
1

ChallengeMate: A Self-Adjusting Dynamic
Difficulty Chess Computer

Sam Kennedy - CS238 December 2018

Abstract—Computing the optimal move from a given board state in a chess game is a classic decision problem that has been recently
been optimized well past peak human performance1. For the vast majority of chess players, this hyper-optimization has provided little
practical benefit. The optimization has long been sufficient to match the entire range of human skill. However, with existing tools a
casual chess player would have significant difficulty configuring a computer opponent to match their skill level. This paper introduces
and analyses a chess-playing program, ChallengeMate, that adjusts its skill level in-game to create an even matchup. At any given turn
of the match, ChallengeMate evaluates the game state to determine whether it is winning or losing, and modifies its search depth and
blunder probability to achieve a balance. Analysis demonstrates that ChallengeMate effectively adjusts its parameters to even the
game score against human and computer opponents of a wide range of skill levels.

F

1 INTRODUCTION

For any chess engine, making an optimal move requires
assigning scores to the board configurations resulting from
each possible move, and choosing the move with the highest
score. Just has human players think ahead to determine
the score, a chess engine will search through possible game
states, and assign scores to all legal moves once the search
terminates. The highest possible score corresponds to a
move that ensures a winning state (checkmate), if one exists.
See fig.1 for an example. The engine scores the resulting
board state of all of white’s available moves, with the
aggressive queen play d1h5 having the highest score. This
move was likely chosen because it sets up for check and
defends white’s knight.

The search of game states must terminate at a certain
depth. At that depth, a base scoring function is applied
to the board, which estimates the advantage of the current
player based on the number of pieces each player controls
(subject to weights) and their positioning. Note that in fig. 1,
e2e4 was an optimal move because it very nearly puts white
in a position to force checkmate by continuing the attack.
A static evaluation of the board would not have taken this
indirect threat into account, but the move was scored highly
because the engine ’looked ahead’ and took into account
future scores. The leaf scores at the furthest depth of the
game tree determine the scores of the legal moves under
consideration, according to the minimax algorithm. Thus,
the depth of the search corresponds to the optimality of
the play: longer searches yield better moves. Ferreira (2013)
establishes an approximate mapping between human player
ELO level and engine search depth2; reinforcing search
depth as a primary parameter to determine skill for chess
engines.

The methods outlined above are used in conventional
chess engines to optimize for winning play. ChallengeMate
must also optimize for winning play, but this objective is
heavily constrained by the primary objective of providing
the human with an opponent that matches their skill level.
A sound method for adjusting an engines skill level must
navigate the tradeoffs between these two objectives so that
the engine adjusts at rate which can find the players skill

level. Non-casual players can use their ELO rating to find an
engine of the correct skill level, but that data is not available
for our use case. Luckily, the game state itself constitutes
an excellent yet simple signal of the players skill relative to
the computer: if the engine is outmatched, it will be losing
the game and vice versa. ChallengeMate uses this signal
to adjust its skill level by altering two parameters. The
first parameter is depth, but that alone is not sufficient to
simulate human skill. Humans sometimes make blunders,
missing a move by chance that they typically should have
seen. In order to simulate this, ChallengeMate maintains a
parameter blunder probability that determines the chance
of the engine making a sub-optimal move instead of the
one that it scores as highest. Thus, ChallengeMate maps
game-scores to depth and blunder probabilities according to
a skill function. See Methods section for the specific move
generation algorithm and skill function.

2 METHODS

2.1 StockFish Board Evaluation Scoring function
ChallengeMate uses the Stockfish Chess engine’s single-
node board scoring function. This function determines the
score of a board state in ’centipawns’ where the value of
one pawn is fixed at 100. Critically, a negative value means
that the currently-moving player is at a disadvantage, and a
positive value means they are winning. The weights of the
other pieces are as follows:
Knight: 300 Bishop: 318 Rook: 478 Queen: 932

The Stockfish scoring function makes its evaluation
based off a sophisticated array of factors including
pieces controlled, as well as pieces and territory pro-
tected/threatened. It also accounts for different paradigms
in the mid and late games, so that the evaluation weights
certain factors more (for example, surviving pawns) as
the game evolves. See the Stockfish link in the References
section for details.

An accurate board scoring function is vitally important
to ChallengeMate, because it is used both to determine the
score that is inputted into the skill function, and evaluate the



2

Fig. 1. ChallengeMate Moves d1h5 with score: 176

base case of the move search. Ultimately, this scoring func-
tion was far more reliable than the author’s own attempted
implementation.

2.2 ChallengeMate Skill Function
The below initial values and activation functions
are the result of much manual experimentation and
hyperparameter tuning. See conclusion section for proposed
computational means for optimizing these values.

SkillFunction (boardScore):
if (boardScore > 0):

blunderProbability = .1 +
boardScore/1000

else:
blunderProbability = .1 -

SQRT(boardScore/1000)
searchDepth = 6 + boardScore/20
Bound searchDepth in range (3, 40)
Bound blunderProbability in range (0,1)
return searchDepth, blunderProbability

2.3 ChallengeMate Blundering Move Search Algorithm

ChallengeMate’s search uses a skill-adjusted minimax-dfs
to score each move. It then applies the blunder parameter,
selecting either the optimal move or a sub-optimal one
depending on the outcome.

GetMove (board):
boardScore = StockfishScore(board)
searchDepth, blunderProbability =

SkillFunction(boardScore)
moves_and_scores = []
for move in board.legal_moves:

score = minimaxDfs(
board.apply(move), searchDepth)

moves_and_scores <- move, score
random = random(0,1)
if random > blunderProbability:

return max(moves_and_scores)
else:

return second_max(moves_and_scores)

minimaxDfs(board, depth):
if depth is zero or board is checkmate:

return stockfishScore(board)
else if board.is_player_turn:

best_score = -inf
for move in legal_moves:

score = minimaxDfs(
board.apply(move), depth - 1)

if(score > best_score):
best_score = score

return best_score
else if board.is_opponent_turn:

best_score = inf
for move in legal_moves:

score = minimaxDfs(
board.apply(move), depth - 1)

if(score < best_score):
best_score = score

return best_score

3 RESULTS

The courses of chess matches were evaluated by plotting
the centipawn evaluation score of the board for each player



3

at each turn. These game-plots inform us as to the perfor-
mance of each player over time. The first, Fig. 2, shows the
board-scores for a game where one computer player played
another whose skill it greatly outmatched. The fixed skill
values for these computer players were searchDepth = 12,
blunder = .05 for white and searchDepth = 6, blunder =
.1 for black. This plot is representative of a game where
one player clearly outmatches another, and will serve as a
negative example for our evaluation of challengeMate.

Fig. 2. Stockfish Board Score by Turn.
Red = white (skilled), Blue = black (unskilled)

In the unevenly matched game, white gains an initial advan-
tage and quickly widens the gap. Fig 3. shows the game-plot
of the same White opponent playing against challengeMate:
This plot clearly shows that the two players are much more

Fig. 3. Stockfish Board Score by Turn.
Red = white (skilled), Blue = black (challengeMate)

closely matched than the previous plot. Especially salient
is the point where white gains a strong advantage around
move 22, then ChallengeMate raises its skill-level to even the
match back up. This plot resembles the plot for an intense
game between two closely-matched players. Ultimately, the
win rate over 30 games against 12 computerized opponents
ranging from sub to super-human skill was chosen as a
metric to evaluate challengeMate’s skill-adaptability. Ideally,
a consistent win rate across all levels of opponent would
indicate challengeMate adapts its skill level well. (See fig.4)

ChallengeMate does exhibit a fairly consistent win rate
(mean = 9.333 games, stdev = 1.992 games) against a wide
range of opponents. However, the tie rate was much less
consistent (mean = 13.916 games, stdev = 5.171 games).

Fig. 4. ChallengeMate wins and ties against opponents of varying skill,
30 games

4 CONCLUSION

As shown in fig. 4, ChallengeMate adapts its skill level well
enough to sometimes beat very high-level opponents and
sometimes lose to very low-level opponents. However, there
was an unexpectedly high number of ties, especially against
lower level opponents. Ties are unusual, for beginning play-
ers in particular, so further optimization to reduce this factor
is desirable to improve ChallengeMate’s functionality. The
ties likely resulted from the fact that, when ChallengeMate
nears checkmate (especially in the late-game), it sometimes
accordingly reduces its search depth to the point where
it can no longer to ’see’ the mate, or raises the blunder
probability to the point where a blunder is nearly certain.
Thus, situations likely emerged in all of the games where
ChallengeMate almost checkmated the opponent and then
backed off. This means that less-skilled opponents would
likely see the game drag out to a tie as ChallengeMate failed
to finish the game again and again. This could be improved
by reducing the probability of blundering a move that has
a clear path to checkmate, which seems to correspond to
human play.

5 REFERENCES

(1) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I.,
Lai, M., Guez, A., . . . Hassabis, D. (2018). A general
reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science, 362(6419), 1140-1144.
doi:10.1126/science.aar6404

(2) Ferreira, Diogo R. (2013) The Impact of Search Depth
on Chess Playing Strength. ICGA Journal, 36(2):67-80 June
2013

Stockfish Github: https://github.com/official-stockfish/


