CS 238 Project
Agent Q Plays Texas Hold’em

Ammar Alqatari Ben Gaiarin Michael Vobejda
Computer Science Symbolic Systems Computer Science
ammarq@stanford.edu bgaiarin@stanford.edu mvobejda@stanford.edu
Abstract

Multi-agent games like card games offer us with outlets for testing foundational
reinforcement learning algorithms and techniques. Currently, there exists uncer-
tainty regarding how Q-Learning might perform when applied to the problem of
Texas Hold’em. We investigate this uncertainty first by building a multi-agent
Markov Decision Process model of the game Texas Hold’em. We then evaluate
the performance of Q-Learning on the model by assigning specific Q-Learning
strategies to specific agents, and comparing those agents by playing them against
each other and by playing them against baseline agents (agents that follow fixed
policies and do not learn). We find that while Q-Learning performs better than
random in some cases, it consistently performs worse than a fixed policy that elects
to call on every bet, suggesting that Q-Learning alone is insufficient for the problem
of Texas Hold’em. We also find that Q-Learning performs better when it extracts
more salient information about the game environment.

1 Introduction

Texas Hold’em is a classic multi-agent game. Games like Texas Hold’em present us with interesting
problems on which to model and to test new reinforcement learning (RL) algorithms and techniques.
Q-Learning, a foundational RL algorithm, has been applied to multi-agent games and card games.
There exists, however, some doubt regarding how Q-Learning might perform on the problem of Texas
Hold’em.

In this paper, in an effort to recognize that doubt, we consider how Q-Learning might best be applied
to the problem of Texas Hold’em. We build a Markov Decision Process (MDP) model of the game
of Texas Hold’em, and, to help further a better understanding of what the most salient points of
information are in Texas Hold’em, we run Q-Learning with five different feature extraction strategies.
We simulate several hundred thousand games between seven players playing against each other,
with each player either employing Q-Learning with a unique feature extractor or employing a fixed
baseline policy without learning. We find that while Q-Learning does, in some cases, perform better
than random (a fixed policy of randomly choosing actions), it does not perform better than a fixed
policy of calling on every bet. This suggests that Q-Learning alone is not sufficient to handle the
state and action complexity of the Texas Hold’em problem with good results. We also notice that
Q-Learning performs better when it extracts more information, connoting that including more salient
information is preferred to generalizing more Q values across the state and action space.

CS238: Decision Making Under Uncertainty, Fall 2018, Stanford University, CA.

We hope that our MDP model might inform future simulators of Texas Hold’em, and that our results
with Q-Learning may contribute to the growing body of research and public interest in applying RL
techniques to zero-sum, multi-agent games.

2 Background

For the scope of this paper, it will be helpful to know the basic rules of the game Texas Hold’em, as
all of the rules are built into our model. We will assume that the reader is familiar with basic card
terminology (e.g. "folding"). The game is played as follows:

* (ROUND 0) Each player is dealt two cards. Three communal cards are placed in the middle
of the table face-down. The ultimate goal of the game is to make the best five-hand card
possible using any combination of the two cards in your hand and the communal cards. With
that in mind, and knowing only your two cards for the moment, you take one of three types
of actions: fold, call, or raise. Your bet goes into the "pot" in the middle of the table. If you
raise, all other players who wish to remain in the game will need to at least match your raise.
Similarly, you must always at least call the bets of other players to remain in the game.

* (ROUND 1) The three communal cards are flipped over. Now you can consider those
communal cards to be a part of your own hand. The second round of betting takes place,
with the play moving clockwise around the table. (Players take turns betting first between
rounds.)

* (ROUND 2) An additional card is flipped over, and there is a third round of betting.

* (ROUND 3) An additional card is flipped over, and there is a fourth and final round of
betting. At this point, whoever is still in the game and holds the five-card combination of
highest value wins the pot. Alternatively, if all but one folds before reaching Round 3, the
game would end early. Note that if you folded earlier in the game, you would have lost all
of the money you bet before folding.

3 Literature Review

Models for zero-sum, multi-agent games, poker games included, have made an important mark in
both recent and early literature on reinforcement learning. Erev and Roth (1), in an early work
from 1998, find that even a simple, single-parameter RL. model can be used to conjure predictions
and explanations for a "broad range" of games without "fitting parameters to each game." Their
results moreover suggest that incorporating "responsiveness" into a model can improve predictions by
allowing the model to change in accordance with changes in players’ individual behaviors. We enable
responsiveness in our Texas Hold’em model indirectly; the actions that players do affect the possible
actions available to other players as well as their eventual outcomes, but players do not reference
other players’ decisions when making their own.

There exists some uncertainty in the literature regarding the appropriateness of employing Q-Learning
to zero-sum, multi-agent games like Texas Hold’em. Shoham et al.(2)) find that Q-Learning peforms
well for zero-sum repeated games. Dahl (3), however, finds that the method is "not applicable to
games of imperfect information." Similarly, Szita (4) notes that fundamental RL algorithms (such as
Q-Learning) "are rarely sufficient for high-level gameplay," and that it is therefore essential to think
of additional ways of "inserting domain knowledge" to allow such algorithms to scale to complex
modeling problems.

Recognizing the uncertainty regarding the potential performance of Q-Learning for this problem, we
conduct a thorough investigation of Q-Learning as applied to Texas Hold-em to unpack some uncer-
tainty regarding how the algorithm performs. We take into account various means of incorporating
domain knowledge into the algorithm by implementing different feature extractor strategies. And we
extend Q-Learning to work in the multi-agent space by strictly associating our Q values with a given
player’s hand and their action, effectively ignoring the other agents’ decisions and making the game
space passive, as suggested by Shoham et al.(2)).

4 Approach

For a more detailed illustration of our approach, our code can be found at:
https://github.com/michaelvobejda/texas_holdem,

We model the game of Texas Hold’em as a Markov Decision Process (MDP) with a given state (type:
dictionary) containing the following information:

e state[’board’] = a list of the communal cards
* state[’pot’] = an integer representing the amount of money in the pot

* state['players’] = a list of tuples (hand, bet), one for each player. If bet = —1, meaning the
player folds, then their hand is set to false.

* state[’curBet’] = the current highest bet in the round (the bet to call or raise to)
* state[’curPlayer’] = the index of the player who’s turn it is to bet

We make use of the open-source python hand evaluation library Deuces (source: https://github!
com/worldveil/deuces) for keeping track of the card deck, for card representation, and for
evaluating hands (by rank). The main methods of our MDP class run according to the rules of Texas
Hold’em as described in Section 3. The only notable deviation from the standard rules we take is our
method for deciding which player goes first in a given round of betting. Normally, the starting player
would rotate clockwise around the table, but we code the starting player to be decided randomly. This
ensures that when we run Q-Learning, aggregate earnings across games are not determined by the
ordering of players in state[players’].

We run Q-Learning on our MDP according to a standard Algorithm 5.3 from Kochenderfer (5)
with a tweaked update formula. For cases where action == —1 (fold), we perform no update to
the associated weight[state][action]. If the reward is a loss (placing a bet but haven’t won yet),
then we set reward = absoluteV alue(1/(reward + 0.01) in our update function. Otherwise, if the
reward is a win (win all the money in the pot), then we perform the standard update. This tweaking
ensures that Q values are not negative; consistently negative Q values yield little learning (the agent
would rarely revisit negative Q values).

We employ five different feature extractors for Q-Learning that all achieve different results of varying
salience. This allows us to run a game of seven agents where five agents are simulating Q-Learning
under the five different feature extractor strategies. These five agents pursue the following feature
extraction strategies:

» Standard: Extracts [state = board + hand] and [action = any action in
mdp.getActions(state)].

* Action Agnostic: Extracts only [state = board + hand].

* Binary Action: Extracts [state = board + hand] and [action = 0 if fold; 1
otherwise].

* Hand Rank: Extracts only [state = rank of (board + hand)].

* Hand Rank with Binary Action: Extracts [state = rank of (board + hand)] and
[action = 0 if fold; 1 otherwise].

We also make use of two baseline agents, permitting us to run on a total of seven players that all
make use of different methods. The two baseline agents perform the following:

* Random Action: No learning involved. Just choose a random action according to:
[action = randomly select an action a € mdp.getActions(state)]

* Uniform Call Action: No learning involved. Just uniformly choose whatever action calls
(matches) the bet.

Testing five different feature extractor strategies for Q-Learning allows us to evaluate the tradeoff
of between encapsulating enough salient information in a Q value and still allowing the Q value
to generalize across the state and action space to produce meaningful results. We are interested,
specifically, in discovering what features are most salient to the problem of Texas Hold’em, as that
investigation has yet to be conducted for Texas Hold’em.

https://github.com/michaelvobejda/texas_holdem
https://github.com/worldveil/deuces
https://github.com/worldveil/deuces

5 Results

We first run all five distinct Q-Learning strategies against one another as five separate agents in 1
million five-agent games of Texas Hold’em. Each agent maintains their own weights across all games.
We achieve the following results:

1eg Performance of Five Q-Learning Agents with Distinct Feature Extractors

Standard
Action Agnostic

—— Binary Action

—— Hand Rank

Hand Rank with Binary Action

Earnings

0 200000 400000 600000 800000 1000000
Simulations

We can see that Standard and Binary Action feature extraction strategies outperform the others. We
hypothesize that this is because they are the two that extract the most detailed information. This
comes at a loss of generalization (less feature extractions are sharing Q values), but it comes at a gain
in precision (Q values are tailored to specific states and actions).

Next, we run the worst-performing Q-agent, Hand Rank, against agents that follow Random Action

policies to ensure that all Q-Learning methods perform at least better than random. We achieve the
following results:

1eg Earning of Q Agent vs. Random Action Over Time

0.8 A
—— Random Action
Random Action
—— Random Action
sy | - Hand Rank with Binary Action
—— Random Action
—— Random Action
0.4 1 Random Action
&
c
5 0.2 1
0.0 A
_02 -

0 1000000 2000000 3000000 4000000 5000000
Games Played

As we can see in the graph above, Hand Rank performs significantly better than all Random Action
agents. However, there is a delay in learning which causes a delay in seeing this superior performance;

Hand Rank does not start performing better until a little under 1 million games. This suggests that
Hand Rank, while it generalizes more than Standard and Binary Action, may require longer training
periods to converge to useful Q values. Or, rather, that the state and action space of the MDP is big
enough to require such a delay period in seeing improvement.

Next, we test all Q-agents against our two baselines: Random Action and Uniform Action Call
(labeled as "Always Call").

1e8 Earning of Q Agents Over Time
—— Standard
41 Action Agnostic
—— Binary Action
—— Hand Rank
31 — Hand Rank with Binary Action
—— Random Action
2> Always Call
(%)
(=2}
c
€
8 14
0 4
_1 4
0 20000 40000 60000 80000

Games Played

We can see in this graph that while Q-Learning can outperform Random Action even in a smaller
number of games, it woefully underperforms Uniform Action Call. This can be expected; always
calling the bet makes the Uniform agent more likely to win ("you can’t win without trying) than
Agent-Q, which is more likely to fold.

Next, we run Hand Rank with Binary Action, a feature extraction strategy that generalizes more than
most others, and plot the number of Q values it establishes over time:

Unique Elements in Q Matrix Over Time

12000 1

10000 1

8000 -

6000 -

4000 1

Unique Elements in Q Matrix

2000 A

0 1000000 2000000 3000000 4000000 5000000
Games Played

We can see in this graph that the number of Q values established plateaus over time, which is what
we would expect. Hand Rank with Binary Action generalizes well, and as we run more games we

revisit more and more Q values as expected. But the plateau occurs only after approximately 4
million games have been played, suggesting we need greater computational power to run Q-learning
successfully to achieve the generalization and revisit rate we would desire.

Finally, we run all Q-agents against one another and plot the number of unique Q values that each
agent creates over time:

Number of Unique Q Matrix Values Over Time

12000009 standard
Action Agnostic
10000004 — Binary Action
—— Hand Rank
—— Hand Rank with Binary Action
800000 A
600000 A
400000 -
200000 -
0 -

0 20000 40000 60000 80000
Games Played

The results shown suggest that Standard, which extracts info from the largest state and action spaces,
generalizes the least by a significant margin. This is to be expected, and suggests that there could
indeed be a strong and positive relation between the number of Standard’s distinct Q values and its
success with respect to other Q-Learning strategies. We also do not see an asymptotic curve here,
reaffirming the point that was made in response to the previous graph regarding computational power
and performance.

6 Conclusions

Our investigation suggests that Q-Learning is not fully equipped to deal with complex, multi-agent
problems with as large a state and action space as Texas Hold’em. While the model is able to learn
some nuance about the value of making certain bets given certain hands, there is still too much
randomness in its decision making and is beat out by strategies that never fold (e.g. Uniform Call
Action).

Our results suggest that perhaps with more computational power, Q-Learning could still be effective
against random action agents. We ran a simplified simulation with just one Q-Learning agent using
the least-promising feature extraction algorithm and six Random Action agents (see Earning of
Q Agent vs. Random Action Over Time), and the Q-Learning model did eventually outperform
all of the Random Action agents. We believe this is a result of the Q matrix becoming almost
fully populated, as shown in the graph "Unique Elements in Q Matrix Over Time". As discussed
above, a more complete Q matrix results in much better performance of the model, so with more
computational power it would be possible to populate the Q matrix more completely and for the
model to make intelligent, informed decisions for a given state and action.

7 Contributions

Ammar Alqgatari programmed much of the structure of our MDP and the Monte Carlo Tree Search
algorithm. (Our Monte Carlo implementation is left out of this paper due to untimely errors.)

Ben Gaiarin wrote the skeleton for the MDP structure, programmed much of Q-Learning, prepared
data visualizations and wrote this paper.

Michael Vobejda programmed much of the structure of the MDP and of Q-Learning, helped with
Monte Carlo Tree Search, prepared data visualizations, and contributed to this paper.

References

[1] Erev, Ido, and Alvin E. Roth. Predicting How People Play Games: Reinforcement Learning
in Experimental Games with Unique, Mixed Strategy Equilibria. American Economic Review
(1998): 848-881.

[2] Shoham, Yoav, Rob Powers, and Trond Grenager. If Multi-Agent Learning is the Answer, What is
the Question?. Artificial Intelligence 171.7 (2007): 365-377.

[3] Dahl, Fredrik A. A Reinforcement Learning Algorithm Applied to Simplified Two-player Texas
Hold’em Poker. European Conference on Machine Learning. Springer, Berlin, Heidelberg, 2001.

[4] Szita, Istvan. Reinforcement Learning in Games. Reinforcement Learning. Springer, Berlin,
Heidelberg, 2012. 539-577.

[5] Kochenderfer, Mykel J. Decision Making Under Uncertainty: Theory and Application. MIT
press, 2015.

	Introduction
	Background
	Literature Review
	Approach
	Results
	Conclusions
	Contributions

