
Reinforcement Learning for Connect Four

E. Alderton
Stanford University, Stanford, California, 94305, USA

E. Wopat
Stanford University, Stanford, California, 94305, USA

J. Koffman
Stanford University, Stanford, California, 94305, USA

This paper presents a reinforcement learning approach to the classic

two-player slot and disc game Connect Four. We survey two reinforcement
learning techniques—Sarsa and Q-learning— to train an agent to play Connect
Four using an optimal strategy for the game. We used TensorFlow, an end-to-end
open source machine learning platform to create and test deep learning models.
We studied how varying exploration rate and rewards models affects performance
by both algorithms. Ultimately, we found did not find a significant difference
between the two algorithms, as both recorded strikingly similar win percentages
against themselves and against the opposing algorithm. We also used Docker to
containerize our application and source code. This allowed us to run our tests and
TensorFlow software in a safe containerized approach that did not interfere with
our own machines.

I. INTRODUCTION

Connect Four is a well-known two-player
strategy game. Each player has their own colored
discs and players alternate in selecting a slot on the
board to drop the disc in with the goal of getting four
of their colored discs in a row, either horizontal,
vertical or diagonal. The game’s roots stem from
Tic-Tac-Toe, a pen and paper game with the goal of
getting three in a row, as opposed to four [1]. The
game first became popular under the Milton Bradley
Company after it was first coined Connect Four in
1974.

Connect Four is a compelling game as
although it appears simple and straightforward, there
is significant opportunity to use strategy to increase
and even guarantee one’s likelihood of winning. For
example, targeting specific slots over others is
important. The slots in the middle of the board are
more valuable than the ones on the edges because
there is a higher chance of creating four in a row. The
board and rules of the game enables a large variety of
possible final boards with players able to take
numerous different actions to reach them. We aimed
to use reinforcement learning to find the optimal
policies for the Connect Four Markov Decision
Process.

II. CONNECT FOUR RULES

Figure 1: Connect Four board [2]

Connect Four is played on a vertical board

with six rows and seven columns which totals in 42
playable positions on the board (See Figure 1). At the
top vertical edge of the board, for each column there
is slit where the pieces are slotted into. Once the
piece has been slotted into a column it falls down the
column to the lowest row or it lands the row above
the piece that was last played in that column. It is a
two player game and each player has twenty one
coin-like pieces in a different color to the other player
(player one may have all red pieces and player two all
black) (See Figure 2).

The game begins by randomly deciding
whether player one or player two will take the first
turn. After the first player takes their turn, turns are
then taken alternatively between the two players. A
turn consists of a player dropping their colored piece
into a column on the board. Each turn a player must
drop their colored piece into a column, they cannot
‘miss their turn.’ If a column is full (six pieces in the
column), then the piece cannot be played into that
column. Additionally once the piece has been played,
it cannot be undone or removed from the board.

The objective of Connect Four is to be the
first player to connect four of their colored pieces in a
row (either vertically, horizontally or diagonally)
with no gaps on the board between the four piece
(See Figure 3). At this point the game is over and the
player who connected the four pieces wins.
Alternatively, if all of the pieces have been played,
resulting in the board being full, then the game is
called a tie (See Figure 4).

Figure 2: Connect Four pieces [3]

Figure 3: Winning Connect Four Board [4]

Figure 4: Tie Connect Four Board [4]

III. PROBLEM DESCRIPTION
Our project attempts to find an optimal

Connect Four playing strategy given a Connect Four
board. We define an optimal Connect Four playing
strategy as the sequence of turn actions that
maximizes the probability of a player winning a
single Connect Four game.

A. Action Space

The action space for Connect Four is
relatively small. Each player has at most seven
possible actions that they can take at any given state.
Therefore an action is defined as dropping a piece
into one of the seven columns on the board. Because
the number of actions a player may take at a given
state depends on how many columns on the board are
full, we calculate the number of actions possible at a
given state as:

Actions Possible = 7 - C (1)

C = Number of full columns at current state (2)

B. State Space
The state space for Connect Four is

considerably larger than the action space. A state in
Connect Four is defined as the board with played
pieces that a player sees. If the player starts the game,
then the board will always have an even number of
pieces. Alternatively if they are second player, the
board will always have an odd number of pieces.

A very rough upper bound for the number of
possible states of a connect four game can be
calculated by taking into account that each position
on the board can either be free, a player one piece or
a player two piece. Then because the board size is 6 x
7, we get an upper bound of 3⁴². However, this
calculation does not take into consideration that
possible boards are illegal due to gravity and the rules
of the game. The best lower bound on the number of
possible positions has been calculated by a computer
program to be around 1.6 x 10¹³ [5].

IV. LITERATURE REVIEW
Scientists have already proven that if the

first player places their piece in the center column,
with perfect play they cannot lose. Similarly, if the
first player does not place their first piece in the
center column, with perfect play the second player
can always draw [3]. However, given a certain state,
what is the optimal move? This requires some
complex calculations.

To compute the best decision each time, one

can construct a game tree. Say it is player A’s move.
Player A has 7 - C (see equation one) actions which
can be taken. In constructing a game tree, each node
from the parent state is the state arising from taking
one of these actions. Then from these states, Player B
can take 7 - C actions, which lead to 7 - C unique
states, forming a subtree. This continues until an
action is taken which results in the end of the game,
and this state is called a leaf since there exists no
further subtrees. By assigning leafs values, and
calculating the entire game tree, it is possible to take
the best possible action by propagating the values
from the leafs and nodes all the way up the tree to the
current state.

Calculating the game tree is pretty
straightforward. However, there can be pretty severe
run-time issues that make calculating the best
decision using a game tree not feasible. Consider the
problem where the game has many more moves
before a winner is decided. With 7 columns,
calculating n moves means storing approximately 7n

game states [6]. We see that run-time increases
exponentially with the number of moves ahead to be
calculated. Because of this, the focus has shifted
more to creating algorithms that can calculate the best
action to take very quickly and while using a small
amount of memory.

One can optimize run-time with how objects
are stored(e.g. using bitwise operators and bit strings
instead of more expensive data structures [7]), but we
gloss over these implementation details, focusing on
algorithm changes. One simple algorithm is to check
whether taking an action will give the opposing
player a chance to connect 3 in a row some x moves
down the line, where x can be manipulated by the
programmer [6]. While very fast, this is shortsighted
in that being in a winning or losing position in
Connect Four is more nuanced than who has three in
a row.

Other solutions include using a minimax
algorithm, which minimizes the maximum losses for
a player. This is done by assuming that the opponent
is going to make the best possible decision, and
therefore ignoring all other possibilities. This
significantly reduces the number of states that need to
be calculated, while still ensuring optimal outcome
for a player [7]. However, it still takes a while,
especially in the beginning of the game. That is
where alpha-beta pruning comes in, a technique
which prunes away the need to consider many

subtrees. It involves considering whether the values
in a subtree could possibly change the current action
indicated by the tree, and if there is no value that
could change the action then the subtree is not
calculated and ignored.

V. IMPLEMENTATION

C. Docker
Docker is an open-source tool that makes it

easier to create, deploy, and run applications through
the use of containers. Containers isolate software
from its environment which enables multiple
containers to run separately, but on the same machine
with isolated processes in user space [8]. We used
docker to run different versions of our reinforcement
learning algorithms at the same time in order to be
more time efficient.

D. TensorFlow

TensorFlow is an end-to-end open source
platform for machine learning. We used the core
open source library to help develop and train deep
learning models for Connect Four. It made it easy to
work with large datasets as well as to build our deep
learning reinforcement models which trained our
agents to learn how to play Connect 4 against
themselves and each other.

E. Simulator
Because the possible state space for Connect

Four is so large, instead of gathering training data we
used a simulator. In the simulator we could set up the
agent we were training to play itself or another agent,
we could then analyze the agents performance. To
measure performance we played the different agents
against each other and recorded the win rates and the
number of moves per game.

F. Q-learning
Our first approach leverages Q-learning, a

model-free reinforcement learning algorithm. This
means that rather than using transition and reward
models, we use the observed next state s’ and reward
r. Therefore for each observation (s, a, r, s’) at time t,
we perform the following incremental update rule

Q(s,a) ←Q(s,a) +α(r+γmaxaQ(s′,a)−Q(s,a)) (3)

with a learning α and discount factor γ.

G. Sarsa
For our second approach we sought

to use Sarsa, an alternative to Q-learning. Unlike

Q-learning, which maximizes over all of the possible
actions, Sarsa uses the actual action taken to update
Q. Consequently for each observation (s, a, r, s’) at
time t, we perform the following incremental update
rule

Q(s,a) ←Q(s,a) +α(r+γmaxaQ(s′,a’)−Q(s,a)) (4)

with a learning α and discount factor γ.

VI. RESULTS
In implementing our project we decided to

have two agents, one for Q-learning and another for
Sarsa. Within each agent, we choose to vary both the
rewards for the agent and their exploration factor.
This provided us with the most reasonable approach
to obtain valid results, considering that each test
would run for ~5-6 minutes and limiting how many
tests we could run. For the purposes of our project. a
test means an agent played 1000 games of Connect 4.
Whether an agent played against itself or the other
agent, the specific rewards allocated, and what the
exploration factor was, where all set for each test
which we ran within multiple docker containers. We
broke down the testing into three cases below,
Q-learning vs. Q-learning, Sarsa vs. Sarsa, and finally
Q-learning vs. Sarsa. From this we varied the
exploration factor (05. - 0.9) and rewards (3
options).In the graphs, player 1 win percentage is
calculated as follows:

(player 1 wins + (0.5*ties))/(total games played) (5)

Figure 5: Q-learning.

Figure 6: Sarsa.

Figure 7: Q-learning (Player One) vs Sarsa

(Player Two).

Figure 8: Sarsa (Player One) vs Q-learning

(Player Two).

VII. ANALYSIS
In both our research of Connect 4 and

analysis of our results we found a significant
advantage to whichever player went first.
Specifically, in our results we noticed that every
single test run results in the majority of wins between
the two agents always went to player 1, regardless of
which agents were playing. This is consistent with
the prior work that has been conducted on connect 4
showing that with the perfect decisions being taken,
player 1 cannot lose. Player 1 does not win 100% of
the time because it is not taking the optimal strategy
every time, for it is learning how to play the game as
it plays. However, while player 1 won the majority of
games in every trial, we noticed interesting
differences in these percentages across algorithm,
exploration rate, and reward values.

The exploration rate appears to have the
largest effect on the data. Starting with Q Learning vs
Q Learning, in Figure 5 we see that there is a
negative correlation between win percentage and
exploration rate. There is an interesting outlier with
an exploration rate of 0.8, which is actually the most
successful exploration rate we tested, however the
general trend is downwards. We suspect that lower
exploration rates result in higher success rate because
player 1 sticks to what works, and does not

compromise its advantage by exploring sub optimal
policies, that while they may pan out, more often give
up the superior position that results from starting the
game. We hypothesize that the blip at an exploration
rate of 0.8 is due to a perfect combination of
exploration and exploitation, where it abandons its
strategy frequently enough to find more optimal
solutions but not so often that it abandons successful
strategies.

Sarsa vs Sarsa has the same negative
correlation between exploration rate and player one
win percentage that we observed with Q learning,
with the difference being a lack of an outlier and a
smaller spread between exploration rates (see Figure
6). We expect that the negative correlation exists for
the same reasons described above. The smaller spread
may be due to a poor exploration strategy for our
Sarsa algorithm; if it begins as poor, a higher
exploration rate has a lesser effect because the current
strategy has a higher chance of being suboptimal, so
switching away from it is less detrimental.

The most intriguing discovery about
exploration rate was the effect that it had on Q
Learning vs Sarsa (Figure 7), and similarly Sarsa vs
Q Learning (Figure 8). Here, increasing exploration
rate elevated the success of Q Learning over Sarsa.
With an exploration rate of 0.5, Q Learning and Sarsa
won about 66% of games when starting,whereas with
an exploration rate of 0.9 both algorithms won
around 72.5% of games when starting. This is curious
because when playing against oneself, both machine
learning algorithms fared worse with a higher
exploration rate. However, when the algorithms
played against each other, both benefited from a
higher exploration rate when being player 1. We are
unsure exactly what is accounting for this. One
theory is that because player 1 has a shared algorithm
when playing itself, player 2’s moves are more
predictable, and player 1 finds the optimal strategy
faster. The additional exploration is unnecessary and
moves player 1 to a suboptimal position. However,
when player 1 is playing against a different
algorithm, the difference in algorithm “confuses”
player 1, and more exploration is necessary to find
the optimal policy on both sides. If more exploration
leads player 1 and player 2 to a more optimal
strategy, we would expect to see player 1 win more
often, as they are unbeatable given the perfect
strategy.

The second parameter that we varied was
the reward. Looking at the data, the effect of this
variable is hard to deduce. Across none of our three
tests did any of the rewards stand out as the dominant
choice; each reward system had mixed success

depending on the exploration rate, and no system was
the most successful across every exploration strategy.
To draw any definitive conclusion, I believe that we
need to test more reward functions.

VIII. FUTURE WORK

Our implementation offers an optimal
strategy for the generic 2-dimensional game of
Connect Four using both Q-learning and Sarsa.
Possible future work could extend to determining the
optimal strategy for alternative versions of Connect
Four.

The 3-dimensional version of Connect Four
in particular would be interesting to implement an
optimal strategy for. The 3-dimensional aspect of the
game adds another layer of complexity to the model
and the rules are adjusted also. Comparing the
differences in the strategies could be an interesting
point.

It would be conceptually intriguing to
implement the optimal strategy with a large variety of
board sizes as well. Including larger, smaller and
different dimensional boards. Analysing and
comparing the different resultant optimal strategies in
order to identify or determine a pattern. Perhaps the
findings could then be applied to other games or
similar problems.

Finally adjusting the model to take into
account the speed in which a game is won is another
avenue that could be explored. Having the model
weight actions and decisions that may lead to a
possible win in less turns verse a guaranteed win in
more turns.

Overall the work completed acts as a
stepping stone into a greater exploration of the
relationship between Connect Four and reinforcement
learning.

IX. CONCLUSION
Memorizing and determining the optimal

move for every possible board state in a Connect
Four game is humanly impossible. However, in this
paper, we depicted a reinforcement learning approach
to the popular board game Connect Four in order to
increase the probability of winning a game. Our
Q-learning agent was able to achieve a peak win
percentage of 73.4% when starting as player one
versus the Sarsa agent. Alternatively when Sarsa
started as player one versus Q-learning, our Sarsa
agent was able to achieve a peak win percentage of
73.5%. Both algorithms never dipped below a win
percentage of 50%, regardless of their opponent.
Given that in 1988 Victor Allis solved the Connect
Four game by showing that the first player can

always win if they play the middle column first, we
know that both our Q-learning and Sarsa method are
ultimately suboptimal. Yet, this leaves room for
much improvement.

Both Q-learning and Sarsa methods have the
ability to be modified “to assign credit to achieving
the goal to past states and actions using eligibility
traces” [9]. This means that the reward that is
associated with reaching the goal is “propagated
backward to the states and actions leading up to the
goal” [9]. The credit is also decayed exponentially so
that the states that are closer to the goal are assigned

larger state-action values. With eligibility traces and a
suitable exploration rate might enable our agents to
be more efficient and effective.

X. CONTRIBUTIONS

The entire group worked together to come
up with agent strategies, implementation and to write

the paper. We have contributed equally to the
creation of this report and previous written

submissions.

APPENDIX

Q-learning:

For this case, every test was a Q-learning
agent vs a Q-learning agent where we varied the
exploration factor and reward (shown below)

Reward: win-10, loss-0, tie-0
{1: 576, 2: 410, 0: 14, 'move_count': 24.564, exp:
0.9}
{1: 680, 2: 318, 0: 2, 'move_count': 19.614, exp: 0.8}
{1: 613, 2: 378, 0: 9, 'move_count': 21.891, exp: 0.7}
{1: 638, 2: 353, 0: 9, 'move_count': 21.082, exp: 0.6}
{1: 653, 2: 347, 0: 0, 'move_count': 18.741, exp: 0.5}

Reward: win-10, loss-(-10), tie-0
{1: 549, 2: 440, 0: 11, 'move_count': 24.641, exp:
0.9}
{1: 662, 2: 334, 0: 4, 'move_count': 19.458, exp: 0.8}
{1: 586, 2: 405, 0: 9, 'move_count': 22.092, exp: 0.7}
{1: 591, 2: 403, 0: 6, 'move_count': 20.787, exp: 0.6}
{1: 660, 2: 340, 0: 0, 'move_count': 18.81, exp: 0.5}

Reward: win-10, loss-(-10), tie-5
{1: 572, 2: 413, 0: 15, 'move_count': 25.012, exp:
0.9}
{1: 680, 2: 318, 0: 2, 'move_count': 19.218, exp: 0.8}
{1: 578, 2: 409, 0: 13, 'move_count': 21.916, exp:
0.7}
{1: 608, 2: 381, 0: 11, 'move_count': 21.314, exp:
0.6}
{1: 664, 2: 334, 0: 2, 'move_count': 19.296, exp: 0.5}

Sarsa:

In this case, every test was a Sarsa agent vs
a Sarsa agent with the same varied exploration factor
and rewards:

Reward: win-10, loss-0, tie-0
{1: 568, 2: 420, 0: 12, 'move_count': 24.398, exp:
0.9}
{1: 572, 2: 416, 0: 12, 'move_count': 23.252, exp:
0.8}
{1: 599, 2: 385, 0: 16, 'move_count': 22.175, exp:
0.7}
{1: 601, 2: 390, 0: 9, 'move_count': 20.801, exp: 0.6}
{1: 605, 2: 388, 0: 7, 'move_count': 20.535, exp: 0.5}

Reward: win-10, loss-(-10), tie-0
{1: 559, 2: 426, 0: 15, 'move_count': 24.653, exp:
0.9}
{1: 607, 2: 382, 0: 11, 'move_count': 22.633, exp:
0.8}
{1: 606, 2: 379, 0: 15, 'move_count': 21.64, exp: 0.7}
{1: 575, 2: 416, 0: 9, 'move_count': 21.167, exp: 0.6}
{1: 620, 2: 375, 0: 5, 'move_count': 20.688, exp: 0.5}

Reward: win-10, loss-(-10), tie-5
{1: 539, 2: 447, 0: 14, 'move_count': 24.521, exp:
0.9}
{1: 588, 2: 404, 0: 8, 'move_count': 22.764, exp: 0.8}
{1: 602, 2: 377, 0: 21, 'move_count': 22.102, exp:
0.7}
{1: 609, 2: 386, 0: 5, 'move_count': 21.177, exp: 0.6}
{1: 613, 2: 379, 0: 8, 'move_count': 20.453, exp: 0.5}

Sarsa vs Q-learning:

In this case, every test was a Q-learning
agent as player one vs a Sarsa agent with the same
varied exploration factor and rewards:

Reward: win-10, loss-0, tie-0
{1: 706, 2: 293, 0: 1, 'move_count': 20.186, exp: 0.9}
{1: 663, 2: 334, 0: 3, 'move_count': 19.499, exp: 0.8}
{1: 676, 2: 324, 0: 0, 'move_count': 18.852, exp: 0.7}
{1: 665, 2: 331, 0: 4, 'move_count': 19.019, exp: 0.6}
{1: 648, 2: 351, 0: 1, 'move_count': 18.716, exp: 0.5}

Reward: win-10, loss-(-10), tie-0
{1: 734, 2: 266, 0: 0, 'move_count': 20.32, exp: 0.9}
{1: 661, 2: 339, 0: 0, 'move_count': 19.197, exp: 0.8}
{1: 650, 2: 348, 0: 2, 'move_count': 19.102, exp: 0.7}
{1: 645, 2: 354, 0: 1, 'move_count': 19.081, exp: 0.6}
{1: 662, 2: 337, 0: 1, 'move_count': 19.098, exp: 0.5}

Reward: win-10, loss-(-10), tie-5
{1: 730, 2: 269, 0: 1, 'move_count': 19.99, exp: 0.9}
{1: 684, 2: 316, 0: 0, 'move_count': 19.44, exp: 0.8}
{1: 672, 2: 327, 0: 1, 'move_count': 18.644, exp: 0.7}
{1: 655, 2: 343, 0: 2, 'move_count': 19.449, exp: 0.6}
{1: 654, 2: 343, 0: 3, 'move_count': 18.988, exp: 0.5}
Sarsa vs Q-learning:

For this case, every test was a Sarsa agent as
player one vs a Q-learning agent with the same varied
exploration factor and rewards:

Reward: win-10, loss-0, tie-0
{1: 735, 2: 265, 0: 0, 'move_count': 20.311, exp: 0.9}
{1: 670, 2: 330, 0: 0, 'move_count': 19.396, exp: 0.8}
{1: 673, 2: 325, 0: 2, 'move_count': 19.181, exp: 0.7}
{1: 641, 2: 359, 0: 0, 'move_count': 18.785, exp: 0.6}
{1: 650, 2: 349, 0: 1, 'move_count': 18.968, exp: 0.5}

Reward: win-10, loss-(-10), tie-0
{1: 710, 2: 290, 0: 0, 'move_count': 20.346, exp: 0.9}
{1: 659, 2: 339, 0: 2, 'move_count': 19.773, exp: 0.8}
{1: 649, 2: 348, 0: 3, 'move_count': 18.683, exp: 0.7}
{1: 683, 2: 315, 0: 2, 'move_count': 18.479, exp: 0.6}
{1: 656, 2: 340, 0: 4, 'move_count': 19.146, exp: 0.5}

Reward: win-10, loss-(-10), tie-5
{1: 720, 2: 280, 0: 0, 'move_count': 20.28, exp: 0.9}
{1: 658, 2: 338, 0: 4, 'move_count': 19.72, exp: 0.8}
{1: 652, 2: 348, 0: 0, 'move_count': 18.96, exp: 0.7}
{1: 659, 2: 337, 0: 4, 'move_count': 18.723, exp: 0.6}
{1: 652, 2: 346, 0: 2, 'move_count': 18.922, exp: 0.5}

Explanation of results:
1: # of Player 1 wins,
2: # of Player 2 wins,
0: # of tie games,
'move_count': average # of moves per game
'exp': exploration rate

ACKNOWLEDGEMENT
We would like to thank Mykel Kochenderfer and the rest of the CS 238 staff.

REFERENCES

[1] Thon, Michael. “Connect 4.” GamesCrafters, UC Berkeley, 2018,
gamescrafters.berkeley.edu/games.php?game=connect4.

[2] “Connect Four.gif.” Wikimedia Commons, 2011, commons.wikimedia.org/wiki/File:Connect_Four.gif.

[3] “Connect-Four Piece Red.” Keyword Basket, 2019,
www.keywordbasket.com/Y29ubmVjdCBmb3VyLXBpZWNlIHJlZA/.

[4] “4 In A Line.” MathIsFun, 2018, www.mathsisfun.com/games/connect4.html.

[5] MIT. “Connect 4.” Connect 4, MIT, web.mit.edu/sp.268/www/2010/connectFourSlides.pdf.

[6] Pearce, Adam. “Connect 4 AI: How It Works.” Connect 4 AI: How It Works, Roadtolarissa,
roadtolarissa.com/connect-4-ai-how-it-works/.

[7] Vandewiele, Gilles. “Creating the (Nearly) Perfect Connect-Four Bot with Limited Move Time
and File Size.” Medium, Towards Data Science, 7 Jan. 2019,
towardsdatascience.com/creating-the-perfect-connect-four-ai-bot-c165115557b0.

[8] Docker Inc. “What Is a Container?” Docker, 2019, www.docker.com/resources/what-container.

[9] Kochenderfer, M. (2015). Decision making under uncertainty : theory and application. Chapter 5.
Cambridge, Massachusetts: The MIT Press.

