
Reinforcement Learning for Solving Yahtzee
Minhyung Kang

dankang@stanford.edu
Luca Schroeder

lucschr@stanford.edu

Abstract—This paper presents a reinforcement learning ap-
proach to the famous dice game Yahtzee. We outline the
challenges with traditional model-based and online solution
techniques given the massive state-action space, and instead
implement global approximation and hierarchical reinforcement
learning methods to solve the game. Our best agent is able to con-
sistently outperform naı̈ve benchmarks but remains suboptimal;
we highlight difficulties and avenues for future improvement.

I. INTRODUCTION

Yahtzee is a well-known dice game in which the goal is to
achieve a high score by rolling certain dice combinations (e.g.
‘three of a kind,’ ‘full house,’ etc.) [17]. Though seemingly
simple, the state-action space for Yahtzee is extremely large;
a multi-player game can have quadrillions of states, rendering
traditional model-based solvers ineffective. In this paper, we
discuss the general challenges for solving Yahtzee and present
a reinforcement learning approach. In particular, we implement
a Yahtzee simulator and two reinforcement learning agents:
the first employs perceptron Q-learning with eligibility traces,
while the second uses hierarchical learning. The hierarchical
learning agent is the most successful and is able to consistently
outperform a random agent and a naı̈ve greedy benchmark,
although the achieved scores remain suboptimal relative to
brute-force forward search online methods with limited look-
ahead.

The remainder of the paper proceeds as follows:
• Section II reviews prior work, including previous ap-

proaches for solving single-player Yahtzee;
• Section III outlines the rules and structure of Yahtzee;
• Section IV discusses complexity of the game and the

challenges with model-based or online techniques;
• Section V details our reinforcement learning approach;
• Sections VI and VII present our evaluation strategy and

analyze our experimental results.

II. RELATED WORK

Reinforcement learning has been successful in game playing
in many instances. Examples range from backgammon and
Atari hits such as Breakout and Pong [10] to more complicated
games such as Starcraft [11] and Super Smash Brothers [4].

For Yahtzee in particular, prior work [5], [15] has identified
an optimal strategy that maximizes the expected score. It is
important to note that this strategy does not maximize the
chance of winning. To maximize the chance of winning, you
need to maximize the probability that your score is above
your opponent’s score; the final margin is irrelevant. In other
words, rather than trying to blindly gain the highest point total

possible, one might play a more conservative strategy (with a
higher chance of success) to just barely beat the opponent’s
score.

One of the approaches of reinforcement learning that we
have seen much progress in is hierarchical reinforcement
learning, which discovers and exploits a hierarchical structure
within a Markov decision problem. [1], [16]. Several methods
utilize semi-Markov decision processes (SMDP) [6], in which
time steps between decisions are of a fixed duration. The
Option approach generalizes the idea of an action that results
in state transitions of variable and extended duration [14]. This
allows one to discretize an SMDP and understand it in rela-
tion to the underlying MDP. Hierarchical Abstract Machines
(HAM) defines policies as hierarchies of stochastic finite-
state machines, constraining the action space and allowing for
application of prior knowledge about the environment [12].
MAXQ Value decomposition is another hierarchical method
that we explore in this paper; it decomposes the core MDP
into a hierarchy of subtasks and attempts to solve the multiple
SMPDs simultaneously, rather than a single one as with
options or HAM.

III. THE GAME OF YAHTZEE

Each game of Yahtzee is divided into thirteen rounds.
During a round, each player rolls five dice; the player can
roll the dice up to two more times and can choose which dice
in particular to re-roll. After the player is done rolling their
dice, they assign their ending roll to one of thirteen categories
on their score-sheet. The numerical score is then calculated
based on how well the roll matches to that category. Once
a category has been chosen by a player, it cannot be chosen
again by that player (each player has their own score-sheet).
The game ends when all categories have score values, and the
player with the highest total score wins.

To give a concrete example, let us imagine a player who
initially rolls a 1,2,2,3,5. The player chooses to re-roll the 3
and 5 and obtains a 2 and a 4, and re-rolls the 4 to obtain
another 2. The ending roll is 1,2,2,2,2. The player looks at
the score-sheet and assigns the roll to the category ‘Twos’;
the score rule for this category is the sum of all the dice that
rolled 2—in this case 2 + 2 + 2 + 2 = 8. The player’s round
is concluded.

The Yahtzee scoresheet [7] and its categories are broken
down in Table I. If a total score of 63 or greater is achieved
in the upper section, the player receives a bonus of 35 points.
We simplify the game by ignoring multiple Yahtzee rules and
Joker rules.



Upper Section Lower Section
Category Score Category Score

Aces Sum of 1s 3 of a Kind Sum of all dice
Twos Sum of 2s 4 of a Kind Sum of all dice

Threes Sum of 3s Full House 25
Fours Sum of 4s Small Straight 30
Fives Sum of 5s Large Straight 40
Sixes Sum of 6s YAHTZEE 50

- - Chance Sum of all dice

TABLE I: Scoresheet Categories

IV. CHALLENGES

Yahtzee is deceptively simple: what seems to be a child’s
dice game is actually non-trivial to solve. A large part of this
arises from the massive size of the state space. At a high
level, a state in a multi-player Yahtzee game must contain the
following information:
• For each player, binary values indicating which of the

thirteen categories on the scoresheet are still available;
• The values on each of the five six-sided dice;
• The number of rerolls remaining (0, 1, or 2) for the

current player;
• For each player, their score (to determine bonuses and

winner).
The number of possible scores is on the order of a hundred

values, so for an n-player Yahtzee game the number of states
is ≈ (213 · 100)n · 65 · 3. For n = 2, the number of states
is on the order of 15 quadrillion. Small optimizations can be
made to reduce the size of the state space by a few orders of
magnitude; for instance, prior work has highlighted that since
the ordering of the dice doesn’t matter, we can reduce the 65 =
7, 776 possible ordered dice rolls to

(
10
5

)
= 252 unordered dice

rolls by the stars and bars combinatorial trick [5]. But in any
case the reductions are only modest; although the dynamics of
Yahtzee are well-known, it therefore is infeasible to materialize
the model, such as a transition matrix T (s, a, s′), and solve
for the optimal policy using policy or value iteration.

The space of possible actions is fortunately smaller than the
state space: for each turn, there are up to 44 possible actions:
at most 13 categories to assign a roll to and (if you have rerolls
remaining) 25 − 1 = 31 choices of dice to reroll. However,
since a single player takes up to 39 actions per game, the
policy space is still very large and direct policy search is not
practical.

Nor, unfortunately, are online methods particularly useful
for this problem. This is since if you have a reroll remaining
you can choose to reroll all the dice which can bring you to
any one of 65 dice configurations, so a large portion of the
state space is reachable from most game states. Indeed, there
are up to hundreds of millions of possible paths between states
within a single round.

V. APPROACH

Although the model of Yahtzee is known, as argued in
the previous section the problem’s complexity makes model-
free learning—where the transition and reward matrices do

not have to be materialized—relatively attractive. Indeed, the
principal approach of this paper is model-free reinforcement
learning. However, the size of the state-action space rules out
basic Q-learning and Sarsa, as it is still too memory-intensive
to have a Q matrix for each possible (s, a). Even if the Q-
matrix could comfortably fit in memory, given the fact that at
most 39n state-action combinations are seen in one n-player
Yahtzee game, it is necessary to either: run at least tens of
millions of game simulations to properly fill out the Q-matrix;
or devise an interpolation strategy to fill out zeros after a
shorter training run. The latter is non-trivial for Yahtzee, as
it is not at all clear how to define a reasonable distance metric
between states. Consider for instance two states where the dice
roll is [5, 5, 5, 5, 5] in both. In the first state, all categories
are taken except the ‘Fives’ category; in the second state, all
categories are taken except the ‘Sixes’ category. The states
are identical except for two binary values for the categories,
yet for the first state Q(s, a) = 25 and for the second state
Q(s, a) = 0 (assuming this is the last turn). Thus a naı̈ve
distance metric simply would not work.

Our approach instead leverages global approximation, which
has no dependence on a distance metric. In particular, we
employ perceptron Q-learning, defining a set of m basis
functions or features β1, . . . , βm over the state space, and
learning parameter θa ∈ Rm for each action a such that

Q(s, a) = θTa β(s)

So for each observation (s, a, r, s′), we perform update

θa ← θa + α(r + γmax
a

θTa β(s
′)− θTa β(s))β(s)

for some learning rate α and discount factor γ. We anneal the
learning rate α with step decay, decreasing α by a constant
factor after every game during the learning phase.

A. Rewards and Eligibility Traces

Additionally, to speed up learning we used eligibility traces
to assign credit to past states and actions; this is especially
critical in game settings such as ours where rewards are
typically sparsely distributed. We keep two sets of traces:
local traces, which keep track of the actions taken within
the current round; and global traces, which keep track of the
actions taken throughout the entire game. At the end of a
round, we give a reward proportional to the score achieved in
that round; since this is only indirectly related to the actions
taken in other rounds we propagate this reward backwards
along the local trace. At the end of a game, we give a reward
proportional to the score achieved in the entire game and
(optionally) a bonus/penalty depending on whether a win or
loss occurred. Since all actions taken in the game contribute
to overall victory, this reward is propagated backwards along
the global trace. More precisely, upon receiving a reward we
calculate δ = rt + γQ(st+1, at+1)−Q(st, at) and update Q-
values for all (s, a) in the relevant trace:

Q(s, a)← Q(s, a) + αδ



Feature (binary) Quantity
Is category free 13
Value of each dice 30

# of Dice with Value 36
# of Distinct Values in Dice Roll 5

Sum of Dice (groups of 5) 6
# of Remaining Rerolls 3

# of Remaining Rounds (groups of 5) 3
Total 96

TABLE II: Atomic Single-Player Features

Feature Quantity
Is opponent category free (binary) 13n

Player score (continuous) 1
Opponent score (continuous) n

Total 14n+ 1

TABLE III: Atomic n-Player Features

For our setting a state cannot be visited twice within a single
game (since the state must encode information about which
categories have been used), so there is no need to keep a
N(s, a) visit count matrix.

B. Features

Our strategy for defining features βi(s) for our global Q-
function approximation was to first formulate a small set of
basic or “atomic” features and then exhaustively add pairwise
(or triple-wise, etc.) combinations of these atomic features to
capture more advanced strategies. This approach was used to
great success in a TD-learning agent for the card game Hearts
and was able to beat advanced search-based programs [13].
Tables II and III list the atomic single-player and multi-player
features we use. Most are simple binary variables that capture
essential information about the state (the values of the dice,
the status of categories on the score sheet, the number of
rerolls and rounds left, etc.). It is fairly straightforward to see
that combinations of these variables can represent reasonably
sophisticated strategies: to take a simple example, an AND
combination of the binary variable [# Distinct Values in Dice
Roll = 1] and [Is category YAHTZEE free] would be able to
capture the fact that 5 of a kind rolls are very valuable when
it is possible to score them in the YAHTZEE category.

C. Benchmarks

To measure the success of our perceptron Q(λ) agent, we
measure it against several benchmarks. The first is a random
agent, which chooses among the available actions uniformly
at random each turn. The other agents are greedy agents. The
greedy level-1 agent never rerolls the initial dice and simply
chooses the category that maximizes its score this round;
this is obviously sub-optimal as it may be worth saving a
category for later if your roll is not ideal. The greedy level-
2 and level-3 agents reroll the dice at most one and two
times (respectively), and choose the actions that maximize the
expected score this round given this constraint. The greedy
agents are comparable to forward search with limited look-
ahead. As previously discussed, since much of the state space

is reachable at each state it is infeasible to look ahead beyond
the current turn; the level-3 agent is already prohibitively slow
to train against.

D. Hierarchical Learning

Hierarchical approaches have been used to decompose com-
plex problems into a hierarchy of sub-problems. [16] As the
dimensionality of state space increases, it becomes intractable
to solve the problem with not only direct methods such as
value iteration but also online learning methods. Fortunately,
real-life problems typically have innate structure in them. For
example, a task of opening a door can be broken down to
locating the handle, moving the hand to the handle, grabbing
it, turning it, pulling the hand back, and finally releasing it.
Some actions are inherently different, so it might make sense
to use different value functions to represent each task, such
as learning how to locate the handle and learning to grab it.
On the other hand, moving the hand to the handle as well as
pulling the hand back, while different actions, revolve around
a similar concept of moving the hand; in this case, they might
be considered as actions of similar nature, and could be learned
together.

One can see how Yahtzee could be formulated as a hi-
erarchical problem with interesting characteristics. A game
consists of 13 rounds, and each round can take up to 3 turns.
Each turn consists of either re-rolling the dice or assigning a
category, and each of these has well-defined options, such as
re-rolling particular dice or assigning scores to a particular
category. This hierarchy is depicted in Figure 1. Some of
the hierarchy here is trivial in the sense the subdivision does
not really give us an advantage. For instance, while we are
playing games, we are bound in our order of rounds and turns;
we cannot play turn 2 before turn 1. The structure which is
actually useful is noted with the green box in the figure. For
each turn, we can decide between Re-roll and Category. Then
we can choose which particular action to actually take, i.e.
choosing the particular dice to re-roll or the particular category
to assign a roll to. The aim is that this formulation of the
problem will allow the agent to balance these two “types” of
actions.

Out of many hierarchical approaches, we explore the
method of MAXQ-Q learning [2], [3]. In MAXQ-Q learning
we decompose the tasks into a hierarchy, and then decompose
value function into two parts:

Q(p, s, a) = V (s, a) + C(p, s, a)

Here, V (s, a) is the value function for subtask a, the
expected total reward while carrying out subtask a from
state s. The second part of above equation, C(p, s, a), is the
completion function. It denotes the expected total reward of
completing s’s parent task p after a has completed. In other
words, this value estimates the reward of finishing p if one
follows the optimal policy after performing a. As one can
see, Q now represents the expected utility one can gain by
performing action a from state s while performing parent task



Fig. 1: Hierarchy of the Game of Yahtzee

of p. We can recursively define V (s, x) for subtask x by setting
it as maximum Q value of its descendents.

V (s, x) = max
a

[V (s, a) + C(x, s, a)]

The base case for this recursive definition is the primitive
actions, for which V (s, a) is defined as expected one-step
reward.

V (s, a) =
∑
a

T (s′|s, a)R(s, a, s′)

This value can be initialized as 0 and the estimate can be
updated as we observe each action and its corresponding
reward. In our case, we only explore two levels of hierarchy,
so the value function is rather simple. First, we define our Q
values for our root task, which is decision between re-roll and
assigning a category. Let α ∈ [Re-roll, Category]

Q(s, α) = V (s, α) + C(root, s, α)

For each parent task, we have defined actions we can take.
One thing to note is that we do not define C for primitive
actions, as the parent action terminates at the same time as
the child action, and hence there is no expected completion
function. Let β ∈ [All re-rolls] , γ ∈ [All categories]

V (s,Re-roll) = max
β

V (s, β)

V (s, Category) = max
γ

V (s, γ)

Choosing the best action comes down to following two
steps. First, we choose αi that maximizes Q(si, αi) for a given
state si. Then, depending on αi, we choose ai ∈ β, γ that
maximizes V (s, ai).

αi = max
α∈[Re-roll,Category]

Q(si, α)

ai = max
x∈αi

V (s, x)

Agent Avg. Score Avg. Time per Turn
Random 45.635 .026 ms

Greedy Level-1 112.541 .057 ms
Greedy Level-2 171.166 8.54 ms
Greedy Level-3 203.882 3169.38 ms

Perceptron Q(λ) 77.772 0.57 ms
HRL 120.299 1.28 ms

HRL-G1 129.580 0.38 ms

TABLE IV: Average Score of Different Agents

Rand. G-1 G-2
Random 50% 2% 0%

Greedy Level-1 (G-1) 98% 50% 7%
Greedy Level-2 (G-2) 100% 93% 50%

Perceptron Q(λ) 87% 17% 1%
HRL 91% 56% 11%

HRL-G1 99% 68% 17%

TABLE V: Relative Winrates

When we train the agent, we allow it to perform random
exploration as much as possible to allow it to visit as many
states and actions. Of course, as discussed in previous sections,
it is infeasible to experience all possible combinations. Our
update process is as follows: after we finish a round, we trace
back the actions we took and update our V and C. Assume
that in a round we performed actions a1, a2, a3 from state
s1, s2, s3, received reward r in the end and resulted in state
s4. Let t denote the number of steps from last action, which
is 2− i in this case for ai. l and d are some learning rate and
decay rate, respectively.

st =

{
Re-roll ai is re-roll
Category ai is category

V (si, ai) = (1− l) ∗ V (si, ai) + l ∗ r ∗ dt

V (si, st) = max
a∈st

V (si, a)

C(root, si, st) = (1− l) ∗ C(root, si, st)
+ l ∗ max

a∈root
[V (si+1, a) + C(root, si+1, a)]

Here we are again using the idea of eligibility traces to ensure
that re-roll actions, which do not directly produce any reward,
are awarded discounted rewards. Note that we update this in
a reversed order, from a3 to a1, for two reasons. First, it
allows us to discount the values accordingly. Secondly, and
more importantly, it allows us for better updates for the re-
roll actions, as V and C values for next state are already
computed.

VI. EXPERIMENTS

A. Simulator

We developed from scratch a Yahtzee simulator for this
project. It is written in Python and allows us to specify the
number of players, query the possible actions a player may
take, order a player to make an action, and get the current
scoresheets. The simulator allows us to organize “tourna-
ments” between different agents to analyze their performance.



To measure performance we played the different agents
against each other and recorded the win rates. Table V gives
the win rates of agents against the three main benchmarks—the
random agent as well as the greedy level-1 and level-2 agents.
Each win rate is obtained from a 1,000 game tournament
between the two agents; naturally the tournaments are after
the learning phase for the RL agents.

Table IV also gives the average score and average time per
turn for each of the agents. These results are also averaged over
1,000 games. Among the benchmark agents, as expected the
greedy level-3 agent is far superior to the greedy level-2 agent,
which in turn is far superior to the greedy level-1 agent, but
each level of look-ahead adds two orders of magnitude to the
running time due to the exponential growth of possible future
paths. The greedy level-3 agent takes more than 3 seconds per
turn and is prohibitively slow to train or play against so we
exclude it from the tournaments in Table V.

B. Perceptron Q(λ)

For all reported results involving Perceptron Q(λ), the
training phase consisted of 10,000 games versus a random
agent. Rewards were given out for each round score and at
the end for the overall game score; we ultimately disabled
rewards/penalties for winning or losing a game as we found
this resulted in reduced quality and speed of learning. Only
atomic, single-player features were used. We experimented ex-
tensively with multi-player features, different reward schemes,
and pair-wise combinations of atomic features but found that
each resulted in the identical (or slightly worse) performance.
To make matters worse, some of these modifications—in par-
ticular pair-wise feature combinations—dramatically increased
the time required for each turn. The next section gives possible
reasons for these findings.

Even with the constrained set-up described above, however,
Perceptron Q(λ) was able to achieve some limited success.
After the 10,000 game learning phase the Perceptron Q(λ)
agent was able to achieve a 87% win rate against the random
agent and a 68% higher average score relative to the random
agent. However, as Tables IV and V show, the Perceptron Q(λ)
agent was not very competitive with any of the greedy agents.
Only a 17% win rate was achieved against the basic greedy
level-1 agent, for instance.

Figures 2 and 3 (see Appendix) show the quality of the
learned θ over time, by plotting the average score and average
win rate versus a random agent as a function of the number
of training games. To generate these plots, the 10,000-game
learning phase was broken up into one hundred 100-game
segments. After each segment, learning was disabled and a
100-game tournament was played between the random agent
and the RL agent to measure performance. As the number
of games in each post-segment tournament is small there is
quite a bit of noise but there is a clear upward trajectory in
performance; notable also is that the rate of learning is very
fast, likely thanks to our use of local and global eligibility
traces.

C. Hierarchical Learning

We test two exploration strategies for hierarchical learning.
For HRL, we take random actions all the time, whether it is a
re-roll or category assignment. On the other hand, we provide
a one-level greedy guide for the HRL-G agent. The agent
randomly re-rolls the dice twice, and on the last turn makes
a category assignment that maximizes score with ending dice.
This allows the agent to see more examples that help it learn,
for a round with 0 reward is not informative and does not lead
to parameter updates. As we enforce the agent to randomly re-
roll, it will be able to explore different re-rolls from different
states in shorter rounds compared to naı̈ve random exploration.

For both cases, we simplify our state space to that of 15
dimensions: first 13 are binary variables that indicate whether a
category can be assigned or not. 14th variable is a defined dice
configuration value among 252 possibilities, and 15th variable
indicates how many re-rolls we have left. This gives us around
6 million possible states, which is still huge but not as large as
when we take into account category scores and the opponent’s
scoresheet. The action space depends on the subtask. For the
root task, we have 2: Re-roll and Category. Here, we define
a re-roll action to be in terms of the unordered set of dice
values rather than the set of dice indices we reroll. That is,
action of re-rolling first and third dice of 3,1,3,2,4 is regarded
as ‘re-rolling two 3s’. There are 461 such possible actions for
re-roll and 13 for categories.

We again played 1, 000 games with each benchmark agent,
and the results are given in table IV and V. HRL was trained
for 2 × 106 rounds for a total of 5 hours with initial α =
1 × 106 and discounted over time. It achieves average score
higher than naı̈ve greedy agent, beating it 56% of the time and
beating the uniform random agent 91% of the time. HRL-G1
was trained for 1 × 106 rounds for a total of 5 hours with
initial α = 5×105 and discounted over time. It achieves 99%
win rate against random agent and 68% against greedy level-
1 agent. We can see that both agents have learned how to
greedily assign scores given dice rolls. However, both HRL
and HRL-G1 performed poorly against level-2 greedy agent,
each achieving only 11% and 16% win rate, respectively.

The initial 10,000 rounds of training results are shown
Figures 2 and 3 (see Appendix). We note HRL’s deceptively
poor performance is due to its training nature; as we randomly
make actions there are much more rounds with 0 reward,
which means it plays more rounds in a given time yet does not
learn fast per round. On the other hand, we see how HRL-G1,
with its greedy guide, effectively learns information from each
round, outperforming other agents.

VII. DISCUSSION

A. Perceptron Q(λ)

We were at first puzzled why taking into account the multi-
player aspects (whether by giving rewards for winning a game
or adding the n-player atomic features in Table III) of a multi-
player Yahtzee game decreased the winrate of the Perceptron
Q(λ) agent against the benchmarks, as reported in the previous



section. But some investigation suggested that this is primarily
due to the heavy role of pure luck in the game of Yahtzee.
The policies corresponding to the learned θa are poor for
much of the learning phase, and wins are attributed mostly
to the opponent’s bad luck rather than any good decision
on the agent’s part; thus a win is a highly unreliable signal
of good action choices and we found that being rewarded
for early wins hurt both learning speed and quality. Future
work may consider somehow initializing θa values based on
a greedy level-1 policy to allow for a better starting point
after which being rewarded for wins makes sense. As for why
pair-wise feature combinations did not add any improvement
either, the only plausible explanation is that basic strategies are
sufficiently captured by the atomic features and that advanced
strategies require more than just pairwise combinations, which
we were unable to explore due to hardware limitations. The
poor performance versus greedy agents suggests there is in
general room for improvement in feature selection.

B. Hierarchical Learning

A disadvantage of hierarchical learning is that it is memory
intensive. We are not only trying to assign values for each state
action pair, but we are keeping 3 dictionaries (C, V for parent
action and V for primitive actions). For example, the total
amount of space of dictionaries for HRL agent was around
2.5GB. A relevant note is that one strength of hierarchical
learning is achieved by performing state abstraction, which
could take form of removing irrelevant variables, performing
structural constraints, or funnel abstraction, where we gener-
alize a large number of sites by small number of resulting
states. [2] The only advantage we explored here is structural
constraints, limiting the action space depending on the state.
As we wanted to utilize the information about the assigned
categories, dice, and number of re-rolls remaining to decide
our actions, we could not reduce our state space by hierarchy.

VIII. CONCLUSION

In this paper, we presented a reinforcement learning ap-
proach to the famous dice game Yahtzee. Our hierarchical
learning agent in particular was able to achieve reasonable suc-
cess against our benchmark agents, with 99% win rate against
the random agent and 68% win rate against the simplest
greedy agent. Both our hierarchical learning approach and the
less successful global approximation method are ultimately
suboptimal, however, and there remains much room for further
experimentation and development.

A lot of recent progress in reinforcement learning in a
variety of domains has been made using deep reinforcement
learning [8]–[10]. Equipped with enough computational re-
sources, it would be interesting to see if deep neural networks
can capture the probabilisitc as well as structural properties
of Yahtzee. Other Hierarchical learning methods described
before, such as Options or HAM, would be a similar yet
different approach to this problem. Another possible extension
is dual-learning. During the training phrase we use an agent of
interest and play with a random agent; while this may allow

for faster computation, we could instead make use of both
players’ turns by replacing the random agent with our agent
of interest. With parameter sharing and adequate exploration,
more efficient learning might be possible.

IX. CONTRIBUTIONS

Minhyung’s work focused on the hierarchical reinforcement
learning agent and the initial perceptron Q(λ) agent, as well
as surveying existing literature for best practices and insights.
Luca developed the initial simulator, experimental framework,
and benchmark agents and iterated further on the perceptron
Q(λ) agent. We have contributed equally to the creation of
this report and previous written submissions.

REFERENCES

[1] Barto, A. G. and Mahadevan, S. 2003. Recent Advances in Hierarchical
Reinforcement Learning. Discrete Event Dynamic Systems: Theory and
Applications, 13, 41-77.

[2] Dietterich, T. 2000. An Overview of MAXQ Hierarchical Reinforcement
Learning Abstraction, Reformulation, and Approximation, 26-44.

[3] Dietterich, T. Hierarchical Reinforcement Learning with the MAXQ
Value Function Decomposition. arXiv:cs/9905014 [cs.LG].

[4] Firoiu, V., Whitney, W., Tenenbaum, J. Beating the World’s Best at Super
Smash Bros. with Deep Reinforcement Learning. arXiv:1702.06230
[cs.LG].

[5] Glenn, J. 2006. An optimal strategy for Yahtzee. Loyola College in
Maryland, Tech. Rep. CS-TR-0002.

[6] Gosavi, A. 2014. Simulation-Based Optimization: Parametric Optimiza-
tion Techniques and Reinforcement Learning, Springer, New York, NY,
Second edition.

[7] Hasbro. https://www.hasbro.com/common/instruct/Yahtzee.pdf.
Retrieved December 6, 2018.

[8] Hessel, M. et al. 2018 Rainbow: Combining Improvements in Deep
Reinforcement Learning. AAAI Conference on Artificial Intelligence, 32.

[9] Mnih, V. et al. 2016 Asynchronous Methods for Deep Reinforcement
Learning. International Conference on Machine Learning 48.

[10] Mnih, V. et al. 2013. Playing Atari with Deep Reinforcement Learning.
arXiv:1312.5602 [cs.LG].

[11] Pang, Z., Liu, R., Meng, Z., Zhang, Y., Yu, Y., Lu, T. On Reinforcement
Learning for Full-length Game of Starcraft. arXiv:1809.09095 [cs.LG].

[12] Parr, R. and Russell, S. 1997. Reinforcement Learning with Hierarchies
of Machines. Neural Information Processing Systems 10.

[13] Sturtevant, N. and White, A. M. 2006. Feature Construction for Rein-
forcement Learning in Hearts. International Conference on Computers
and Games, 122-134.

[14] Sutton, R.S. and Singh, S. 1999. Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning.
Artificial Intelligence 112, 181-211.

[15] Vancura, O. 2001. Advantage Yahtzee. Las Vegas: Huntington Press.
[16] Wiering, M. and Otterlom, M. v. 2012. Reinforcement Learning (State

of the Art). Springer.
[17] The Yahtzee! Page. http://www.yahtzee.org.uk. Retrieved October 4,

2018.

APPENDIX



Fig. 2: Avg. Score of Agents Over Time

Fig. 3: Avg. Winrate of Agents Over Time


