary for bumper sensor
function ParticleFilters.resample(br::BumperResampler,
b::WeightedParticleBelief{RoombaState}, rng::AbstractRNG)
      new = RoombaState[]
     for (p, w) in weighted_particles(b)
     if w == 1.0
            push!(new, p)
```

```
else
            @assert w == 0
     end
     end
     extras = rand(rng, new, br.n-length(new))
     for p in extras
     push!(new, p)
     end
     return ParticleCollection(new)
end
# resample function for unweighted particles
function
ParticleFilters.resample(br::Union{BumperResampler, LidarResampler}, b,
rng::AbstractRNG)
     ps = Array{RoombaState}(undef, br.n)
     for i in 1:br.n
     ps[i] = rand(rng, b)
     return ParticleCollection(ps)
end
# Resample function for continuous weights necessary for lidar sensor
function ParticleFilters.resample(lr::LidarResampler,
b::WeightedParticleBelief{RoombaState}, rng::AbstractRNG)
     ps = resample(1r.1vr, b, rng)
     return ps
end
# Modified Update function adds noise to the actions that propagate
particles
function POMDPs.update(up::RoombaParticleFilter,
b::ParticleCollection{RoombaState}, a, o)
     ps = particles(b)
     pm = up.spf._particle_memory
     wm = up.spf._weight_memory
     resize!(pm, 0)
     resize!(wm, ∅)
     sizehint!(pm, n_particles(b))
     sizehint!(wm, n_particles(b))
     all terminal = true
```

```
for i in 1:n_particles(b)
     s = ps[i]
     if !isterminal(up.spf.model, s)
            all terminal = false
           # noise added here:
            a_pert = a + SVector(up.v_noise_coeff*(rand(up.spf.rng)-0.5),
up.om_noise_coeff*(rand(up.spf.rng)-0.5))
            sp = generate_s(up.spf.model, s, a_pert, up.spf.rng)
            push!(pm, sp)
            push!(wm, obs_weight(up.spf.model, s, a_pert, sp, o))
     end
     end
     # if all particles are terminal, return previous belief state
     if all_terminal
     return b
     end
     return resample(up.spf.resample,
WeightedParticleBelief{RoombaState}(pm, wm, sum(wm), nothing), up.spf.rng)
end
# initialize belief state
function ParticleFilters.initialize belief(up::RoombaParticleFilter,
d::Any)
      resample(up.spf.resample, d, up.spf.rng)
end
```

env_room.jl

```
# Define constants -- all units in m
RW = 5. # room width
ROBOT_W = 1. # robot width
MARGIN = 1e-12
# Define rectangle type for constructing hallway
# corners: 4x2 np array specifying
# walls: length 4 list of bools specifying
       open (False) or walls (True)
mutable struct Rectangle
      corners::Array{Float64, 2}
      walls::Array{Bool, 1}
      segments::Array{LineSegment, 1}
      width::Float64
      height::Float64
      midpoint::Array{Float64, 1}
      area::Float64
      xl::Float64
      xu::Float64
      yl::Float64
      yu::Float64
      function Rectangle(
      corners::Array{Float64, 2},
      walls::Array{Bool, 1};
      goal_idx::Int=0,
      stair_idx::Int=0
      retval = new()
      retval.corners = corners
      retval.walls = walls
```

```
retval.width = corners[3, 1] - corners[2, 1]
     retval.height = corners[2, 2] - corners[1, 2]
     mean_vals = mean(corners, dims=1)
     retval.midpoint = SVector(mean_vals[1, 1], mean_vals[1, 2])
     # compute area in which robot could be initialized
     retval.xl = corners[2, 1]
     retval.xu = corners[3, 1]
     retval.yl = corners[1, 2]
     retval.yu = corners[2, 2]
     if walls[1]
            retval.width -= ROBOT_W/2
            retval.xl += ROBOT_W/2
     end
     if walls[2]
            retval.height -= ROBOT_W/2
            retval.yu -= ROBOT_W/2
     end
     if walls[3]
            retval.width -= ROBOT_W/2
            retval.xu -= ROBOT_W/2
     end
     if walls[4]
            retval.height -= ROBOT_W/2
            retval.yl += ROBOT_W/2
     end
     @assert retval.width > 0.0 && retval.height > 0.0 "Negative width or
height"
     retval.area = retval.width * retval.height
     retval.segments = [LineSegment(corners[i, :], corners[i+1, :],
(goal_idx == i), (stair_idx == i)) for i =1:3 if walls[i]]
     if walls[4]
            push!(retval.segments, LineSegment(corners[1, :], corners[4,
:], (goal_idx == 4), (stair_idx == 4)))
     end
     retval
     end
end
```

```
# Randomly initializes the robot in this rectangle
function init_pos(rect::Rectangle, rng)
      w = rect.xu - rect.xl
      h = rect.yu - rect.yl
      init_pos = SVector(rand(rng)*w + rect.xl, rand(rng)*h + rect.yl)
      init_pos
end
function in rectangle(rect::Rectangle, pos::AbstractVector{Float64})
      corners = rect.corners
      xlims = SVector(rect.xl - MARGIN, rect.xu + MARGIN)
      ylims = SVector(rect.yl - MARGIN, rect.yu + MARGIN)
      if xlims[1] < pos[1] < xlims[2]</pre>
      if ylims[1] < pos[2] < ylims[2]</pre>
            return true
      end
      end
      return false
end
# determines if pos (center of robot) is intersecting with a wall
            if multiple, returns largest violation
function wall_contact(rect::Rectangle, pos::AbstractVector{Float64})
      if !(in_rectangle(rect, pos))
      return -2, -Inf
      end
      corners = rect.corners
      xlims = SVector(corners[2, 1], corners[3, 1])
      ylims = SVector(corners[1, 2], corners[2, 2])
      contacts = []
      contact_mags = []
      if pos[1] - ROBOT_W/2 <= xlims[1] + MARGIN && rect.walls[1]</pre>
      # in contact with left wall
      push!(contacts, 1)
      push!(contact_mags, abs(pos[1] - ROBOT_W/2 - xlims[1]))
      end
```

```
if pos[2] + ROBOT W/2 + MARGIN >= ylims[2] && rect.walls[2]
     push!(contacts, 2)
     push!(contact mags, abs(pos[2] + ROBOT W/2 - ylims[2]))
     if pos[1] + ROBOT_W/2 + MARGIN >= xlims[2] && rect.walls[3]
     # in contact with right wall
     push!(contacts, 3)
     push!(contact mags, abs(pos[1] + ROBOT W/2 - xlims[2]))
     end
     if pos[2] - ROBOT_W/2 <= ylims[1] + MARGIN && rect.walls[4]</pre>
     push!(contacts, 4)
     push!(contact mags, abs(pos[2] - ROBOT_W/2 - ylims[1]))
     end
     if length(contacts) == 0
     return -1, -Inf
     else
     return contacts[argmax(contact mags)], maximum(contact mags)
     end
end
function furthest_step(rect::Rectangle, pos::AbstractVector{Float64},
heading::AbstractVector{Float64})
     return minimum(furthest step(seg, pos, heading, ROBOT W/2) for seg in
rect.segments)
end
# computes the length of a ray from robot center to closest segment
function ray_length(rect::Rectangle, pos::AbstractVector{Float64},
heading::AbstractVector{Float64})
     return minimum(ray_length(seg, pos, heading) for seg in
rect.segments)
end
function render(rect::Rectangle, ctx::CairoContext)
     for seg in rect.segments
     render(seg, ctx)
```

```
end
end
# all rectangles share a full "wall" with an adjacent rectangle
# shared walls are not solid - just used to specify geometry
mutable struct Room
     rectangles::Array{Rectangle, 1}
     areas::Array{Float64, 1}
     goal_rect::Int # Index of rectangle with goal state
      goal_wall::Int # Index of wall that leads to goal
      stair_rect::Int # Index of rectangle with stairs
      stair_wall::Int # Index of wall that leads to stairs
     function Room(; configuration=1)
     retval = new()
     goal_idxs = [0, 0, 0, 0]
      stair_idxs = [0, 0, 0, 0]
     if configuration == 2
            retval.goal rect = 1
            retval.goal_wall = 4
            retval.stair_rect = 2
            retval.stair wall = 1
     elseif configuration == 3
            retval.goal_rect = 4
            retval.goal_wall = 3
            retval.stair rect = 2
            retval.stair_wall = 1
      else
            retval.goal_rect = 4
            retval.goal_wall = 3
            retval.stair_rect = 4
            retval.stair_wall = 4
     end
      goal_idxs[retval.goal_rect] = retval.goal_wall
      stair_idxs[retval.stair_rect] = retval.stair_wall
     # Initialize array of rectangles
      rectangles = []
```

```
# Rectangle 1
      corners = [[-20-RW -20]; [-20-RW 0-RW]; [-20+RW 0-RW]; [-20+RW -20]]
      walls = [true, false, true, true] # top wall shared
      push!(rectangles, Rectangle(corners, walls, goal_idx=goal_idxs[1],
stair_idx=stair_idxs[1]))
      # Rectangle 2
      corners = [[-20-RW \ 0-RW]; \ [-20-RW \ 0+RW]; \ [-20+RW \ 0+RW]; \ [-20+RW \ 0+RW]]
0-RW]]
      walls = [true, true, false, false] # bottom, right wall shared
      push!(rectangles, Rectangle(corners, walls, goal_idx=goal_idxs[2],
stair_idx=stair_idxs[2]))
      # Rectangle 3
      corners = [[-20+RW \ 0-RW]; [-20+RW \ 0+RW]; [10 \ 0+RW]; [10 \ 0-RW]]
      walls = [false, true, false, true] # left wall shared
      push!(rectangles, Rectangle(corners, walls, goal_idx=goal_idxs[3],
stair_idx=stair_idxs[3]))
      # Rectangle 4
      corners = [[10 \ 0-RW]; [10 \ 0+RW]; [10+RW \ 0+RW]; [10+RW \ 0-RW]]
      walls = [false, true, true, true] # left wall shared
      push!(rectangles, Rectangle(corners, walls, goal_idx=goal_idxs[4],
stair_idx=stair_idxs[4]))
      retval.rectangles = rectangles
      retval.areas = [r.area for r in rectangles]
      retval
      end
end
# Sample from multinomial distribution
function multinomial_sample(p::AbstractVector{Float64})
      rand num = rand()
      for i = 1:length(p)
      if rand num < sum(p[1:i])</pre>
            return i
      end
      end
end
```

```
function init pos(r::Room, rng::AbstractRNG)
      norm areas = r.areas/sum(r.areas)
      rect = multinomial_sample(norm_areas)
      return init_pos(r.rectangles[rect], rng)
end
# Determines if pos is in contact with a wall
# returns bool indicating contact
function wall_contact(r::Room, pos::AbstractVector{Float64})
      for (i, rect) in enumerate(r.rectangles)
     wc, _ = wall_contact(rect, pos)
     if wc >= 0
            return true
      end
     end
     return false
end
# Determines if pos is in contact with a specific wall
# returns true if true
function contact_wall(r::Rectangle, wall::Int, pos::Array{Float64, 1})
     wc,_ = wall_contact(r, pos)
     return wc == wall
end
function in room(r::Room, pos::AbstractVector{Float64})
      return any([in_rectangle(rect, pos) for rect in r.rectangles])
end
# Attempts to translate from pos0 in direction heading for des step without
violating boundaries
function legal_translate(r::Room, pos0::AbstractVector{Float64},
heading::AbstractVector{Float64}, des_step::Float64)
     fs = minimum(furthest_step(rect, pos0, heading) for rect in
r.rectangles)
     fs = min(des_step, fs)
     pos1 = pos0 + fs*heading
      if !in room(r, pos1)
```

```
return pos0
      else
      return pos1
      end
end
# computes the length of a ray from robot center to closest segment
# inputs: p0: array specifying initial point
           heading: array specifying heading unit vector
function ray_length(r::Room, pos0::AbstractVector{Float64},
heading::AbstractVector{Float64})
      return minimum(ray_length(rect, pos0, heading) for rect in
r.rectangles)
end
function render(r::Room, ctx::CairoContext)
      for rect in r.rectangles
      render(rect, ctx)
      end
end
```

line segment utils.jl

```
# functions for determining whether the Roomba's path interects
# with a line segment and struct defining line segments
MARGIN = 1e-8
finds the real points of intersection between a line and a circle
inputs:
- `p0::AbstractVector{Float64}` anchor point
- `uvec::AbstractVector{Float64}` unit vector specifying heading
- `p1::AbstractVector{Float64}` centroid (x,y) of a circle
- `R::Float64` radius of a circle
returns:
- `R1,R2::Float64` where R1,R2 are lengths of vec to get from p0 to the
intersecting
                points. If intersecting points are imaginary, returns `nothing` in
their place
function real intersect line circle(p0::AbstractVector{Float64},
                                                                                                   uvec::AbstractVector{Float64},
                                                                                                   p1::AbstractVector{Float64},
                                                                                                   R::Float64)
                # these equations were generated by Mathematica using the following
                # Simplify[Solve[x0 + dx0 * R0 == x &&
                                                                 y0 + dy0 *R0 == y &&
                                                                  {x, y, R0}]]
                # Where the solutions for R0 are called R1 and R2 here
                x0, y0 = p0
                dx0, dy0 = uvec
                x1, y1 = p1
                radicand = dx0^2 * (dy0^2 * (R - (x0 - x1)^2) + dx0^2 * (R - (y0 - x1)^2) + dx0^2 * 
y1)^2 + 2*dx0*dy0*(x0 - x1)*(y0 - y1))
                if radicand < ∅ # intersecting points are imaginary</pre>
                return nothing, nothing
                else
```

```
R1 = (1/(dx0*(dx0^2 + dy0^2)))*(dx0^2 * (-x0 + x1) + sqrt(radicand) +
dx0*dy0*(-y0 + y1))
      R2 = (1/(dx0*(dx0^2 + dy0^2)))*(dx0^2 * (-x0 + x1) - sqrt(radicand) +
dx0*dy0*(-y0 + y1))
     return R1, R2
     end
end
.....
finds the intersection between a line and a line segment
inputs:
- `p0::AbstractVector{Float64}` anchor point
- `uvec::AbstractVector{Float64}` unit vector specifying heading
- `p1, p2::AbstractVector{Float64}` x,y of the endpoints of the segment
returns:
- `sol::AbstractVector{Float64}` x,y of intersection or `nothing` if
doesn't intersect
function intersect_line_linesegment(p0::AbstractVector{Float64},
uvec::AbstractVector{Float64}, p1::AbstractVector{Float64},
p2::AbstractVector{Float64})
     dx, dy = uvec
     n = [-dy, dx]
     dprod1 = dot(n, p1-p0)
     dprod2 = dot(n, p2-p0)
     if sign(dprod1) != sign(dprod2)
     # there's an intersection
     # these equations were generated by Mathematica using the following
      \# Simplify[Solve[x0 + dx0 * R0 == x1 + dx1 * R1 && y0 + dy0 *R0 == y1
+ dy1 *R1, {R0,R1}]]
     # Where R0 is the length of the segment originating from p0
     x0, y0 = p0
     x1, y1 = p1
     x2, y2 = p2
     dx0, dy0 = uvec
     dx1 = x2 - x1
     dy1 = y2 - y1
      R = (dy1*x0 - dy1*x1 - dx1*y0 + dx1*y1)/(dx1*dy0 - dx0*dy1)
```

```
if R >= 0
            return R
      else
            return nothing
     end
     else
     return nothing
     end
end
# Define LineSegment
mutable struct LineSegment
      p1::Array{Float64, 1} # anchor point of line-segment
     p2::Array{Float64, 1} # anchor point of line-segment
     goal::Bool # used for rendering purposes
      stairs::Bool # used for rendering purposes
end
determines if traveling in heading from p0 intersects the line passing
through this segment
inputs:
- `ls::LineSegment` line segment under test
- `p0::AbstractVector{Float64}` initial point being travelled from
- `heading::AbstractVector{Float64}` heading unit vector
returns:
- `::Bool` that is true if pointing toward segment
function pointing_toward_segment(ls::LineSegment,
p0::AbstractVector{Float64}, heading::AbstractVector{Float64})
     dp12 = ls.p2 - ls.p1
     normalize!(dp12)
     np12 = [-dp12[2], dp12[1]]
     # ensure it points toward p0
     if dot(np12, p0 - ls.p1) < 0
     np12 *= -1.0
     end
     # return true if heading projects in the opposite direction of np12
     dot(np12, heading) < 0.0</pre>
end
```

```
computes the length of a ray from robot center to segment from p0 pointing
in direction heading
inputs:
- `ls: functions for determining whether the Roomba's path interects
# with a line segment and struct defining line segments
# maintained by {jmorton2,kmenda}@stanford.edu
MARGIN = 1e-8
finds the real points of intersection between a line and a circle
inputs:
- `p0::AbstractVector{Float64}` anchor point
- `uvec::AbstractVector{Float64}` unit vector specifying heading
- `p1::AbstractVector{Float64}` centroid (x,y) of a circle
- `R::Float64` radius of a circle
returns:
- `R1,R2::Float64` where R1,R2 are lengths of vec to get from p0 to the
intersecting
               points. If intersecting points are imaginary, returns `nothing` in
their place
function real_intersect_line_circle(p0::AbstractVector{Float64},
                                                                                             uvec::AbstractVector{Float64},
                                                                                             p1::AbstractVector{Float64},
                                                                                            R::Float64)
               # these equations were generated by Mathematica using the following
command:
               \# Simplify[Solve[x0 + dx0 * R0 == x &&
                                                             y0 + dy0 *R0 == y &&
                                                              (x - x1)^2 + (y - y1)^2 == R,
               #
                                                              {x, y, R0}]]
               # Where the solutions for R0 are called R1 and R2 here
               x0, y0 = p0
               dx0, dy0 = uvec
               x1, y1 = p1
               radicand = dx0^2 * (dy0^2 * (R - (x0 - x1)^2) + dx0^2 * (R - (y0 - x1)^2) + dx0^2 * 
(y1)^2 + 2*dx0*dy0*(x0 - x1)*(y0 - y1)
```

```
if radicand < 0 # intersecting points are imaginary</pre>
      return nothing, nothing
      else
      R1 = (1/(dx0*(dx0^2 + dy0^2)))*(dx0^2 * (-x0 + x1) + sqrt(radicand) +
dx0*dy0*(-y0 + y1))
      R2 = (1/(dx0*(dx0^2 + dy0^2)))*(dx0^2 * (-x0 + x1) - sqrt(radicand) +
dx0*dy0*(-y0 + y1))
     return R1, R2
      end
end
....
finds the intersection between a line and a line segment
inputs:
- `p0::AbstractVector{Float64}` anchor point
- `uvec::AbstractVector{Float64}` unit vector specifying heading
- `p1, p2::AbstractVector{Float64}` x,y of the endpoints of the segment
returns:
- `sol::AbstractVector{Float64}` x,y of intersection or `nothing` if
doesn't intersect
function intersect_line_linesegment(p0::AbstractVector{Float64},
uvec::AbstractVector{Float64}, p1::AbstractVector{Float64},
p2::AbstractVector{Float64})
     dx, dy = uvec
     n = [-dy, dx]
     dprod1 = dot(n, p1-p0)
     dprod2 = dot(n, p2-p0)
     if sign(dprod1) != sign(dprod2)
     # there's an intersection
     # these equations were generated by Mathematica using the following
command:
     \# Simplify[Solve[x0 + dx0 * R0 == x1 + dx1 * R1 && y0 + dy0 *R0 == y1]
+ dy1 *R1, {R0,R1}]]
     # Where R0 is the length of the segment originating from p0
     x0, y0 = p0
     x1, y1 = p1
     x2, y2 = p2
      dx0, dy0 = uvec
```

```
dx1 = x2 - x1
     dy1 = y2 - y1
     R = (dy1*x0 - dy1*x1 - dx1*y0 + dx1*y1)/(dx1*dy0 - dx0*dy1)
     if R >= 0
            return R
     else
            return nothing
     end
     else
     return nothing
     end
end
# Define LineSegment
mutable struct LineSegment
     p1::Array{Float64, 1} # anchor point of line-segment
     p2::Array{Float64, 1} # anchor point of line-segment
     goal::Bool # used for rendering purposes
      stairs::Bool # used for rendering purposes
end
determines if traveling in heading from p0 intersects the line passing
through this segment
inputs:
- `ls::LineSegment` line segment under test
- `p0::AbstractVector{Float64}` initial point being travelled from
- `heading::AbstractVector{Float64}` heading unit vector
returns:
- `::Bool` that is true if pointing toward segment
function pointing_toward_segment(ls::LineSegment,
p0::AbstractVector{Float64}, heading::AbstractVector{Float64})
     dp12 = ls.p2 - ls.p1
     normalize!(dp12)
     np12 = [-dp12[2], dp12[1]]
     # ensure it points toward p0
     if dot(np12, p0 - ls.p1) < 0
     np12 *= -1.0
      end
```

```
# return true if heading projects in the opposite direction of np12
     dot(np12, heading) < 0.0</pre>
end
computes the length of a ray from robot center to segment from p0 pointing
in direction heading
inputs:
- `ls::LineSegment` line segment under test
- `p0::AbstractVector{Float64}` initial point being travelled from
- `heading::AbstractVector{Float64}` heading unit vector
returns:
- `::Float64` that is the length of the ray
function ray_length(ls::LineSegment, p0::AbstractVector{Float64},
heading::AbstractVector{Float64})
     p1 = ls.p1
     p2 = 1s.p2
     ray_length = Inf
     if !(pointing_toward_segment(ls, p0, heading))
     return ray_length
     else
     intr = intersect_line_linesegment(p0, heading, p1, p2)
     if intr != nothing
            return intr
      else
            return Inf
      end
      end
end
computes the furthest step a robot of radius R can take
inputs:
- `ls::LineSegment` line segment under test
- `p0::AbstractVector{Float64}` initial point being travelled from
- `heading::AbstractVector{Float64}` heading unit vector
- `R::Float64` radius of robot
```

```
returns:
- `furthest_step::Float64` furthest step the robot can take
The way this is computed is by seeing if a ray originating from
p0 in direction heading intersects the following object. Consider
the shape made by moving the robot along the length of the segment.
We can construct this shape by placing a circle with radius of
the robot radius R at each end, and connecting their sides by shifting
segment line out to its left and right by R.
If the line from p0 intersects this object, then choosing the closest
intersection gives the point at which the robot would stop if traveling
along this line.
0.00
function furthest_step(ls::LineSegment, p0::AbstractVector{Float64},
heading::AbstractVector{Float64}, R::Float64)
      furthest step = Inf
      if !(pointing_toward_segment(ls, p0, heading))
      return furthest step
      end
      # heading along segment
      dp12 = ls.p2 - ls.p1
      normalize!(dp12)
      np12 = [-dp12[2], dp12[1]]
      # project sides out a robot radius
      p11 = 1s.p1 - R*np12
      p1r = ls.p1 + R*np12
      p21 = 1s.p2 - R*np12
      p2r = 1s.p2 + R*np12
      # intesection with p1
      R1,R2 = real_intersect_line_circle(p0, heading, ls.p1, R/2)
      if R1 != nothing
      if R1 > -MARGIN && R1 < furthest step
            furthest_step = max(R1, 0.0)
      end
      if R2 > -MARGIN && R2 < furthest_step</pre>
            furthest_step = max(R2, 0.0)
      end
```

```
end
      # intesection with p2
      R1, R2 = real_intersect_line_circle(p0, heading, ls.p2, R/2)
      if R1 != nothing
      if R1 > -MARGIN && R1 < furthest_step</pre>
            furthest_step = max(R1, 0.0)
      end
      if R2 > -MARGIN && R2 < furthest step
            furthest_step = max(R2, 0.0)
      end
      end
      # intersection with the segment
      Rl = intersect_line_linesegment(p0, heading, p11, p21)
      if Rl != nothing
      if Rl > -MARGIN && Rl < furthest_step</pre>
            furthest_step = max(R1, 0.0)
      end
      end
      Rr = intersect_line_linesegment(p0, heading, p1r, p2r)
      if Rr != nothing
      if Rr > -MARGIN && Rr < furthest_step</pre>
            furthest_step = max(Rr, 0.0)
      end
      end
      if Rl != nothing && Rr != nothing
      if R1 > 0 && Rr < 0
            # something wrong
            println("Travelling through a wall!!")
      end
      end
      furthest_step
end
# Transform coordinates in world frame to coordinates used for rendering
function transform_coords(pos::AbstractVector{Float64})
      x, y = pos
```

```
# Specify dimensions of window
     h = 600
     W = 600
     # Perform conversion
     x_{trans} = (x + 30.0)/50.0*h
     y_{trans} = -(y - 20.0)/50.0*w
     x_trans, y_trans
end
# Draw line in gtk window based on start and end coordinates
function render(ls::LineSegment, ctx::CairoContext)
     start_x, start_y = transform_coords(ls.p1)
     if ls.goal
     set_source_rgb(ctx, 0, 1, 0)
     elseif ls.stairs
     set_source_rgb(ctx, 1, 0, 0)
     else
     set_source_rgb(ctx, 0, 0, 0)
     end
     move_to(ctx, start_x, start_y)
     end_x, end_y = transform_coords(ls.p2)
     line_to(ctx, end_x, end_y)
     stroke(ctx)
end
```