
Goal-driven Navigation of an Unknown Environment
with Monte Carlo Tree Search

Polo Contreras
05676100

jcontr83@stanford.edu

Mark Gee
06346053

markgee@stanford.edu

Derek Knowles
06341436

dcknowles@stanford.edu

Abstract— A mobile agent, such as a parts-carrying robot
on a factory floor, a rover on an extraterrestrial surface or
even a cleaning robot in an office building, often finds itself in
an environment that it must navigate, moving to a designated
target area in order to perform or complete a task. The agent
is usually familiar with the general map characteristics of the
environment in which it moves, but it may need to avoid
small, local obstacles that have been placed in its path. In
addition, the fact that the agent’s next assigned goal location
is unpredictable forces the agent to use online path planning
to reach its goal. Our hero (the agent) must be able to use its
sensors, assigned goal location, and set of possible actions to
dodge the obstacles in the environment and reach the assigned
goal location unimpeded. Here we show that Monte Carlo Tree
Search (MCTS) can be implemented in order to reliably direct
the agent to the assigned goal location.

I. INTRODUCTION
With mobile robots in common use both in research and

industry applications[1], an important challenge in most
implementations is navigation in an unknown environment.
Unknown and unpredictable environments are hallmarks of
nearly any real setting — anything from factory floors to
forested areas, planetary surfaces in general or even homes.
Even in some areas, like manufacturing, where it could
be possible to maintain a controlled environment, it may
be far more practical to imbue a robot with the ability to
navigate around obstacles; doing so will make the robot
more robust, simplify and economize the maintenance of
its work space, and allow it to work more effectively with
humans. In this project we explore one possible solution to
the problem in general, where a robot with limited sensing
capabilities must chart a path through an unknown and
changing environment in real time.

II. PROBLEM DESCRIPTION
In order to represent this, a virtual agent and environment

are created. The virtual environment is based on a large
two-dimensional grid world, where the agent can take
one of four actions to move through this environment
(up, down, left and right). Upon generation, the virtual
environment contains a reward that represents the assigned
goal location placed at a random location on the map,
while various other random locations throughout the map
contain obstacles. Entering the space associated with the
reward (assigned goal location) is associated with a positive

Fig. 1. Illustration of agent (red), goal (green), obstacles (black), sensor
range (dotted line) and detected obstacles (yellow).

utility for the agent, while entering the space occupied
by an obstacle incurs a penalty. The agent will therefore
have to navigate through the map to reach the assigned
goal location while avoiding obstacles, with the caveat that
it is only able to detect obstacles within a limited range
of itself (the type of sensors can vary with the specific
application: for example, automotive applications readily
use cameras in multiple directions, ultrasound, or LIDAR,
among others[2]). Our problem setup is depicted in Figure 1.

III. SOLUTION

Because the agent is in a largely unknown environment,
the position of both the goal and obstacles are randomly
generated, and the sensors of the robot are unable to detect
the placement of obstacles outside of a specific range, the
agent uses an online method to decide the best possible
move at each step. In order to balance the tendency of the
agent to find the shortest path possible towards the goal
and the requirement for the agent to avoid obstacles as
much as possible, the agent chooses its actions using the
MCTS algorithm[3]. This algorithm uses an expanding state
representation to determine the best next action (Figure 2).
MCTS has been implemented in many artificial intelligence
and game theory applications, including in problems with



Fig. 2. Graphical representation of MCTS as used in this algorithm, with
the agent considering the effects of its actions at future states (S’, S”) from
the current state (S) with each available action. The default policy is used
to analyze each terminal node.

large state and action spaces such as the game of Go[5]. We
chose MCTS because it can handle large state and action
spaces, and also has the benefit that its complexity does
not grow exponentially with the problem decision horizon
unlike other online methods. The default policy used by
our modified search algorithm is to direct the agent in the
shortest path towards the goal, while the updates generated
at each point in the decision tree during the course of
decision making are performed with the express intent to
identify obstacles and avoid them. Since the discount from
taking additional steps to reach the assigned goal location
is small relative to the big reward associated with arriving
at the goal and the big penalty of hitting an obstacle, the
search will give priority to paths that circumvent obstacles
in the environment. This simulates a situation where it is
significantly worse to run into an obstacle than it is to incur
the additional cost of fuel or power caused by a longer route.

Because the agent knows the position of itself and the
goal within the map, the default policy of the agent is to
move towards the goal in as direct a route as possible.
This default policy is used at each leaf node in the course
of MCTS. The agent then uses the MCTS to evaluate
each potential future step on its way to the assigned goal
location. In a situation where there are no obstacles between
the agent and the goal, the discount associated with an
additional action will cause the agent to select the action
(out of the four available) which brings it closest to the
goal. Through this default policy, the agent gradually seeks
out the goal in the environment, prioritizing at each step the
action that makes for the shortest path.

If the sensors of the agent detect an obstacle, MCTS will
run specifically to select between the four actions that the

agent has available. Because of the aforementioned penalty
associated with passing through an obstacle, the agent will
prioritize actions that result in avoiding an obstacle, moving
in the general direction of the goal but simulating future
actions in order to dodge obstacles as it moves. Notably,
after each step, the agent maintains some of the previously
computed values of the expected utility as it proceeds to the
next step, avoiding the unnecessary computations associated
with regenerating a completely new set of expected utilities
after each move and updating the values instead.

It is worth taking into account that the algorithm, as
described above, makes a very strong implicit assumption:
space that is outside the range of its sensors is assumed to
be free of obstacles. While this means that the agent will
prioritize moving around obstacles instead of through them,
this can create a potential problem situation where the agent
can unknowingly be caught in a loop as it tries to maneuver
towards the goal. For example, if the space between the
goal and agent contains a specific arrangement of obstacles
that causes the agent to move between multiple positions
corresponding to local optima (always selecting the same
action at each one of these positions), the agent may find
itself constantly circling the goal or moving back and forth
across the obstacles as it forgets the presence of any obstacle
that it cannot see. This could be solved by making the agent
remember the locations of obstacles it has encountered
previously, but this would make it necessary for the agent
to expand the decision tree as it explores its environment,
vastly increasing processing power requirements. Instead,
a degree of randomness is introduced into the actions of
the agent in order to place more emphasis on exploration.
Increasing the amount of randomness of the agent’s actions
increases the amount of exploration.

While the agent will regularly run a search in order to
select the best action among its current options, there is a
certain probability that the agent will instead ignore this and
select an option at random. This allows the agent to explore
its environment further and serves as a solution to a situation
where the agent is caught in a loop. If there was a situation
where the agent could move between several spaces in a
fixed sequence while attempting to find the optimal path,
it would eventually move in an unexplored direction and
find an alternate route. Once the agent reaches the goal,
the map can be reset to provide a new configuration of the
goal and obstacles (the agent’s internal representation of
the map, represented by the utilities calculated in its search,
will also be cleared). This serves as a representation of the
agent needing to move through an environment that has
changed, such as if each goal indicates the location of its
next task and the time taken to carry out a given task is long
enough that the configuration of obstacles will have changed.

While this generalized approach could be used in a
variety of different situations, there are some limitations. In
its current form, the algorithm makes its decisions based



on the current layout of the goal and obstacles, and is not
capable of reliably predicting changing conditions in the
environment. For example, if some of the obstacles were
to change position as the agent moved towards the goal
but were not in range of the sensors of the agent as they
moved, the agent would wholly ignore them and would not
consider the possibility that they might impede a selected
path. This might cause the agent to encounter an obstacle
twice, for example. There are several potential solutions
for this, which can vary somewhat with the nature of the
specific problem being solved; with some knowledge of
how obstacles are likely to move, for example, the agent
can be given a method to predict the future positions of
obstacles it detects.

It is also worth considering that this algorithm relies
on the assumption that the agent is capable of reliably
establishing its position within its working environment. This
can be accomplished a variety of ways, such as with GPS
on the surface of Earth or a similar, localized radiolocation
system in a factory, but the specific implementation depends
on the specific application. In a very large or a continuous
area, this algorithm can still be used without modification
by discretizing the area in real space (not necessarily in
regular intervals, depending on the application) and using
nearest-neighbor local approximation[4].

IV. IMPLEMENTATION

The described solution was implemented in Python with
the PyQT framework[6] for the graphical representation.
Readily manipulating the values required in order to quickly
make decisions (a practical necessity in online decision
making), Python also allows for efficient representation of
the environment containing the agent, reward and obstacles,
as well as the random generation of obstacles to represent
the changing environment that the agent must navigate.
Finally, implementing a graphical framework allows us to
form a visual representation of the agent navigating the
environment in real time, both for debugging purposes and
as an intuitive demonstration of the agent’s online decision
making capability.

As a representation of the space in which the agent
moves, the agent, obstacles and goal are contained in a
three-dimensional representation where they are different-
colored blocks placed on a surface grid. In this grid, the
agent is represented by a red cylinder, the goal of the
agent is represented by a green cylinder and two different
colors are used for blocks representing obstacles: grey for
obstacles that the agent cannot currently detect, and yellow
for obstacles of which the agent is currently aware. Also
included in the virtual space is a set of lines representing
the current paths being considered by the agent in the
course of its exploration, giving a real-time visualization of
the combination of MCTS and the selected default policy in
searching for and reaching the goal. The virtual environment

Fig. 3. Three dimensional virtual space, with agent (red), goal (green),
unseen obstacles (grey) and detected obstacles (yellow).

thus serves as a combined representation of the physical
space in which the agent finds itself and the agent’s process
of decision making as it navigates this environment.

The main feature of the user interface for the solution
is the three-dimensional representation of the virtual
space in which the agent resides and operates (Figure
3). The representation provides a live depiction of the
agent maneuvering through real space in its attempt to
complete tasks, with two important functions available
to the user: the ability to change the perspective within
virtual space, allowing the user to inspect the agent’s
maneuvering through space and around obstacles (useful if
the agent is, for example, behind an obstacle from the user’s
perspective) and the ability to customize the parameters
of the virtual space, such as the size of the space, the
number of obstacles and the method of exploration (MCTS,
direct or random policies). This allows the user to evaluate
performance of the MCTS algorithm in spaces of varying
relative size and compare it to the default or random policies.

In this specific implementation, the location of the goal
and the layout of the obstacles are randomly generated,
and the user does not set any of their locations. In some
applications, however, this same algorithm could be used in
a situation where a user manually set the location of the
next goal of a mobile robot (for example, an extraterrestrial
rover being monitored by telescope). Using this same
algorithm, the agent would automatically move across the
surface while dodging obstacles in its path until reaching
the goal, then wait for the next position of the goal to be
assigned.

Full source code of our implementation code can be found
on GitHub 1.

1https://github.com/betaBison/robot100.



V. RESULTS
In accordance with our predictions about the high

effectiveness of the algorithm, the agent persistently
seeks out the goal in repeated simulations while reliably
avoiding obstacles, generally without regard as to the
positions of the goal or obstacles (Figures 4 - 7). While
some limitations are visible in its performance, these are
inherent to the capabilities of the agent (the range of its
sensors, for example) and correspond to the compromises
that must be made when developing an agent capable
of moving throughout real space. Being able to move
through the simulated space while tracking its own internal
representation of obstacles encountered, the agent thus
showcases a generalized representation of one form of
combined exploration and exploitation. The default policy
of the agent hinges on exploitation, driving the agent
directly towards the goal, while the decision process
selected using the sensor input data combines elements
of both exploration through sensor data and exploitation
through the prioritization of steps that avoid obstacles.

When the agent is simulated to traverse the space in real
time, the limitations of the agent become obvious. While
the default policy has a tendency of moving the agent
directly towards the goal, in certain layouts this can be a
disadvantage; the agent will ignore obstacles until it moves
close enough to detect them, which means the path taken is
frequently longer than the optimal path for a specific map
configuration. We found that this can be offset by giving the
sensors a larger range, but the depth of the MCTS would
need to be increased to suit this increased range, which thus
increases the computational requirements of the agent. This
balance should be set in accordance with the requirements
of a specific application and detection range of its sensors.

Further, we found that MCTS performs poorly when
there are a large amount of obstacles; this is expected
because it may not explore enough possible paths to find
a valid obstacle-free solution. To improve performance in
such a situation, the depth of the search can be increased,
or the amount of randomness in the agent’s actions can be
increased to increase the proportion of exploration. This was
verified in our implementation by changing the appropriate
parameters.

Overall, the agent serves well as a general representation
of an automated decision making process capable of adapting
to uncertainty in its environment, usable in a wide variety of
applications in mobile robots.

VI. CONCLUSIONS
As an effort to develop a generalized algorithm useful in

a variety of different contexts, this particular implementation
showcases both the strengths and weaknesses of MCTS as
well as those of online decision making in general. The
agent in the simulated environment is capable of adapting
to the conditions in its environment with minimal guidance

Fig. 4. No observed obstacles in path from agent (red) to goal (green).
Yellow lines show paths explored in MCTS, with brightness correlated to
expected utility.

Fig. 5. Observes obstacles in path and reroutes.



Fig. 6. Reroutes to avoid obstacles.

from humans. This is ideal in situations where the agent is
stationed in a dynamic and unpredictable environment and
constant directions from humans as to its movements are not
feasible or desirable. However, the agent must reconsider
its actions at every step, raising the threshold required for
the computational power that the agent carries on board as
well as potentially increasing the amount of time required
between steps. Although the agent is able to use information
learned from its environment in the selection of its next
action, the capacity of the agent to make adjustments to
changing conditions is limited, and it cannot use all of the
information that has been processed previously once its
circumstances have changed.

This particular implementation also showcases, albeit to
a lesser degree, the viability of including expert knowledge
not just in the description of the problem but also in the
implementation of the solution. As the situation being
simulated here is the displacement of a mobile agent
across a surface, the knowledge that the terrain can be
traversed, unless there is a detectable obstacle, allows
the implementation of a default policy designed for this
case. The default policy takes the agent in the direction
of the goal and is an improvement over, for example,
random movement, but still requires modulation by value
calculations in order to select the best decision. Each
decision, therefore, is made based on a combination of
both the expert knowledge programmed in by the human
designer and the knowledge that the agent acquires as it
moves around its environment.

As a final note, although the capability of the agent
to move in four directions across the grid world is rather

Fig. 7. Clear path to goal.

abstract and might not be directly reproducible by an
autonomous agent in real space, in such a situation this
algorithm can serve as part of a hierarchical decision
making process. This algorithm could still be used even
if the agent were, for example, a wheeled vehicle with
traditional Ackermann steering (such as a passenger car
or truck), a vehicle with differential steering (such as a
tractor or skid-steer loader) or even an air cushion vehicle;
designating the location of the next step of the vehicle
based on knowledge of the goal location and the sensor
input, subordinate functions can then be called specifically
to control the running gear in order to perform the next
selected step. The algorithm can therefore be used with a
variety of different control schemes, serving as a connection
between the process that sets the goal location for the agent
and the control scheme that directly affects the position of
the agent in the environment.

VII. INDIVIDUAL CONTRIBUTIONS

Polo Contreras contributed to the adaptation of the
problem to a mathematical description (including the
definitions of the goal and obstacles in terms of utility),
the design of the algorithm to solve it (including the
selection of a nonrandom default policy), and is the
principal author of this report. Mark Gee contributed to the
design of the problem, the algorithm to solve it and the
implementation in code of the solution (including definition
of the object classes and the default policies, optimization
of the software stack, the decision processes and the
graphical representation). Derek Knowles contributed to the
representation of the problem, the design of the algorithm to
solve it (including the selection of the search algorithm for



selecting among possible paths) and the implementation in
code of the solution (including the virtual, three-dimensional
representation of the agent and environment).

REFERENCES

[1] MarketWatch, 2019, ”Autonomous Mobile Robots Industry: 2019
Market Research with Market Size Growth, Manufacturers, Segments
and 2024 Forecasts Research - MarketWatch”. [ONLINE] Available
at: https://www.marketwatch.com/press-release/autonomous-mobile-
robots-industry-2019-market-research-with-market-size-growth-
manufacturers-segments-and-2024-forecasts-research-2019-10-22.
[Accessed 06 December 2019].

[2] Alpaydin, E., 2016, “Machine Learning: the new AI,” Where do
We Go from Here? E. Alpaydin, The MIT Press, Cambridge,
Massachusetts, pp. 149.

[3] Kochenderfer, M. J., 2015, “Decision Making Under Uncertainty:
Theory and Application,” Sequential Problems. M. J. Kochenderfer,
The MIT Press, Cambridge, Massachusetts, pp. 102-103.

[4] Kochenderfer, M. J., 2015, “Decision Making Under Uncertainty:
Theory and Application,” Sequential Problems. M. J. Kochenderfer,
The MIT Press, Cambridge, Massachusetts, pp. 94.

[5] Google Deepmind, 2016, ”Mastering the Game of Go with
Deep Neural Networks and Tree Search”. [ONLINE] Available
at: http://airesearch.com/wp-content/uploads/2016/01/deepmind-
mastering-go.pdf. [Accessed 06 November 2019].

[6] PyQt - Python Wiki. 2019. PyQt - Python Wiki. [ONLINE] Available
at: https://wiki.python.org/moin/PyQt. [Accessed 06 December 2019].


