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Abstract - In this project I attempt to model and simulate flocking behavior using a modified POMDP. I 

start with a description of the partially observable state-based model that I use to define the flocking 

problem. In it, each agent chooses an action to minimize its distance from a chosen leader-agent while 

avoiding collisions with the leader-agent and other flock members. Each agent must use a noisy observation 

of the other agents’ locations to predict the next positions of both the target and the flock members. I solve 

the model using a modified search algorithm that uses the belief of each flock member’s next positions to 

choose an action. I then ran and analyzed the simulation for a variety of flock sizes, observation noises, and 

domain sizes and compared the results, finding that the vague transition model favored algorithms that did 

not think too many steps ahead. 

 

1. Introduction 

Animal flocking behavior has long fascinated scientists and engineers alike. The emergent patterns from 

the collective motion of birds, fish, and insects are both beautiful to watch and difficult to understand. One 

of the first models of flocking behavior was Reynolds’ “Boids” model, which consists of a set of universal 

rules that, when followed by each member of the flock, produce collective motion [1]. Researchers have 

extended these rules and built dynamic control models to help multi-robot systems exhibit this “flocking 

behavior” [2]. Unfortunately, these models either do not guarantee flocking behavior for large systems with 

random initializations or require complex dynamic models of all agents involved. This project represents 

flocking as a “target tracking” problem in which each member of the flock continually updates a belief state 

that describes the probable locations of the “leader” agent as well as all other flock members. Target 

tracking is a problem that has successfully been solved with approximate POMDP methods in the past [3]. 

 

2. Model Description 

My simulation is a 2D discretized grid-world where each agent occupies one square of the grid. In total, 

there are N follower agents, referred to as “flock members”, moving towards 1 leader agent, referred to as 

the “target”. The state is defined by the 2D position and velocity of each agent. There are 9 actions available 

to each flock member: They can independently either increase, decrease, or maintain their velocity in the x 

and y directions. Since each agent can only change its velocity by 1, each flock member has a lot of inertia. 

This adds to the difficulty of control and should favor algorithms that look farther ahead. A flock member’s 

action deterministically changes its own state. Each time step, every flock member incurs a penalty due to 

its speed, Manhattan distance from the target, and whether it collided with another agent. The Manhattan 

distance is the sum of the absolute values of the x and y distances. The cost formula is: 

 

𝑐𝑜𝑠𝑡(𝐵𝑖) = 5 ∗ 𝐷𝑖𝑠𝑡(𝐵𝑖, 𝑇) + 10 ∗ 𝑉𝑒𝑙(𝐵𝑖) + 50 ∗ #𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 

 

where Bi represents flock member i and T represents the target. This cost is calculated for every flock 

member at each time step. 

 

The leader agent, or “target”, follows a predetermined trajectory independent of other flock members. This 

represents an agent whose actions are unpredictable, such as a human operator. Each “follower” agent sees 



a state consisting of its location, its velocity, and noisy sensor readings of both the target and any other 

flock members. A flock of N followers would therefore represent each state as a vector with N+2 

dimensions. A factored graph of the POMDP system is shown in Figure 1 below. Known values, such as 

flock member position and velocity, are shaded in. Each follower sees itself as the agent and solves a 

separate POMDP based on the locations of the other flock members and the target. 

 

 

Figure 1: Factored POMDP representation of the Flocking Problem 

 

 

3. Methods 

The model is not framed well for classical POMDP solvers because each flock member’s next position is a 

deterministic result of its action and state. Instead, the uncertainty is present in the flock member’s 

awareness of the other agents’ current and future positions. Figure 2 below summaries the algorithm.  

 

 
Figure 2: Flocking Algorithm overview 



 

In my solver each flock member receives a noisy observation of the current positions of every agent. The 

flock member’s belief state is then updated based on the observation and the past belief state. This belief 

state is then used to recursively look ahead a specified number of time steps, known as “depth”, and 

determine the action that gives the lowest expected cost. This minimum-cost action is saved, and once every 

agent has chosen an action the program updates the state and records the cost. The time counter increments 

and everything repeats for the specified number of time steps. 

 

3.1 Observations 

To simulate noisy sensor, each observed location is normally distributed about the real location. I control 

the noisiness of the observation using the standard deviation of the normal distribution. For low noise 

observations, I use a deviation of 0.1 spaces in each direction, and for high noise observations I use a 

deviation of 3 spaces in each direction. To reduce the computational time for large domains and flock sizes, 

I limit the flock member’s field of view to a limited number of spaces in x and y. Flock members can’t 

observe units outside of their individual fields of view. Figure 3 below shows the actual state, and an 

example of a low noise and high noise observation that the flock member receives. The heatmap represents 

the probability that the flock member believes the target is in each square. Note that the low noise 

observation is essentially deterministic, while the high noise observation is a cloud that isn’t even centered 

on the actual target location. 

 

Figure 3: Example of low and high noise observations for a flock member 

 

3.2 Belief states 

For a flock of N follower-agents, each flock member has N+1 belief-vectors, one for each member and one 

for the target. The belief vector has length equal to the size of the visible domain, with each element 

representing a location in that domain. The vector element contains the probability that an agent is in that 

domain, with each location initialized as being uniformly probable. 

 

I treat the belief state as a Hidden Markov Model, and so first update the current belief state using the 

probabilities from the observation. After iterating through every location in the visible domain and 



multiplying by the observation probabilities, I normalize over each visible location. This results in the belief 

state of the current location, and mathematically is represented as: 

 

𝑝(𝐵𝑡
𝑖  | 𝑂1

𝑖 , … , 𝑂𝑡
𝑖) ∝ 𝑝(𝐵𝑡

𝑖  | 𝑂1
𝑖 , … , 𝑂𝑡−1
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𝑖) 

 

Then, I estimate the next location of each flock member using a transition probability. To prevent the model 

from being dependent on the target dynamics I simply assume that each flock member will continue their 

current trajectory to find the next location, then use a normal distribution about that point. I iterate over 

each location in the visible domain, multiplying this normally distributed probability by the probability that 

the agent is in that location, and then normalize over the domain to get the updated belief state. 

 

3.3 Lookahead 

Lookahead calls itself recursively to a desired depth (or horizon), testing out each action and updating the 

belief state using the transition probability described in the previous section. Since the number of possible 

states is very large, I use beam search with a beam size of 5. In other words, each flock member only looks 

at the five most probable transitions for each other flock member. The cost for each step is calculated as: 

 

𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = ∑ 𝑏𝑒𝑙𝑖𝑒𝑓(𝑠) ∗ 𝑐𝑜𝑠𝑡(𝑠)
𝑠 𝑖𝑛 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑡𝑎𝑡𝑒𝑠

 

 

Unfortunately, for any simulation with a moving target this algorithm had a very large run time and poor 

performance for depths over 2 due to the transition probability’s assumption that each agent will continue 

their course. As a result, all analysis in the next section will only focus on running this algorithm with a 

horizon of 1 or 2. 

 

4. Results 

To test this algorithm, I began with a single flock member moving over 20 time steps, and then varied 3 

parameters: How the target moves, the noise in the observation, and the number of steps that each flock 

member thinks ahead (the horizon). For consistency, all six tests were performed in an 11x11 domain with 

the target either staying in the center (“stationary”) or moving in a circle around the center (“circle”), and 

with the first flock member starting with the position x=2, y=2. Each flock member’s field of vision was 

set to 10 tiles in each direction, so it could always see the entire domain. Table 1 below shows the average 

results from running each test 5 times. See Appendix A for a visual representation. 

 

Model 
Target 

Movement 

Observation 

Deviation 

Average 

Collisions 
Average Cost 

Average Run 

Time 

Horizon = 1 Stationary 0.1 tiles 5 810 2.8 s 

 Circle 0.1 tiles 0 1540 2.9 s 

 Circle 3 tiles 0 1730 2.8 s 

Horizon = 2 Stationary 0.1 tiles 1 536 17.7 s 

 Circle 0.1 tiles 0 1407 17.5 s 

 Circle 3 tiles 0 1809 17.5 s 

Table 1: Algorithm performance as a function of target movement and observation uncertainty 

 



As would be expected, the two-step horizon model performs better than the one-step horizon model in most 

cases, and the higher noise observation further increases the cost. One surprising result was that the two-

step horizon performed worse than the one-step horizon when uncertainty was introduced into the moving 

target simulation. As was mentioned in the previous section, this is a result of the vague transition 

probability scheme. Since the lookahead assumes that each agent continues their previous trajectory, any 

uncertainty in these positions will confuse the two-step horizon more than the one-step horizon.  

 

To further test the simulation, I looked at the effect of flock size on the average score per flock member. 

Figure 4 shows the results from a 21x21 grid-world domain tested over 40 time steps with the target circling 

the center and random initializations for each flock member. The field of vision remained was set at 10 

squares from the flock member. Each flock-size simulation was run 5 times, and the error bars represent 

the 95% confidence interval. 

 
Figure 4: Single-step horizon outperforms two-step horizon for multiple flock sizes 

 

Both algorithms seem invariant to flock size, with the confidence interval shrinking as the flock size 

increases. This time, however, the one-step horizon performs noticeably better than the two-step horizon. 

This is once again due to the transition probabilities not adequately describing the target motion, and the 

resulting errors propagating further for the two-step horizon than the one-step. The effect is more 

pronounced now because of the larger domain size and longer test duration. Please see Appendix A for still 

frames of the flock motion. 

 

5. Conclusion and Future Work 

In conclusion, flocking behavior can be modeled as a modified POMDP in which the uncertainty comes 

from noisy position measurements and predictions of future agent locations. This basic algorithm performs 

well in guiding flock members to follow the target while preventing collisions but favors smaller horizons 

due to the vague transition model. The model also scaled well with the addition of further flock members, 

and was able to follow a moving target without any knowledge of the target’s pre-planned dynamics. Future 

work would be developing a more intricate transition model to allow for larger horizons, as well as 

experimenting with different action-spaces (such as every flock member moving at constant velocity and 

controlling their angle of movement) and costs (such as a cost incurred for being near other flock members). 
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Appendix A: Still Frames of Flock Motion 

Figures 5 and 6 below show still frames of subsequent time steps for a single flock member following a 

stationary target using a one and two-step horizon respectively. Notice that although both are very similar, 

the two-step horizon is better able to control its velocity and can get to the target faster and remain next to 

it for longer, while the one-step horizon has more trouble controlling its inertia. 

 

 
Figure 5: One-step horizon model with a stationary target and low noise observations 

 

 

 

 
Figure 6: Two-step horizon model with a stationary target and low noise observations  

 

 

Figure 7 on the next page shows flocking behavior for 7 flock members with a moving target and a one-

step horizon model. Notice that since the field of vision is set at 10, the flock member in the bottom left 

corner moves randomly until the target comes into view. Also note that the flock members being to move 



less as they get closer to one another. A solution to this behavior might be to add a cost associated with 

being close to other flock members, thus encouraging all flock members to follow the target but leave 

enough distance between one another. 

  

 
Figure 7: One-step horizon model with a moving target and low noise observations 

 


