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This paper presents a reinforcement learning approach to the classic          

two-player slot and disc game Connect Four. We survey two reinforcement           
learning techniques—Sarsa and Q-learning— to train an agent to play Connect           
Four using an optimal strategy for the game. We used TensorFlow, an end-to-end             
open source machine learning platform to create and test deep learning models.            
We studied how varying exploration rate and rewards models affects performance           
by both algorithms. Ultimately, we found did not find a significant difference            
between the two algorithms, as both recorded strikingly similar win percentages           
against themselves and against the opposing algorithm. We also used Docker to            
containerize our application and source code. This allowed us to run our tests and              
TensorFlow software in a safe containerized approach that did not interfere with            
our own machines.  

 
I. INTRODUCTION 

Connect Four is a well-known two-player 
strategy game. Each player has their own colored 
discs and players alternate in selecting a slot on the 
board to drop the disc in with the goal of getting four 
of their colored discs in a row, either horizontal, 
vertical or diagonal. The game’s roots stem from 
Tic-Tac-Toe, a pen and paper game with the goal of 
getting three in a row, as opposed to four [1]. The 
game first became popular under the Milton Bradley 
Company after it was first coined Connect Four in 
1974.  

Connect Four is a compelling game as 
although it appears simple and straightforward, there 
is significant opportunity to use strategy to increase 
and even guarantee one’s likelihood of winning. For 
example, targeting specific slots over others is 
important. The slots in the middle of the board are 
more valuable than the ones on the edges because 
there is a higher chance of creating four in a row. The 
board and rules of the game enables a large variety of 
possible final boards with players able to take 
numerous different actions to reach them. We aimed 
to use reinforcement learning to find the optimal 
policies for the Connect Four Markov Decision 
Process. 

 
 

II. CONNECT FOUR RULES 
 

 
Figure 1: Connect Four board [2] 

 
Connect Four is played on a vertical board 

with six rows and seven columns which totals in 42 
playable positions on the board (See Figure 1). At the 
top vertical edge of the board, for each column there 
is slit where the pieces are slotted into. Once the 
piece has been slotted into a column it falls down the 
column to the lowest row or it lands the row above 
the piece that was last played in that column. It is a 
two player game and each player has twenty one 
coin-like pieces in a different color to the other player 
(player one may have all red pieces and player two all 
black) (See Figure 2). 



The game begins by randomly deciding 
whether player one or player two will take the first 
turn. After the first player takes their turn, turns are 
then taken alternatively between the two players. A 
turn consists of a player dropping their colored piece 
into a column on the board. Each turn a player must 
drop their colored piece into a column, they cannot 
‘miss their turn.’ If a column is full (six pieces in the 
column), then the piece cannot be played into that 
column. Additionally once the piece has been played, 
it cannot be undone or removed from the board.  

The objective of Connect Four is to be the 
first player to connect four of their colored pieces in a 
row (either vertically, horizontally or diagonally) 
with no gaps on the board between the four piece 
(See Figure 3). At this point the game is over and the 
player who connected the four pieces wins. 
Alternatively, if all of the pieces have been played, 
resulting in the board being full, then the game is 
called a tie (See Figure 4). 

 

 
Figure 2: Connect Four pieces [3]  

 

 
Figure 3: Winning Connect Four Board [4] 

 

 
Figure 4: Tie Connect Four Board [4] 

 

 
III. PROBLEM DESCRIPTION 
Our project attempts to find an optimal 

Connect Four playing strategy given a Connect Four 
board. We define an optimal Connect Four playing 
strategy as the sequence of turn actions that 
maximizes the probability of a player winning a 
single Connect Four game.  
 
A. Action Space 

The action space for Connect Four is 
relatively small. Each player has at most seven 
possible actions that they can take at any given state. 
Therefore an action is defined as dropping a piece 
into one of the seven columns on the board. Because 
the number of actions a player may take at a given 
state depends on how many columns on the board are 
full, we calculate the number of actions possible at a 
given state as: 

Actions Possible = 7 - C (1) 

C = Number of full columns at current state    ​(2) 

B. State Space
The state space for Connect Four is 

considerably larger than the action space. A state in 
Connect Four is defined as the board with played 
pieces that a player sees. If the player starts the game, 
then the board will always have an even number of 
pieces. Alternatively if they are second player, the 
board will always have an odd number of pieces. 

A very rough upper bound for the number of 
possible states of a connect four game can be 
calculated by taking into account that each position 
on the board can either be free, a player one piece or 
a player two piece. Then because the board size is ​6 ​x 
7​, we get an upper bound of ​3⁴²​. However, this 
calculation does not take into consideration that 
possible boards are illegal due to gravity and the rules 
of the game. The best lower bound on the number of 
possible positions has been calculated by a computer 
program to be around ​1.6 ​x​ 10¹³​ [5]. 

IV. LITERATURE REVIEW 
Scientists have already proven that if the 

first player places their piece in the center column, 
with perfect play they cannot lose. Similarly, if the 
first player does not place their first piece in the 
center column, with perfect play the second player 
can always draw [3]. However, given a certain state, 
what is the optimal move? This requires some 
complex calculations. 



 
To compute the best decision each time, one 

can construct a game tree. Say it is player A’s move. 
Player A has ​7 - C ​(see equation one) actions which 
can be taken. In constructing a game tree, each node 
from the parent state is the state arising from taking 
one of these actions. Then from these states, Player B 
can take ​7 - C​ actions, which lead to ​7 - C​ unique 
states, forming a subtree. This continues until an 
action is taken which results in the end of the game, 
and this state is called a leaf since there exists no 
further subtrees. By assigning leafs values, and 
calculating the entire game tree, it is possible to take 
the best possible action by propagating the values 
from the leafs and nodes all the way up the tree to the 
current state. 

Calculating the game tree is pretty 
straightforward. However, there can be pretty severe 
run-time issues that make calculating the best 
decision using a game tree not feasible. Consider the 
problem where the game has many more moves 
before a winner is decided. With 7 columns, 
calculating n moves means storing approximately 7​n 

game states [6]. We see that run-time increases 
exponentially with the number of moves ahead to be 
calculated. Because of this, the focus has shifted 
more to creating algorithms that can calculate the best 
action to take very quickly and while using a small 
amount of memory.  

One can optimize run-time with how objects 
are stored(e.g. using bitwise operators and bit strings 
instead of more expensive data structures [7]), but we 
gloss over these implementation details, focusing on 
algorithm changes. One simple algorithm is to check 
whether taking an action will give the opposing 
player a chance to connect 3 in a row some x moves 
down the line, where x can be manipulated by the 
programmer [6]. While very fast, this is shortsighted 
in that being in a winning or losing position in 
Connect Four is more nuanced than who has three in 
a row.  

Other solutions include using a minimax 
algorithm, which minimizes the maximum losses for 
a player. This is done by assuming that the opponent 
is going to make the best possible decision, and 
therefore ignoring all other possibilities. This 
significantly reduces the number of states that need to 
be calculated, while still ensuring optimal outcome 
for a player [7]. However, it still takes a while, 
especially in the beginning of the game. That is 
where alpha-beta pruning comes in, a technique 
which prunes away the need to consider many 

subtrees. It involves considering whether the values 
in a subtree could possibly change the current action 
indicated by the tree, and if there is no value that 
could change the action then the subtree is not 
calculated and ignored.  

 
V. IMPLEMENTATION 

C. Docker 
Docker is an open-source​ tool that makes it 

easier to create, deploy, and run applications through 
the use of containers. Containers isolate software 
from its environment which enables multiple 
containers to run separately, but on the same machine 
with isolated processes in user space [8]. ​We used 
docker to run different versions of our reinforcement 
learning algorithms at the same time in order to be 
more time efficient. 
 
D. TensorFlow

TensorFlow is an end-to-end open source 
platform for machine learning.  ​We used the core 
open source library to help develop and train deep 
learning models for Connect Four. It made it easy to 
work with large datasets as well as to build our deep 
learning reinforcement models which trained our 
agents to learn how to play Connect 4 against 
themselves and each other.  

E. Simulator
Because the possible state space for Connect 

Four is so large, instead of gathering training data we 
used a simulator. In the simulator we could set up the 
agent we were training to play itself or another agent, 
we could then analyze the agents performance. To 
measure performance we played the different agents 
against each other and recorded the win rates and the 
number of moves per game. 

F. Q-learning
Our first approach leverages Q-learning, a 

model-free reinforcement learning algorithm. This 
means that rather than using transition and reward 
models, we use the observed next state ​s’ ​and reward 
r​. Therefore for each observation (s, a, r, s’)  at time t, 
we perform the following incremental update rule 

Q(s,a) ←Q(s,a) +α(r+γmaxaQ(s′,a)−Q(s,a))     ​(3) 

with a learning α and discount factor γ. 

G. Sarsa
For our second approach we sought 

to use Sarsa, an alternative to Q-learning. Unlike 



Q-learning, which maximizes over all of the possible 
actions, Sarsa uses the actual action taken to update 
Q. Consequently for each observation (s, a, r, s’)  at 
time t, we perform the following incremental update 
rule 

Q(s,a) ←Q(s,a) +α(r+γmaxaQ(s′,a’)−Q(s,a))    ​(4) 

with a learning α and discount factor γ. 

VI. RESULTS 
In implementing our project we decided to 

have two agents, one for Q-learning and another for 
Sarsa. Within each agent, we choose to vary both the 
rewards for the agent and their exploration factor. 
This provided us with the most reasonable approach 
to obtain valid results, considering that each test 
would run for ~5-6 minutes and limiting how many 
tests we could run. For the purposes of our project. a 
test means an agent played 1000 games of Connect 4. 
Whether an agent played against itself or the other 
agent, the specific rewards allocated, and what the 
exploration factor was, where all set for each test 
which we ran within multiple docker containers. We 
broke down the testing into three cases below, 
Q-learning vs. Q-learning, Sarsa vs. Sarsa, and finally 
Q-learning vs. Sarsa. From this we varied the 
exploration factor (05. - 0.9) and rewards (3 
options).In the graphs, player 1 win percentage is 
calculated as follows:  
 
(player 1 wins + (0.5*ties))/(total games played) ​(5) 
 

 
Figure 5: Q-learning. 

 

 

Figure 6: Sarsa. 
 

 
Figure 7: Q-learning (Player One) vs Sarsa 

(Player Two). 
 
 

 
Figure 8: Sarsa (Player One) vs Q-learning 

(Player Two). 
 

VII. ANALYSIS 
In both our research of Connect 4 and 

analysis of our results we found a significant 
advantage to whichever player went first. 
Specifically, in our results we noticed that every 
single test run results in the majority of wins between 
the two agents always went to player 1, regardless of 
which agents were playing. This is consistent with 
the prior work that has been conducted on connect 4 
showing that with the perfect decisions being taken, 
player 1 cannot lose. Player 1 does not win 100% of 
the time because it is not taking the optimal strategy 
every time, for it is learning how to play the game as 
it plays. However, while player 1 won the majority of 
games in every trial, we noticed interesting 
differences in these percentages across algorithm, 
exploration rate, and reward values.  

The exploration rate appears to have the 
largest effect on the data. Starting with Q Learning vs 
Q Learning, in Figure 5 we see that there is a 
negative correlation between win percentage and 
exploration rate. There is an interesting outlier with 
an exploration rate of 0.8, which is actually the most 
successful exploration rate we tested, however the 
general trend is downwards. We suspect that lower 
exploration rates result in higher success rate because 
player 1 sticks to what works, and does not 



compromise its advantage by exploring sub optimal 
policies, that while they may pan out, more often give 
up the superior position that results from starting the 
game. We hypothesize that the blip at an exploration 
rate of 0.8 is due to a perfect combination of 
exploration and exploitation, where it abandons its 
strategy frequently enough to find more optimal 
solutions but not so often that it abandons successful 
strategies.  

Sarsa vs Sarsa has the same negative 
correlation between exploration rate and player one 
win percentage that we observed with Q learning, 
with the difference being a lack of an outlier and a 
smaller spread between exploration rates (see Figure 
6). We expect that the negative correlation exists for 
the same reasons described above. The smaller spread 
may be due to a poor exploration strategy for our 
Sarsa algorithm; if it begins as poor, a higher 
exploration rate has a lesser effect because the current 
strategy has a higher chance of being suboptimal, so 
switching away from it is less detrimental.  

The most intriguing discovery about 
exploration rate was the effect that it had on Q 
Learning vs Sarsa (Figure 7), and similarly Sarsa vs 
Q Learning (Figure 8).  Here, increasing exploration 
rate elevated the success of Q Learning over Sarsa. 
With an exploration rate of 0.5, Q Learning and Sarsa 
won about 66% of games when starting,whereas with 
an exploration rate of 0.9 both algorithms won 
around 72.5% of games when starting. This is curious 
because when playing against oneself, both machine 
learning algorithms fared worse with a higher 
exploration rate. However, when the algorithms 
played against each other, both benefited from a 
higher exploration rate when being player 1. We are 
unsure exactly what is accounting for this. One 
theory is that because player 1 has a shared algorithm 
when playing itself, player 2’s moves are more 
predictable, and player 1 finds the optimal strategy 
faster. The additional exploration is unnecessary and 
moves player 1 to a suboptimal position. However, 
when player 1 is playing against a different 
algorithm, the difference in algorithm “confuses” 
player 1, and more exploration is necessary to find 
the optimal policy on both sides. If more exploration 
leads player 1 and player 2 to a more optimal 
strategy, we would expect to see player 1 win more 
often, as they are unbeatable given the perfect 
strategy.  

The second parameter that we varied was 
the reward. Looking at the data, the effect of this 
variable is hard to deduce. Across none of our three 
tests did any of the rewards stand out as the dominant 
choice; each reward system had mixed success 

depending on the exploration rate, and no system was 
the most successful across every exploration strategy. 
To draw any definitive conclusion, I believe that we 
need to test more reward functions.  

 
VIII. FUTURE WORK 

Our implementation offers an optimal 
strategy for the generic 2-dimensional game of 
Connect Four using both Q-learning and Sarsa. 
Possible future work could extend to determining the 
optimal strategy for alternative versions of  Connect 
Four. 

The 3-dimensional version of Connect Four 
in particular would be interesting to implement an 
optimal strategy for. The 3-dimensional aspect of the 
game adds another layer of complexity to the model 
and the rules are adjusted also. Comparing the 
differences in the strategies could be an interesting 
point. 

It would be conceptually intriguing to 
implement the optimal strategy with a large variety of 
board sizes as well. Including larger, smaller and 
different dimensional boards. Analysing and 
comparing the different resultant optimal strategies in 
order to identify or determine a pattern. Perhaps the 
findings could then be applied to other games or 
similar problems. 

Finally adjusting the model to take into 
account the speed in which a game is won is another 
avenue that could be explored. Having the model 
weight actions and decisions that may lead to a 
possible win in less turns verse a guaranteed win in 
more turns. 

Overall the work completed acts as a 
stepping stone into a greater exploration of the 
relationship between Connect Four and reinforcement 
learning. 
 

IX. CONCLUSION 
Memorizing and determining the optimal 

move for every possible board state in a Connect 
Four game is humanly impossible. However, in this 
paper, we depicted a reinforcement learning approach 
to the popular board game Connect Four in order to 
increase the probability of winning a game. Our 
Q-learning agent was able to achieve a peak win 
percentage of 73.4% when starting as player one 
versus the Sarsa agent. Alternatively when Sarsa 
started as player one versus Q-learning, our Sarsa 
agent was able to achieve a peak win percentage of 
73.5%. Both algorithms never dipped below a win 
percentage of 50%, regardless of their opponent. 
Given that in 1988 Victor Allis solved the Connect 
Four game by showing that the first player can 



always win if they play the middle column first, we 
know that both our Q-learning and Sarsa method are 
ultimately suboptimal. Yet, this leaves room for 
much improvement.  

Both Q-learning and Sarsa methods have the 
ability to be modified “to assign credit to achieving 
the goal to past states and actions using eligibility 
traces” [9].  This means that the reward that is 
associated with reaching the goal is “propagated 
backward to the states and actions leading up to the 
goal” [9]. The credit is also decayed exponentially so 
that the states that are closer to the goal are assigned 

larger state-action values. With eligibility traces and a 
suitable exploration rate might enable our agents to 
be more efficient and effective. 

 
X. CONTRIBUTIONS 

The entire group worked together to come 
up with agent strategies, implementation and to write 

the paper.​ ​We have contributed equally to the 
creation of this report and previous written 

submissions. 
 

 
 
 

APPENDIX 
 

 
 
Q-learning: 
 

For this case, every test was a Q-learning 
agent vs a Q-learning agent where we varied the 
exploration factor and reward (shown below) 
 
Reward: win-10, loss-0, tie-0 
{1: 576, 2: 410, 0: 14, 'move_count': 24.564, exp: 
0.9} 
{1: 680, 2: 318, 0: 2, 'move_count': 19.614, exp: 0.8} 
{1: 613, 2: 378, 0: 9, 'move_count': 21.891, exp: 0.7} 
{1: 638, 2: 353, 0: 9, 'move_count': 21.082, exp: 0.6} 
{1: 653, 2: 347, 0: 0, 'move_count': 18.741, exp: 0.5} 
 
Reward: win-10, loss-(-10), tie-0 
{1: 549, 2: 440, 0: 11, 'move_count': 24.641, exp: 
0.9} 
{1: 662, 2: 334, 0: 4, 'move_count': 19.458, exp: 0.8} 
{1: 586, 2: 405, 0: 9, 'move_count': 22.092, exp: 0.7} 
{1: 591, 2: 403, 0: 6, 'move_count': 20.787, exp: 0.6} 
{1: 660, 2: 340, 0: 0, 'move_count': 18.81, exp: 0.5} 
 
Reward: win-10, loss-(-10), tie-5 
{1: 572, 2: 413, 0: 15, 'move_count': 25.012, exp: 
0.9} 
{1: 680, 2: 318, 0: 2, 'move_count': 19.218, exp: 0.8} 
{1: 578, 2: 409, 0: 13, 'move_count': 21.916, exp: 
0.7} 
{1: 608, 2: 381, 0: 11, 'move_count': 21.314, exp: 
0.6} 
{1: 664, 2: 334, 0: 2, 'move_count': 19.296, exp: 0.5} 
 
Sarsa: 
 

In this case, every test was a Sarsa agent vs 
a Sarsa agent with the same varied exploration factor 
and rewards:  
 
Reward: win-10, loss-0, tie-0 
{1: 568, 2: 420, 0: 12, 'move_count': 24.398, exp: 
0.9} 
{1: 572, 2: 416, 0: 12, 'move_count': 23.252, exp: 
0.8} 
{1: 599, 2: 385, 0: 16, 'move_count': 22.175, exp: 
0.7} 
{1: 601, 2: 390, 0: 9, 'move_count': 20.801, exp: 0.6} 
{1: 605, 2: 388, 0: 7, 'move_count': 20.535, exp: 0.5} 
 
Reward: win-10, loss-(-10), tie-0 
{1: 559, 2: 426, 0: 15, 'move_count': 24.653, exp: 
0.9} 
{1: 607, 2: 382, 0: 11, 'move_count': 22.633, exp: 
0.8} 
{1: 606, 2: 379, 0: 15, 'move_count': 21.64, exp: 0.7} 
{1: 575, 2: 416, 0: 9, 'move_count': 21.167, exp: 0.6} 
{1: 620, 2: 375, 0: 5, 'move_count': 20.688, exp: 0.5} 
 
Reward: win-10, loss-(-10), tie-5 
{1: 539, 2: 447, 0: 14, 'move_count': 24.521, exp: 
0.9} 
{1: 588, 2: 404, 0: 8, 'move_count': 22.764, exp: 0.8} 
{1: 602, 2: 377, 0: 21, 'move_count': 22.102, exp: 
0.7} 
{1: 609, 2: 386, 0: 5, 'move_count': 21.177, exp: 0.6} 
{1: 613, 2: 379, 0: 8, 'move_count': 20.453, exp: 0.5} 
 
Sarsa vs​ ​Q-learning: 
 



In this case, every test was a Q-learning 
agent as player one vs a Sarsa agent with the same 
varied exploration factor and rewards: 
 
Reward: win-10, loss-0, tie-0 
{1: 706, 2: 293, 0: 1, 'move_count': 20.186, exp: 0.9} 
{1: 663, 2: 334, 0: 3, 'move_count': 19.499, exp: 0.8} 
{1: 676, 2: 324, 0: 0, 'move_count': 18.852, exp: 0.7} 
{1: 665, 2: 331, 0: 4, 'move_count': 19.019, exp: 0.6} 
{1: 648, 2: 351, 0: 1, 'move_count': 18.716, exp: 0.5} 
 
Reward: win-10, loss-(-10), tie-0 
{1: 734, 2: 266, 0: 0, 'move_count': 20.32, exp: 0.9} 
{1: 661, 2: 339, 0: 0, 'move_count': 19.197, exp: 0.8} 
{1: 650, 2: 348, 0: 2, 'move_count': 19.102, exp: 0.7} 
{1: 645, 2: 354, 0: 1, 'move_count': 19.081, exp: 0.6} 
{1: 662, 2: 337, 0: 1, 'move_count': 19.098, exp: 0.5} 
 
Reward: win-10, loss-(-10), tie-5 
{1: 730, 2: 269, 0: 1, 'move_count': 19.99, exp: 0.9} 
{1: 684, 2: 316, 0: 0, 'move_count': 19.44, exp: 0.8} 
{1: 672, 2: 327, 0: 1, 'move_count': 18.644, exp: 0.7} 
{1: 655, 2: 343, 0: 2, 'move_count': 19.449, exp: 0.6} 
{1: 654, 2: 343, 0: 3, 'move_count': 18.988, exp: 0.5} 
Sarsa vs Q-learning: 
 

For this case, every test was a Sarsa agent as 
player one vs a Q-learning agent with the same varied 
exploration factor and rewards: 

 
Reward: win-10, loss-0, tie-0 
{1: 735, 2: 265, 0: 0, 'move_count': 20.311, exp: 0.9} 
{1: 670, 2: 330, 0: 0, 'move_count': 19.396, exp: 0.8} 
{1: 673, 2: 325, 0: 2, 'move_count': 19.181, exp: 0.7} 
{1: 641, 2: 359, 0: 0, 'move_count': 18.785, exp: 0.6} 
{1: 650, 2: 349, 0: 1, 'move_count': 18.968, exp: 0.5} 
 
Reward: win-10, loss-(-10), tie-0 
{1: 710, 2: 290, 0: 0, 'move_count': 20.346, exp: 0.9} 
{1: 659, 2: 339, 0: 2, 'move_count': 19.773, exp: 0.8} 
{1: 649, 2: 348, 0: 3, 'move_count': 18.683, exp: 0.7} 
{1: 683, 2: 315, 0: 2, 'move_count': 18.479, exp: 0.6} 
{1: 656, 2: 340, 0: 4, 'move_count': 19.146, exp: 0.5} 
 
Reward: win-10, loss-(-10), tie-5 
{1: 720, 2: 280, 0: 0, 'move_count': 20.28, exp: 0.9} 
{1: 658, 2: 338, 0: 4, 'move_count': 19.72, exp: 0.8} 
{1: 652, 2: 348, 0: 0, 'move_count': 18.96, exp: 0.7} 
{1: 659, 2: 337, 0: 4, 'move_count': 18.723, exp: 0.6} 
{1: 652, 2: 346, 0: 2, 'move_count': 18.922, exp: 0.5} 
 
 

 
Explanation of results:  
1:​ # of Player 1 wins, 
2:​ # of Player 2 wins, 
0:​ # of tie games,  
'move_count'​: average # of moves per game 
'exp'​: exploration rate  
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