
Solving Coup as an MDP/POMDP
Semir Shafi

Dept. of Computer Science
Stanford University

Stanford, USA
semir@stanford.edu

Adrien Truong
Dept. of Computer Science

Stanford University
Stanford, USA

aqtruong@stanford.edu

David Lee-Heidenreich
Dept. of Computer Science

Stanford University
Stanford, USA

dleeheid@stanford.edu

Abstract—We modeled the card game Coup as a Markov
Decision Process and attempted to solve it using various methods
learned in CS238. Due to our large state space, we focused on
online methods. Since Coup is a multi-agent game we generated
optimal policies against players with specific strategies. We first
modeled the game as an MDP where we knew everything about
the game state and developed policies against a player doing
random actions. We used forward search, sparse sampling, and
monte carlo tree search. We then modeled the game as a POMDP
with state uncertainty where we did not know our opponents
cards. We implemented Monte Carlo Tree Search, sparse sam-
pling and forward search with both incomplete and complete
information. Finally, to try and beat our Monte Carlo Tree
Search player, we implemented Forward Search with Discrete
State Filtering for updating our belief.

Index Terms—MDP, POMDP, Coup, multi-agent

I. INTRODUCTION

Fig. 1. Coup Rules

A. Coup Overview

Coup is a popular deception and strategy board game that
contains a lot of uncertainty. There are five different card roles
and three of each type in the deck. Each player is dealt two
of these cards at random, and each player can observe only
their own cards. Each card has its own unique actions and
counteractions (refer to Fig. 1). The objective of the game
is to remain alive and eliminate all other players. A player is
eliminated if both of their cards are face up and are observable
to all the players, rendering their cards useless. The strategy of

the game is to deceive the other players by lying and claiming
you have whatever card suits you best. Because lying can give
a significant advantage to the player, the other players try to
determine when a player is lying and call bluff. If they call
bluff and you were not lying, the player who called bluff must
flip over one of their cards (and cannot use it anymore). If the
other players catch you lying, you must flip over one of your
cards.

B. Sources of Uncertainty

There are several sources of uncertainty in the game:
• Players are uncertain what roles (cards) other players have

until they are eliminated
• Players are uncertain what actions/claims their opponent

will make

C. Related Work

To the best of our knowledge, there isnt any previous work
that has tried to compute the optimal policy or computed
online planning strategies to play the board game Coup. We
review work done on related games here. There’s another
similar game called One Night Werewolf where the objective
of the game is to try and discern which players are lying. It was
a topic at the Computer Games Workshop at IJCAI, and they
discussed Monte Carlo Tree Search (MCTS), reinforcement
learning, alpha-beta, and nested rollout policy adaptation [1].
Yet, they note that the most popular methods was MCTS and
Deep Learning. Similarly, in our project we try out using
MCTS to decide the best action from a given game state.

II. MODELING COUP

We can represent Coup as an MDP with the following
states, actions, transitions, and rewards.

Actions
1) Income
2) ForeignAid
3) Coup1 (target opponent 1
4) Coup2 (target opponent 2)
5) Tax
6) Assassinate1 (target opponent 1)
7) Assassinate2 (target opponent 2)
8) StealFrom1 (target opponent 1)
9) StealFrom2 (target opponent 2)

10) ChallengeOrBlock (Challenge and block are never si-
multaenously valid so we represent these 2 actions as 1
action)

11) NoOp
Note: Depending on the state of the game, not all actions are
valid.

State
1) PlayerState 1

a) Number of coins (0 ≤ i ≤ 12)
b) Card 1 (0 ≤ i ≤ 3)
c) Whether card 1 is alive or not (True/False)
d) Card 2 (0 ≤ i ≤ 3)
e) Whether card 2 is alive or not (True/False)

2) PlayerState 2 - Same format as player state 1
3) PlayerState 3 - Same format as player state 1
4) Current player index (0 ≤ i ≤ 2)
5) Current player’s action (0 ≤ i ≤ 10)
6) Blocking player index (0 ≤ i ≤ 2)
7) Turn Phase (0 ≤ i ≤ 3)

a) Begin turn - The current player needs to submit an
action while their opponents submit a NoOp action.

b) Challenge current player’s right to play their action
- The current player must submit a NoOp action.
Their opponents submit either a Challenge action
or a NoOp action.

c) Block current player’s action - The current player
must submit a NoOp action. Their opponents sub-
mit either a Block action or a NoOp action.

d) Challenge right to block - If a player decides to
submit a Block action in the previous phase, their
opponents must submit a Challenge action or a
NoOp action. The blocking player may only submit
a NoOp action.

Note: Some values of the state are only relevant for specific
values of Turn Phase (e.g. if we are in the Begin Turn
phase, the ”blocking player’s index” value is ignored). Thus,
it is possible for two states to have different values but be
considered an equivalent state.

We also removed the Ambassador card due to the difficulty
of modeling its interactions.

Rewards
Gaining x coins: +x
Losing/spending x coins: −x
Causing an opponent to lose a card (1 remaining): +30
Losing your first card (1 remaining): -30
Causing an opponent to lose a card (0 remaining): +100
Losing your last card (0 remaining): -100
Winning the game: +300

Note: We really only care about winning the game.
However, to help our policies navigate the state space, we
shape the rewards and provide rewards for actions that lead
to winning the game (as determined by domain knowledge).

The reward values chosen here are human crafted rather than
inherently a part of the game.

Transitions
The transition function is a function of 3 actions from all 3
players. State transitions are deterministic given the 3 actions.

T (s′|s, a1, a2, a3) = δs′(StepGame(s, a1, a2, a3))

where δ is the Kronecker delta function and StepGame is
a function that outputs a new state deterministically given a
current state and all 3 players’ actions.

From the perspective of a single agent, we treat a2 and
a3 as unknown parameters that transform the transition
function into a probabilistic function.

T (s′|s, a1) =
∑
a2,a3

T (s′|s, a1, a2, a3) ∗ P (a2|s) ∗ P (a3|s)

where P (a2|s) and P (a3|s) are unknown to the agent.

III. PROBLEM STATEMENT

We present two versions of this game. First, as a warm up,
we consider a version where the full state is exposed to all
agents, meaning each agent knows their opponents’ cards. In
this environment, agents are only uncertain about the actions
that their opponents will take. Formally, they are uncertain
about P (a2|s) and P (a3|s). This is the model uncertainty case.

Next, we consider a version where agents are also unable to
see their opponents’ cards (as in a real game). In this version
of the problem, we have both model uncertainty and state
uncertainty. To learn about their current state, agents are able
to observe a vector of 2 integers that represent the actions their
opponents took.

In both cases, we wish to develop algorithms that can learn
optimal policies that perform well under uncertainty and are
able to win the game.

IV. BUILDING COUP SIMULATOR

We created a robust coup simulator where we can input
different game parameters such as the number of players, the
type of players, set the initial cards for each of the players
or choose randomly, and recreate instances of the game that
we want to explore more. Our simulator follows the MDP as
described above. In a single instance of a game, we can step
through and choose each action we want the player to make.
For each possible state, the simulator outputs tuples containing
our possible actions, the possible states we can enter, and the
rewards associated with that transition. We can extend this
simulator to run several games where the action is determined
by the type of player and the simulator then outputs the winner
at each round.

V. ONLINE METHODS VS OFFLINE METHODS

There are two approaches to solving MDPs. We can either
precompute an entire policy for all possible states or compute
optimal actions in real time as we are playing the game. We
first considered offline methods such as value iteration. We
began by computing the upper bound for our state space. For
a single player state, there are 12 ∗ 4 ∗ 2 ∗ 2 = 768 possible
values. For the entire state, there are upwards of 7683 ∗3∗11∗
3∗4 = 179, 381, 993, 472 possible values. (Note that this is an
upper bound because some states may have different values but
are considered equivalent states as explained earlier). With a
state space this large, clearly, it is computationally infeasible to
apply offline methods and compute an optimal action for every
possible state. Thus, we are forced to only consider online
methods. The number of possible next states is much less than
the overall number of states which makes the problem more
tractable.

VI. METHODS TO SOLVE MODEL UNCERTAINTY CASE

As a warm up, we started by making a simplifying assump-
tion that agents had knowledge of their opponents’ cards. In
other words, when a player is about to select an action given
a state, the state provided contains not only their two cards
and the number of coins that each player has but also the two
cards of each of their opponents.

We tried three different methods:

1) Depth limited forward search / lookahead
2) Monte Carlo Tree Search
3) Sparse Sampling

In each method, to resolve the model uncertainty, we assume

P (a1|s) =
1

|A|
and P (a2|s) =

1

|A|

In other words, we assume our opponents are random.

A. Depth Limited Forward Search / Lookahead

Forward Search simply looks ahead from some initial state
to some depth, d. The algorithm iterates over all possible
actions and next state pairings until the desired depth is
reached. We assume our players are random and thus all
possible outcomes are equally likely. We choose the action
that yields the highest utility in expectation. We do not use a
discount factor and set γ = 1.

B. Sparse sampling

Sparse sampling avoids the worst case exponential complex-
ity of forward search by using a generative model to produce
samples of the next state and reward given an initial state.
Instead of exploring all possible outcomes by iterating through
all possible opponent actions, we randomly sampled a subset
of all possible opponent actions.

C. Monte Carlo Tree Search

Unlike sparse sampling, the complexity of MCTS does not
grow exponentially with the horizon. Instead of exploring all
possible actions, we only explore a random subset of possible
outcomes that can result from a given action. Essentially,
we do not iterate through all possible opponent actions but
rather randomly sample a few of them. In addition, instead of
calculating the expected utility to be the utility after 4 steps,
we run simulations using a random policy as a heuristic for
the expected utility with an infinite horizon (i.e. until the game
ends).

VII. METHODS TO SOLVE STATE UNCERTAINTY CASE

We now move on to a model that more closely resembles
a real game where players do not have knowledge of their
opponents’ cards. We can extend the three methods we’ve
previously discussed to the state uncertainty case. Again to re-
solve the model uncertainty, we simply assume our opponents
are random. To deal with the state uncertainty over opponents’
cards, we adopt a uniform belief over all the card combinations
our opponents’ may have. In essence, this simply means we
explore more possible next states instead of those restricted by
cards our opponent’s actually hold (since we no longer have
that information). The core of the algorithms remain the same.

A. Forward Search With Discrete State Filtering

We now discuss a method that can do something smarter
than just assume a uniform belief over our opponents’ cards.
Previously, we assumed we did not know our opponents’
strategies. Thus, we simply assumed they were random players
and as a result were forced to assume a uniform belief over
all possible cards they may have since no information can
be gleaned from our observations of our opponents’ actions
(since they are random and by definition independent of the
underlying state). However, if we are given our opponents’
strategies, we can do better. With this extra knowledge, we
are able to construct an informed belief over the cards they
may have from the actions they choose. Essentially, we assume
we know P (a1|s), P (a2|s) where P (a1|s) 6= P (a1) and
P (a2|s) 6= P (a2). We can then use Bayes theorem to find
P (s|a1), P (s|a2) and form a belief over the underlying state
(i.e. our opponents’ cards)

With the goal of beating an opponent that uses Monte-
Carlo Tree Search, we implemented a player that uses Forward
Search with Discrete State Filtering to update belief. We
followed the Forward Search algorithm outlined in section
6.5.2 of the textbook [2] and we used Discrete State Filtering
from section 6.2.1 to update our belief.

1) Modeling Belief: We held a belief over all possible
permutations of cards that our opponents could have. In our
case, there were four total types of cards and our opponents
could each have two cards, so our belief space was of size
44 = 256. To save space and computation, we structured our
belief to be comprised of two sub-beliefs which were beliefs
over just one opponent’s possible cards. In other words we
kept track of 2 beliefs, each of size 42 = 16. We made

the assumption that one player’s cards were independent of
another player’s cards. This allowed us to simply multiply our
two sub-beliefs to compute our total belief over the state space.
While this assumption is not completely accurate to the game
in real-life, for our purposes, it is okay.

2) Modeling Observations: Our model of Coup involves
three players. Every turn, we as the player submit an action and
our two opponents also each submit an action. We modeled
our observation as the actions that our opponents each took.
Consider a game of Coup between our Forward Search player
and two opponents, which we will call Opponent1 and
Opponent2. If after 1 round of the game, Opponent1 took
action a1 and Opponent2 took action a2, then our observation
for that round would be the tuple (a1, a2). To calculate O(o|s),
we simulated our opponents taking an action given the state
s.

a1 = Action1(s)

a2 = Action2(s)

Since our opponents were using MCTS to implement their pol-
icy, our opponents’ actions were (almost) always deterministic
given a state. In other words, given a state s, our opponents
would always do the same action. We could therefore model
our O(o|s) function using Kronecker delta functions δ as
follows:

O(o|s) = O(o1, o2|s)
= P (o1|s)P (o2|s)
= δo1(Action1(s))δo2(Action2(s))

where o1 and o2 are the actions of Opponent1 and
Opponent2 respectively and where a1 and a2 are the actions
we got from calling Action(s) on our opponents above.

3) Optimizations: During Forward Search, we need to
calculate the term P (o|b, a). From the way we modeled
observations, our observation is not dependent on our action
a. Therefore, we were able to save time by pre-computing
P (o|b, a) outside the for loop iterating through our action
space. Additionally, to save computation, as discussed earlier
we are able to split up our observation into two smaller
observations. o1 represents opponent1’s action and o2 repre-
sents opponent2’s action. Together, our complete observation
is o = (o1, o2). We calculate P (o|b, a) as follows:

P (o|b, a) = P (o|b)
= P (o1, o2|b)
= P (o1|b)P (o2|b)

=
∑
s∈Ss

P (o1|s)b1(s)
∑
s∈Ss

P (o2|s)b2(s)

b1 and b2 are the 2 sub-belief states we discussed earlier,
which each hold beliefs over one players hand. Thus, in the
above equation b1 and b2 are beliefs over two-card state spaces
(16 total states) rather than the full 4 card-state space (256
states). Likewise Ss above represents the state space made up
of two cards (16 total states).

VIII. RESULTS

Forward search with a fully observable state beats random
agents all the time for a depth greater than or equal to 4. A
depth of 4 corresponds to the state where the player is given
reward for selecting an action. A depth of 2 corresponds to the
state where the player is given reward for either challenging
or blocking another player and therefore, while random may
sometimes beat Lookahead with a fully observable state for
a depth of 2, Lookahead will always win the challenges and
blocks.

TABLE I
FORWARD SEARCH INCOMPLETE VS 2 RANDOM PLAYERS

Depth Win % Time(sec, 1 action)
1 19 .17
2 76 .42
3 80 1.23
4 93 5.74

In Table 1, we have Forward Search agent with a partially
observable state competing against two random agents.

TABLE II
SPARSE SAMPLING COMPLETE STATE VS. RANDOM PLAYERS

Depth # samples Win % Time(s/1000 games) Time(s/action)
1 1 70.9 10.98 .00045
1 2 69.9 18.49 .00090
1 5 70 46.42 .0021
2 1 94 15.93 .0015
2 2 97.9 44.32 .0050
4 1 92.8 42.66 .0043
4 5 100 7889 1.1015

TABLE III
SPARSE SAMPLING INCOMPLETE STATE VS RANDOM PLAYERS

Depth # samples Win % Time(s/1000 games) Time(s/action)
1 1 69.7 9.4 .00046
1 2 67.6 16.38 .00086
1 5 70 36.29 .0020
2 1 93.5 11.96 .0009
2 2 97.5 31.41 .0029
4 1 77.6 30.26 .0020
4 5 90 4777 .530

In Table 2, we have a Sparse Sampling agent with access
to the full state competing against Random agents. In Table 3,
we have a Sparse Sampling agent with access to the partially
observable state against two Random agents. We can see that
in both figures the larger the depth and the more samples
that we take, the better our agent performs. Yet, the greater
the depth and number of generative samples, the more time it
takes. The fully observable state agent always outperforms the
agent with the partially observable state, but it takes less time
for the partially observable state to choose its action. Since this
is a board game and a small percentage increase in winning
is not very significant, then it might be better to prefer speed.

In Table 4, we have a MCTS agent with access to the fully
observable state competing against two Random agents. In

TABLE IV
MCTSINCOMPLETE VS. RANDOM PLAYERS

Depth # sims Win % Time(s/1000 games) Time(s/action)
1 4 29.8 25.1 .0007
1 10 25.5 53.7 .0017
4 1 3.5 41.81 .00072
4 4 32.4 98.41 .0025
10 10 60 355.58 .018
10 20 73.9 721 .031
20 10 55.2 541 .027

TABLE V
MCTSCOMPLETE VS. RANDOM PLAYERS

Depth # sims Win % Time(s/1000 games) Time(s/action)
1 4 70.4 19.97 .0007
1 10 69.6 42.2 .0011
4 1 3.5 29.43 .00044
4 4 64.2 68.33 .0017
10 10 82 230.26 .010
10 20 90.3 486 .019
20 10 73.4 393 .024

Table 5, we have a MCTS agent with access to the partially
observable state competing against two random agents. The
same reasoning for variation in speed and win percentage hold
in Table 4 and Table 5 as in Table 2 and Table 3. MCTS agents
take less time than Sparse Sampling to choose an action but
have a reduced win percentage.

TABLE VI
SPARSESAMPLINGCOMPLETE VS. 2 SPARSESAMPLINGINCOMPLETE

PLAYERS (10 GAMES)

Depth # samples Win %
1 1 0
1 5 0
2 1 20
2 2 40
4 1 60
4 5 70

TABLE VII
SPARSESAMPLINGINCOMPLETE VS. 2 SPARSESAMPLINGCOMPLETE

PLAYERS (10 GAMES)

Depth # samples Win %
1 1 0
1 5 0
2 1 20
2 2 30
4 1 10
4 5 10

In Table 6, we have a Sparse Sampling agent with complete
state competing against two Sparse Sampling agents with
incomplete state. In Table 7, we have the opposite: a Sparse
Sampling agent with incomplete state competing against two
Sparse Sampling agents with complete state. Notice that if the
depth is less than four, then our agent never wins. This is

because all the agents believe that they are playing against
random agents and assume that the other players will lie
uniformly. However, none of the agents are willing to lie them-
selves since the expected reward for lying is −30∗0.5 = −15
if we assume our opponents are random and will challenge
us 50% of the time. Since none of the agents are willing to
lie, the third agent always wins by taking income and couping.
Once the depth is greater than four, then the agents are looking
past just the first action and therefore, they all should have an
equal probability of winning.

TABLE VIII
MCTSCOMPLETE VS 2 MCTSINCOMPLETE PLAYERS

Depth # sims Win %
1 4 0
1 10 0
4 1 0
4 4 0
10 10 30
10 20 0
20 10 50

TABLE IX
MCTSINCOMPLETE VS 2 MCTSCOMPLETE PLAYERS

Depth # sims Win %
1 4 0
1 10 0
4 1 0
4 4 0
10 10 10
10 20 0
20 10 40

In Table 8, we have an MCTS agent with complete state
information competing against two MCTS agents with incom-
plete state. In Table 9, we have the opposite: an MCTS agent
with incomplete state competing against two MCTS agents
with complete state. The same logic can be held for the pair
of figures as in Table 6 and Table 7.

For Forward Search with Discrete State Filtering, we were
able to implement an initial version but it ran too slow for us to
gather meaningful results. However, we do believe that if we
refactored our code to avoid redundant computation, Forward
Search with Discrete State Filtering would be a feasible
method that would work in practice. We could also explore
different approximation methods such as particle filtering and
others.

IX. DISCUSSION

Because this a friendly board game where there isn’t any
monetary incentive to win, it is better to sacrifice a bit on
the chance of winning it for a quicker game. Forward Search
with a partially observable state is more accurate than any of
the methods that use a generative function but costs a lot more
time. Therefore, it might be more valuable to use either Sparse
Sampling or MCTS to compute the best action to take.

We believed, initially, that we could use offline methods
to generate an optimal policy to play the game. We realized

that the state space is too large to feasibly iterate through and
update all state action combinations. We then decided to try
and reduce our state space by removing an entire role, creating
qualitative classes to represent the quantitative number of coins
and removing the opponents cards from the state. It turns out,
that still the order of the magnitude of the state space is still
huge and unfeasible to run value iteration or Q-learning.

To extend this project, it would be interesting to consider
how we can create players to challenge our player that uses
forward search with particle filtering. Inspired by the level-K
model, if we know that all our opponents are implementing
forward search, can we leverage that knowledge?

X. WORK BREAKDOWN

Adrien is taking this class for 3 units and tackled represent-
ing Coup as an MDP. He also implemented Forward Search,
contributed to debugging Sparse Sampling and MCTS and
helped analyze the results. David is also taking this class for 3
units and was integral in the development of optimizations for
Forward Search with discrete state filtering and transforming
our results into a presentable manner. Semir is taking the
class for 4 units and combed through the literature. He also
contributed to the initial design of Coup as an MDP and
creating the simulator. He implemented Sparse Sampling,
MCTS, and contributed to Forward Search with discrete state
filtering. He helped outline the report and ran the simulations
to generate the results and interpreted the findings.

REFERENCES

[1] Srivastava, Biplav, and Gita Sukthankar. ”Reports on the 2016 IJCAI
workshop series.” AI Magazine 37.4 (2016): 94.

[2] Mykel J. Kochenderfer; Christopher Amato; Girish Chowdhary;
Jonathan P. How; Hayley J. Davison Reynolds; Jason R. Thornton; Pedro
A. Torres-Carrasquillo; N. Kemal Ure; John Vian, ”State Uncertainty,” in
Decision Making Under Uncertainty: Theory and Application , , MITP,
2015, pp.

