
Surviving Tinder: A Decision Theoretic Modeling of Tinder via POMDPs

Jihee Hwang
Stanford University

Yong Nam Kwon
Stanford University

Ho Kyung Sung
Stanford University

Abstract

The world of Tinder is ever intriguing yet mysterious. We
present an efficient abstraction of this widely adopted dat-
ing app , and a problem-solving agent optimizing for best
match results. We model the problem as a partially ob-
servable MDP (POMDP) in which the agent makes one of
three choices: like, dislike, or change profile. By incorpo-
rating various considerations about the latent and observ-
able variables that influence the observable process into the
game model, we show that a utility-maximizing agent per-
forms well on getting the most out of Tinder, in comparison
to random and greedy policies.

1. Introduction

In the world of dating apps, numerous variables dic-
tate the probability of successfully matching with a suit-
able partner. Conflicting constraints such as the perceived
attractiveness of the opposing party and the uncertainty as
to whether the romantic interest is reciprocated, all work
together to confound the decision making process, and of-
tentimes force one to make sub-optimal choices. Having
been unsuccessful players at the intriguing game Tinder of-
fers, our goal in this paper is to propose a decision theoretic
model framework that incorporates the various constraints
and variables to guide the user’s actions in a dating app.
The hope is that our model accurately simulates the deci-
sion making environment of dating apps and can possibly
suggest optimal or near-optimal policies to harvest maxi-
mum utility out of the app.

Previous research have presented solutions to a similar
albeit distinct problem, namely the optimal stopping prob-
lem [2][3], in which the goal is to optimize the point at
which one stops exploring until one finds a decent candi-
date and decides to settle. However, at least under its classi-
cal formulation, the optimal stopping problem is unsuitable
for modeling the dynamics of dating apps in two critical re-
spects: first, the optimal stopping problem assumes that we
only make one decision for all possible candidates; second,
the problem assumes that our decision will always be met
with approval on the part of the opposing party.

As such, we must further complicate the problem and
attempt to design a model that relaxes these assumptions,
allowing a richer, more flexible, and therefore more realistic
representation of the dating app environment.

2. Background

2.1. Tinder

Tinder is one of the most widely used dating apps around
the world. Every day, users are allowed to search through
potential matches and express their liking for a limited num-
ber of times. By swiping “right” on a profile, the user
can “like” the opposing party, while by swiping “left”, the
user moves on to the next candidate.[1] Though Tinder has
gained its popularity through its straightforward and easy-
to-use user interface, it is not as easy to be successful. Ac-
cording to statistics released in 2014, there are more than
1 billion swipes performed daily, while only 12 million
matches are made.[5]

There are many variables, both latent and observable,
that affect the decision making process on the Tinder app.
A few among those are: the attractiveness of the user, the
attractiveness of the potential match, the strength of the ap-
peal of the user’s profile, the remaining “swipes” of the day
and the remaining chances to ”like” the potential match.
Our model of Tinder, if it is to be realistic, must incorporate
and account for these variables as faithfully as possible.

2.2. Tinder as a Multi-Armed Bandit Problem

One of the simplest models that can be applied to the
Tinder environment is that of a multi-armed bandit, an MDP
with a constant state.[6] Assuming that the user has a choice
between n profiles of one’s own, and assuming that each of
the profiles have a constant probability of being “liked” by
the opponent, the problem of choosing which profile to dis-
play is an almost exact application of a multi-armed bandit
problem. The solution to the multi-armed bandit requires
for a delicate balance between exploration and exploitation.
In other words, the user must choose to try out several pro-
files in order to discover the profile that garners the most
likes, then finally exploiting the information from the ex-
ploration.
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However, the dating landscape is fundamentally a two-
way interaction, with plenty of unpredictable factors. It
would be very naive to assume of course that a given profile,
no matter attractive, will always yield a constant amount of
matches. Therefore we can further relax this assumption by
modeling the problem as a POMDP.

2.3. Tinder as a POMDP

As can be easily noted, there are critical variables that
the multi-armed bandit setting fails to account for. For one
thing, an appropriate model must be able to make a sugges-
tion as to whether to“swipe right” or “swipe left” the current
candidate. In addition, the model should take into account
the perceived attractiveness of the opposing party as an im-
portant factor in the decision making process, rather than
unilaterally perceiving all matches as having the same util-
ity. Finally, the model must be able to account for the user
profile’s actual attractiveness to the candidates, as well as
the user’s belief about their own attractiveness.

As such, we propose that a partially observable MDP
(POMDP) is best fit to model decision making in Tin-
der. POMDPs represent unobservable variables via hidden
states, which are partially estimated by observations and the
beliefs inferred from the observations. Also, there is ample
flexibility in which we can incorporate various constraints
and factors into the problem definition[4]. In the following
chapters, we present a specific definition and implementa-
tion for a Tinder-POMDP, and results of experiments on the
model.

3. Methods
3.1. Problem Model

We define the following variables.

• cuser, ccandidate: The degree of attractiveness of the user
and the candidate, respectively.
cuser, ccandidate ∈ {1, 2, 3, · · · 10}, where 1 represents
minimal attractiveness and 10 represents significant at-
tractiveness.

• h: Length of the total horizon (Number of available
swipes given daily).

• ht: Remaining number of swipes at a certain timestep.

• l: The total number of “likes” or right swipes the user
can expend daily.

• lt The remaining number of “likes” or right swipes at
a certain time step.

3.1.1 Key Assumptions

The goal of the POMDP agent is to maximize the value of
matches given to attractive counterparts, given a finite num-

ber of swipes. Every user’s profile implies a certain degree
of attractiveness that is assumed to be objectively assesable
as a natural value. Just like how one would in the real app
Tinder, the agent needs to take a series of strategic actions
in order to maximize the number of good matches within
the given number of tries.

3.1.2 Actions and State Space

We have modeled player’s actions as being one of three
possible choices: like or dislike a candidate, or change
one’s profile. By trying out different profile pictures and
self-introductions, the user can choose to explore different
states with different attractiveness. If the user changes one’s
profile, the user’s attractiveness can move in any direction
within a range of 2. The user can only take h actions and
send l likes.

Therefore, the state consists of 4 possible variables: the
player’s attractiveness, the counter party’s attractiveness, re-
maining horizon (tries), and remaining number of likes.

3.1.3 Observation Probability

The probability p of getting a match after ”liking” a can-
didate has a positive correlation with cuser and a negative
correlation with ccandidate. The reward is proportional to
c2candidate and inversely proportional to cuser, which was mod-
eled in effort to take into consideration that people may per-
ceive a greater amount of reward once they are matched
with someone more attractive than they are. Logarithmic
and linear transformations are applied to ensure that the re-
turning probability is a value between 0 and 1.

3.1.4 Reward Function

As a rational user would act in a way that would maximize
utility, we introduce a cost function that takes into account
the remaining number of likes and the remaining horizon.
To do so, we additionally include a model for “urgentness”
as well as “carefulness” in the cost function. The exact for-
mulation we have used for the experiments are further de-
scribed in detail below.

• States: A length 4 vector that has entries
{cuser, ccandidate, ht, lt} cuser, ccandidate ∈ {1, 2, 3, ..10}

• Actions: a ∈ {Like,Dislike,Change profile}

• Rewardlike =
ccandidate

log10 cuser + 1
− l

h
· ht − lt

lt

• Rewarddislike = 0

• Rewardchange = ρ ≈ 0 (change inducing factor, small)
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• Probability of getting matched after giving a “ike”:

P =
1

3
(log10(

c2user

ccandidate
) + 1)

• Transition probabilities where C denotes reachable
range via change profile picture:

T(ccandidate) = X ∼ N (µ, σ2) . where µ = 5.5, σ = 2

T(cuser) =


1

len(C)
if a = change and new attr ∈ C

0 otherwise

T(ht) =

{
1 if ht − 1

0 otherwise

T(lt) =

{
1 if a = like and lt − 1

0 otherwise

As the cost/rewards for “likes” and “change profile” ac-
tions are designed to incentivize (or decentivize) the respec-
tive actions, we ignore it for the purpose of scoring our final
result. In other words, our final computed score for a sim-
ulated run of the MDP is a sum of the match-rewards over
all the matches made in that simulation.

3.2. Policy Search Methods

We choose online methods for determining policies over
other methods, largely for the following reasons: first, the
state space is too large for an exact or offline solution to
be accurately derived; second, the state variable includes
random samples from a normal distribution (for the candi-
date’s attractiveness) that is stochastic and can be specified
only at each time step, rather than offline; finally, actual Tin-
der users would adjust their policy through online methods
as well. We implement the forward search algorithm, and
tested with forward search of depth 1 (one-step lookahead)
and 2.

The equation[4] for computing the expected utility for
action a is given as:

R(b, a) + γ
∑
0

P (o | b, a)Ud−1(UPDATEBELIEF(b, a, o))

where Ud−1(b
′) is the expected utility returned by the recur-

sive call to find the maximum expected utility action from
the next belief state. We choose the action that has the max-
imum expected utility.

4. Experimentation
All experiments were conducted through Python3.

The code can be found in
https://github.com/ynkwon/TinderPOMDP.

4.1. Data

Due to the sensitive nature of the involved data, it was
impossible to obtain real-life data directly from Tinder. As
such, we generated our own pseudo-data for the purposes of
testing our model. Based on the various observation (match)
and transition probabilities that we have designed, we gen-
erate a series of tinder interactions under varied assumptions
regarding the condition. One of our assumptions is that the
attractiveness of a tinder candidate would follow a normal
distribution, just as height tends to be distributed across a
given population, with mean of 5.5 and standard deviation
of 2.

4.2. Experiment Procedure

We tested our models and several policies against mainly
two different variables: the player’s true attractiveness (re-
gardless of its beliefs) and the player’s initial belief about
one’s attractiveness.

4.2.1 Comparison of Various Policies

In order to test the robustness of our model, as well as our
online policy searching method, we compared the result of
simulation runs on the same dataset over the following poli-
cies: random, greedy, 1-step lookahead, and 2-step looka-
head. Our random policy randomly chose one of the three
actions with equal probability. Our greedy policy chose to
blindly like the candidate if the candidate’s attraction was
greater or equal to 6; otherwise our choice of action was to
dislike. Our 1-step and 2-step lookahead policies followed
the implementation of online methods outlined in section
3.2.[4]

4.2.2 Effects of Different Initial Beliefs

As our belief state is an estimation of our actual attractive-
ness, we wanted to test what effects the initial belief state
(and its discrepancy to the true hidden state) had to the over-
all result. Ideally, after sufficient iterations, the belief state
should converge or at least be consistent with the actual hid-
den state, which means that the long-term expected utility
must be similar. However, under the current parameters,
this might not be the case, and we wanted to examine if
there was a noticeable pattern depending on the initial be-
lief.

For the experiment, we tested with three different
kinds of initial beliefs. The uniform initial belief im-
plies that the user is completely unaware of where their
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Starting True Attraction 3
Initial Belief Uniform High-Skewed Low-Skewed
Results Total Reward Matches Total Reward Matches Total Reward Matches
Random 16.92 6 20.31 7 27.08 8
Greedy 28.43 6 23.69 5 13.54 3
One-step Forward Search 38.59 9 38.59 9 27.76 7
Two-step Forward Search 38.59 9 39.94 9 35.88 8

Starting True Attraction 7
Initial Belief Uniform High-Skewed Low-Skewed
Results Total Reward Matches Total Reward Matches Total Reward Matches
Random 14.63 7 5.96 2 35.23 14
Greedy 46.06 13 44.98 12 39.02 11
One-step Forward Search 42.82 12 44.44 13 37.40 11
Two-step Forward Search 37.94 11 44.98 12 37.94 11

Table 1: Experiment results.

attractiveness stands, and thus the prior is given as
[0.1, 0.1, · · · , 0.1]. The high-skewed initial belief im-
plies the user think of themselves as being highly attrac-
tive. For the experiment, the initial belief distribution of
[0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.09,0.8,0.1] has been
used. Last, the low-skewed initial belief implies the user
think of themselves to be unattractive. The initial be-
lief of [0.1,0.8,0.09,0.01,0.01,0.01,0.01,0.01,0.01,0.01] has
been used for the low-skewed experiment. As the random
and greedy policies make no use of the belief state in any
way, the only relevant policies for this part of experimenta-
tion were the 1-step and 2-step lookahead policies.

5. Results
Our results from the experiments are shown in Table 1

above. The models had parameters of h = 100 and l = 20,
and have been experimented across different starting attrac-
tions, 3 different initial belief states, and 4 different policies.
Additionally, we have examined the progress of the agent’s
belief states as it advances along each trial.

From the figures presented, we can confirm that the be-
lief update function of the POMDP is working exactly as
expected. Upon observing the varied results after giving a
like, the user successfully alters their assumed beliefs on
their own attractiveness. Figure 1 shows that after being ac-
cepted by the counter party, the user shifts one’s beliefs to
the left; in other words, they are inclined to think that their
attraction is actually lower than what they expected. Notice
that after the correction, the probability distribution tends
to get more spread out. This happens likely because the
lower the attraction, the more likely one is going to be un-
matched with the candidate, therefore leading to a slightly
higher probability increase.

Figure 2 shows the opposite situation in which the user

Figure 1: Belief update: right shift effect after an ”matched”
result.

is successfully matched after giving a like. The user is
likely more confident (albeit slightly so) and therefore ad-
justs one’s expectations in such way.

The experiment of figure 3 was conducted with an initial
true attractiveness of 7. Because of the stochastic nature of
the matching process, the belief has been updated to spread
the probability across different states. However, the simu-
lation accurately ended with a finishing belief that has its
peak value at an attraction level of 7, which is the ground
truth value.

6. Discussion and Analysis
6.1. Explanation and Interpretation of Results

In general, there was a consistent pattern in which the
expected-utility-maximizing agents performed better or at
least as well compared to agents abiding by random or
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Figure 2: Belief update: slight converge effect after 100
iterations

Figure 3: Belief update: left shift effect after an ”un-
matched” result.

greedy policies. This signifies that the reward and transition
probabilities of the POMDP were relatively adequately de-
fined to enable near-optimal decision that increased overall
utility. As the figures of the belief update show, the model
seem to have correctly represented the relevant relationship
between latent and observed variables.

In particular, an interesting pattern was found with the
greedy policy. The greedy-policy generated actions yielded
relatively high rewards, especially when the true attraction
was high (true attraction = 7). This is most likely explained
by the fact that for an agent with high true attraction and
similar self-confidence, the actions suggested by utilizing-
maximizing agents is often the same as the actions that are
chosen by the greedy policy.

Another interesting pattern that we observed was that in-
dependent from one’s true attractiveness, the average re-
ward of policies was higher when the user had a high-
skewed initial belief. This pattern was even more apparent

when the forward search policy was used. This suggests
that having a higher level of confidence makes the user to
be more eager to like candidates of higher attraction scores,
which brings in general better results compared to having a
low level of confidence.

Averaging the total reward and number of matches with
respect to the user’s true attraction, a true attraction of 3
gave about a mean total reward of 29.11 and an average
matching of 7.16, while a true attraction of 7 had values
of 35.95 and 10.75, respectively. Thus, we can reaffirm
that a higher true attraction indeed returns better reward and
more matches. What follows perhaps is a humbling truism,
namely that those who are more attractive are indeed more
likely to succeed in dating app environments.

6.2. Limitations and Future directions

The algorithms of Tinder are inherently secretive due to
its sensitive nature. None of Tinder’s source code or API is
revealed, therefore close to none can be inferred of its inner
workings. Naturally, we had to adapt numerous assump-
tions when modeling the nature of Tinder.

The model we have come up with has an underlying as-
sumption that attractiveness is objective and absolute. How-
ever, different people have different preferences. To accom-
modate this fact, we could choose to instead adapt a nor-
mally distributed probability distribution of what one may
evaluate the candidate’s attractiveness.

Also, we have modeled the reward function under the as-
sumption that people receive a higher reward once matched
with a candidate with a higher attractiveness score. How-
ever, it is also intuitively agreeable that people may be as
happy as, if not happier, once matched with a candidate with
a similar attractiveness score compared to being matched
with a candidate who has a higher attractiveness score. With
a comprehensive survey addressing this question, we would
be able to create a model that more closely reflects the per-
ceived utility of Tinder users.

Last, although we have modeled assuming that all can-
didates immediately respond with either a rejection or an
approval, matches in Tinder are made only when both the
user and the candidate have seen and liked each other. In or-
der to account for whether the opposing party has seen one’s
own profile and decided on it, we would have to incorporate
consideration of another hidden state or some probabilistic
factor. Adding such a feature to our model would allow us
to design a decision algorithm that acts robustly even un-
der minimal immediate feedback/response, as is the case in
actual dating app environments.

In terms of actual implementation to Tinder environ-
ments, the last important factor that is wholly missing in
the current implementation is a sensible estimator of the at-
tractiveness of real people’s profiles.
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7. Conclusion
We have presented a POMDP model of decision mak-

ing in Tinder. As a result of simulating and experimenting
on the POMDP under various circumstances, we poignantly
conclude the following: First, we observed that generally
the expected-utility-maximizing policies indeed generated
the best results. Second, unsurprisingly, greedy policies
generate high rewards given the user has a high true at-
tractiveness. Third, having high confidence (high initial be-
liefs) in one’s attractiveness tend to generate better results.
Fourth, having a high true attractiveness returns better re-
wards and enables more matches.

8. Contribution of Group Members
All members of the group contributed equally. Yong

Nam took charge of POMDP modeling. Jihee played a ma-
jor role in implementing the defined POMDP in Python. Ho
Kyung simulated the MDP, carried out the the experiments,
and derived the results.
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