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Resource allocation in schedule constrained research and development programs is formu-
lated as an explicit Partially ObservableMarkov Decision Process, and solved using both offline
and online solution methods. An offline fast informed bound (FIB) method performed best,
with comparable run times to an online modified Monte-Carlo Tree Search method for the
small state and action spaces assessed.

I. Nomenclature

a = Action
A = Action Space
B(·, ·) = Binomial Distribution
o = Observation
O = Observation Space
O(·|·) = Observation Function
s = State
S = State Space
T(·|·) = Transition Function
R(·, ·) = Reward Function

II. Introduction

Research and development (R&D) activity is necessary to develop and improve products and technology in support of
both public and private sector objectives. Effective research and development programs are increasingly necessary

due to the continual reduction in project development timelines and product life-cycles[1]. In 2016, combined public
and private investment in R&D exceeded 500 billion dollars, meaning that effective management of this funding has a
significant impact on organizational budgeting[2].

In general, the goal of an R&D program is to develop a product or service to a specified level of technical maturity.
Here we consider the case of a program with externally imposed schedule milestones specified by stakeholders. An
example of such an arrangement is a cost-sharing agreement between a public agency and a private corporation, where
the corporation must achieve technical milestones by deadlines specified by the public agency in order to continue
to receive funding. Unbounded increase in program resource allocation is typically not an option, due to the finite
resource budget which must be shared among other programs and departments. Therefore, the program must be
selective regarding resources, expending the minimal resources necessary to achieve technical maturity by the required
milestones.

The responsibility of meeting milestone requirements typically falls on program management. Here we consider
the case where management’s primary control of program performance is resource allocation. Increasing resource
allocation increases the likelihood that the program will move from behind schedule to on schedule. However, due
to constraints on program resources, there is a penalty associated with increasing program resource allocation, such
that program budgeting is a trade-off between minimizing allocated resources and ensuring that the program meets
schedule requirements. Determining whether a program is on track to meet milestones is made difficult since a manager
is typically not able to review every technical detail, and instead must rely on status updates provided by subordinates.
In general, we expect these status reports to include "noise": inaccurate reflection of the true status of the project due to
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career risk , bias, lack of knowledge, etc.

A. Objective
This paper proposes a method of formulating and solving optimal resource allocation for research and development

programs an explicit Partially Observable Markov Decision Process (POMDP) that accounts for the stochastic nature of
program progress and observation of program status. A primary objective is developing a tractable model that is also
representative of system characteristics. Both online and offline solution methods are evaluated and compared for this
application.

B. Relevant Literature
The formulation of optimal resource allocation problems as POMDPs has been treated in the literature for several

applications. Firestone writes about the formulation of battle management in military applications as a POMDP, solved
using a combination of offline and online methods for efficient calculation of resource assignment and action allocation
[3]. Firestone introduces a novel method augmenting the state vector to incorporate constraints on resource depletion
into policy generation[3]. McDonald-Madden demonstrate online solution of a POMDP, as applied to optimal resource
allocation in conservation programs [4]. While these works deal with the general topic of resource allocation in program
management, they do not explicitly examine the effect of a milestone goal state in a finite time horizon, which is the
focus of this project.

III. Methods

A. Problem Formulation
A POMDP is defined over a set of states S, actions A, and observations O. In order to reduce computational

complexity, discretized state, action, and observation spaces are used in this study. The state space consists of a Boolean
variable indicating whether the program is on schedule or behind schedule at a given time step. The space of actions
include increasing, decreasing, or not changing program budget, and the set of possible observations is the same as the
set of possible states, as shown below.

S = [On Schedule,Behind Schedule]

O = [On Schedule,Behind Schedule]

A = [Increase,None,Decrease]

A transition function, T(s′ |s,a), is defined that captures the stochastic state dynamics for different state-action pairs.
A stationary transition function was used to simplify the model. Values for state transition probabilities were defined
arbitrarily for this project, although in general it might be informed by experience or data. Transition probabilities are
defined in terms of a binomial distribution, B(n, p), parameterized by a number of trials, n, and probability of transition
to a Boolean True value, p.

T(s′ |s, Increase) ∼ B(1,0.7) ∀ s, s′ ∈ S

T(s′ |s,Decrease) ∼ B(1,0.2) ∀ s, s′ ∈ S

T(s′ |s,None) ∼ B(1,0.75) ∀ s, s′ ∈ S

A reward function, R(s,a), is defined that rewards both being ahead of schedule and decreasing budget, while
penalizing being behind schedule and increasing program budget. Values for the reward function can be tuned to
program requirements. Reward values chosen for the simulations presented in this paper are given in Table 1 below.
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Reward Value

Behind Schedule -200
On Schedule +100

Increase Resources -50
Decrease Resources +25

Table 1 Reward Function Values

Observation of system state are modeled by a stationary, noisy observation function. This function models the fact
that reports of program status may not accurately reflect system state.

O(o|s′,a) ∼ B(1,0.9) ∀ s′,a ∈ S,A

B. Solution Methods
The explicit POMDP described in the previous section was implemented using the POMDPs.jl package in the Julia

programming language[5]. Both offline and online solution methods were implemented to solve the formulated POMDP.
For offline solution, a fast informed bound (FIB) method was utilized. FIB calculates a single alpha vector for each
action, using therupdate iteration as shown in Equation 1 below, where a discount factor, γ, of 0.95 was used for this
study. [6].

αk+1 = R(s,a) + γ
∑

max
a′

∑
O(o|s′,a)T(s′ |s,a)αk(s′) (1)

A Monte Carlo tree search algorithm, Partially Observable Monte Carlo Planning (POMCP), was used for online
planning. POMCP is combines a Monte-Carlo update of the agent’s belief state with a Monte-Carlo tree search from the
current belief state, making it highly scalable to large discrete state spaces [7].

IV. Simulation Results

A. Offline and Online Simulation Results
Both offline and online solvers were simulated using a time horizon of 12 steps to model performance through one

fiscal year with monthly milestone requirements. Results for a single simulation of the offline FIB solver are given in
Figure 1 below.

(a) Offline Policy Results - States (b) Offline Policy Results - Actions

Fig. 1 Offline Policy Results

From the plot above, it is evident the solver exhibits expected behavior based on the state. When the system
is in a state that is behind schedule, the the policy increases program funding to increase the likelihood that the
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system will transition to an on schedule state. To minimize the penalty associated with increasing funding, the
policy generally selects no action when the state is on schedule. In this case funding is never decreased, due to the
relatively small value of the reward associated with decreasing funding relatively to being in a state that is behind schedule.

Results for the online POMCP solver are shown in Figure 2 below.

(a) Online Policy Results - States (b) Online Policy Results - Actions

Fig. 2 Online Policy Results

In general, the online solver tended to generate greedier policies, evidenced by a higher incidence of decisions to
decreased program budget. This is likely due to the stochastic exploration strategy employed by the POMCP algorithm.

B. Comparison of Offline and Online Solvers
The FIB and POMCP solvers, as well as a baseline random policy generator, were simulated over 1000 runs and the

averaged rewards are reported in Table 2 below.

Offline (FIB) Online (POMCP) Random

-7.86 -49.10 -58.01
Table 2 Reward Values Averaged Over 1000 Simulations

Both the offline and online policy search score higher than the random policy generator, though the FIB solver
performs better than the POMCP solver. This is due to the capability of the FIB solver to exhaustively evaluate the value
function over the whole action space, in contrast to the POMCP solver which uses a stochastic exploration strategy and
is not guaranteed to converge on an optimal solution.

V. Conclusions and Future Work
A simplified model of resource allocation for research and development programs was formulated as a POMDP.

A reward model was developed associated with state-action pairs, that incentivizes meeting schedule milestones and
minimizing allocated resources. A stochastic state transition model was developed to model the effect of increas-
ing/decreasing programs budget on system dynamics, and a stationary observation model was implemented to model
the bias associated with soliciting state information. The model was solved using both online and offline methods, and
the results were compared against a baseline random policy generator.

The offline FIB solver performed best due to its exhaustive search of the space of possible state actions. While
POMCP performed significantly worse than FIB for this application, online methods may be preferred for an expanded
state space where application of an offline solver might be computationally intractable.
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While this project has demonstrated the viability of program resource allocation as a POMDP, there are significant
opportunities for future development. One significant modeling improvement would be implementation of terminal
rewards, reflective of reaching the end of a milestone cycle, in the POMDP formulation. Expanded (and potentially
continuous) state, action, and observation spaces would offer greater model fidelity. An additional improvement would
be use of actual program data to information state transition and observation models in order, allowing validation against
a relevant baseline case.
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