
Finding the Optimal Haptic Assistance Policy for the Learning of a
Motor Task using Deep Q-Learning

Zonghe Chua and Julia Di

Abstract— Haptic guidance and error amplification are two
opposing paradigms for training users in Robot-assisted Min-
imally Invasive Surgery. Previous work has only focused on
training users under a single paradigm with fixed gains on the
amount of assistance or disturbance. Challenge point theory
suggests that there is an optimal difficulty under which learning
will happen most effectively. Human learning under each
paradigm is likely to be non-linear and stochastic, hence we opt
to use a model-free reinforcement algorithm, Deep Q-learning,
to learn a training policy to maximize a user’s task performance
during evaluation. Because model-free methods are known to
be data inefficient, we evaluate how many users or examples are
required to learn on before training a policy that is better or
close to a hand-designed benchmark policy. We found that the
agent only requires a total of about 40 users to explore on before
seeing consistent results that are close to the benchmark while
lowering the amount of discomfort and effort required during
training. We also evaluate the effects of each term in a negative
reward function on the policy. We found that penalizing time
to complete a trial leads to better mean performance, but that
the other penalties lead to less effort required during training.

I. INTRODUCTION

Haptic guidance describes the technique of using haptic
feedback to guide the user of a device towards an optimal
path or trajectory. However too much guidance could lead
to an undesirable effect known as the “guidance hypothesis”,
which states that feedback that is too frequent and accessible
lead to reduced learning. The opposite of haptic guidance is
known as haptic error amplification. This type of feedback
destabilizes a user and increases the task difficulty.

The use of haptic guidance and error amplification has
been studied in the domain of robot-assisted minimally
invasive surgery (RMIS) for skills training [1][2]. However,
these experiments only trained users in a single paradigm
(guidance or error amplification) at fixed force gains. Thus,
the amount of guidance or disturbance rendered is not
optimized for the ability of the user. For example, guidance
initially would aid a naive user in learning the gross desired
path or movement, and disturbance would help the user fine-
tune their ability when they are at an intermediate level of
skill. This concept is known as Challenge Point Theory and
was investigated for haptic guidance in for RMIS [3]. The
authors of this study developed a hand-designed algorithm
for calculating the user’s ability and adjusting the task
difficulty by reducing the gain on the haptic guidance force.
The effects of their algorithm were small and users who had
assistance did not differ largely from those that had none.

It is unclear whether users respond to haptic guidance
or disturbance in an intuitive way that lends itself to hand-
designed algorithms. Reinforcement learning is a method of

finding the optimal action for a given state of the system
from data and exploration. In haptics, this has been explored
in a hand-held RMIS training device that utilizes skin-shear
to guide users through a desired path [4]. The authors used
a variation of model-based reinforcement learning called
Gaussian Process Regression Modeling to learn the state
transitions and consequently used Monte Carlo Tree Search
with Model Predictive Control online to compute the optimal
action online.

We hypothesize that the transition dynamics of user skill
are non-linear and complex when training under guidance or
disturbance to learn a task. Model-free reinforcement learn-
ing algorithms, such as Deep Q-learning, excel in learning
these representations but are not data-efficient. This lack of
data-efficiency is a serious drawback for physical tasks that
require human interaction. This work aims to investigate
how effective a model-free reinforcement learning technique,
specifically Deep Q-learning, will perform given a limited
training set. We compare how performance scales with the
number of training episodes and benchmark them against a
hand-designed naive policy.

II. METHODOLOGY

A. Description of Trajectory Following Task

The trajectory following task used in this paper is modeled
similarly to that in [2]. In this case we assume that a
given user trains under conditions of haptic guidance or
disturbance for a predefined number of training trials. They
are then evaluated without haptics. This measures the current

0 10 20 30 40 50
Trials

10

15

20

25

30

Er
ro
r

convergent
divergent
null

Fig. 1. Sample plot of errors during evaluation for each haptic training
condition

0 10 20 30 40 50
Trials

30

35

40

45

50

55

60

Tr
ia

l T
im

e
convergent
divergent
null

Fig. 2. Sample plot of trial times during evaluation for each haptic training
condition

state of their skill. They then proceed to continue with
another training session and consequence evaluation. This
will continue until a number of cycles are completed. In this
paper, the number of training and evaluation cycles were set
to 50. Thus, all data points presented are “evaluation” data
points.

B. MDP Model Description

The task is modeled as a Markov Decision Process (MDP)
using the generative interface provided by POMDPs.jl.

1) State Space: The state of the MDP defines the user’s
skill level at a given evaluation cycle and is a continuous. It
consists of 3 variables: (a) time taken to complete the task,
(b) total path error, (c) the current trial number.

2) Action Space: The action space was discretized over
a range of -15 to 15. These values represented the gains
for the assistance or disturbance provided. Negative values
represented convergent force fields that essentially pull a user
into the desired path (guidance). Positive values represented
divergent force fields that push a user away from the desired
path (disturbance). A value of 0 represented a “null” field
where there was no haptic guidance or disturbance rendered.
This haptic paradigm can be described as:

Ff ield = a(||xactual− xdesired ||) (1)

where a < 0 for convergent, a > 0 for divergent, and a = 0
for null.

3) Reward Function: The reward function consisted of
negative rewards defined as

R =−time− error−2|a| (2)

where a is the action gain term from Eq. 1, such that a
higher gain was penalized together with high error and time
taken per trial. The action gain is multiplied by a factor of 2
to ensure that the magnitude of all three terms were relatively
similar.

Additional reward functions were also evaluated because
the reward function plays a major role in performance. We
desired to investigate the role of each reward term n the
system to better understand the relationship between reward
and policy. We evaluated three reward functions that either
penalized time strongly (Eq. 3), error strongly (Eq. 4), or
action strongly (Eq. 5). The reward functions used were as
follows

R =−(c× time)− error−|a| (3)

R =−time− (c× error)−|a| (4)

R =−time− error−|c×a| (5)

where c was set to 500 (an arbitrarily large number) to
isolate the effects of each term in the reward function. The
results are discussed in Sec. III.

C. Design of Black-box Generative Model

The generative model was constructed based on prior
understanding of human performance under three different
haptic conditions: convergent force fields, divergent force
fields, and null. Under these conditions, we modeled both
the time to complete a trial as well as the path error during
each trial. These were the two parameters of interest because
for a given task, we seek a policy that optimizes the trade-off
between speed (trial time) and accuracy (path error).

For the convergent force field case, we modeled trial time
using hyperbolic discounting (Eq. 8), and path error with
hyperbolic-log discounting (Eq. 9). For the divergent force
field case, we modeled trial time with a sigmoid function
(Eq. 7), and path error with an exponential function (Eq. 6).
For the null case, we modeled trial time as an exponential
(Eq. 6), and path error with a hyperbolic discounting function
(Eq. 8). These discounting functions were chosen so that
the resultant black-box model emulates a known phenomena
where a user has high upfront learning or rewards for the
convergent haptic condition, but better long term rewards
over a longer time horizon for the divergent haptic condition.
We tuned these functions with an adjustable constant so
that the curves were empirically plausible. A sample of the
resultant learning curves generated for a policy that applies
only a single type of field (convergent, divergent or null) at
a fixed gain are shown in Fig. 1 for error and in Fig. 2 for
trial time.

The equations for each type of discounting function or
learning curves are

f (x) = (L+U)ec×te f f (6)

f (x) =
L+U

1+ ec×te f f
(7)

f (x) =
L+U

1+ c× te f f
(8)

Fig. 3. Plots of (a) mean final evaluation trial error, (b) mean final evaluation trial time and (c) mean reward, for various numbers of subjects run (number
of training examples to learn from). The black line indicates the benchmark policy.

Fig. 4. Plots of (a) mean final evaluation trial error, (b) mean final evaluation trial time and (c) mean final reward, over various number of subjects run
(number of training examples to learn from). The dotted line indicates the metric for the benchmark policy.

f (x) =
L+U

1+ c× ln
(
1+ te f f

) (9)

where te f f refers to the effective trial, L refers to a baseline
lower bound, U refers to a baseline upper bound, and c refers
to a tuneable constant for each type of haptic condition. The
effective trial, te f f , is used to allow for transitions between
haptic conditions, and is calculated by taking the current
state and computing the inverse of the discounting function
corresponding with the next action. The result is then used
as effective starting point for computing the next state.

Fig. 5. Plot of mean actions over trials. Shaded ribbons denote standard
deviations. Convergent actions are negative, and divergent actions are
positive.

Gaussian process noise on both trial time and path error
was injected into the system, and attenuated as trial number
increases. The noise models the reduction in variability over
repeated actions described in previous work by Sternad [5].
Similarly, we characterized both trial time and path error with
normally distributed performance bounds (upper and lower
bounds) that had a tuneable average and variance. These
parameters are recorded in Table II in the Appendix.

D. RL Algorithm

The Julia POMDPs implementation of Deep Q-learning
was used with a neural net consisting of a single affine
layer of 100 neurons with a ReLU activation function.
The Q-learning Solver utilized double Q-learning to prevent
overestimation of the action values [6], a dueling network
architecture for better policy evaluation of similar actions [7],
and prioritized replay [8] to help learn more efficiently. The
number of evaluations for each iteration of the Q-learning
algorithm was set to two (100 evaluation instances). The
exploration factor for an ε-greedy policy was set to 0.8 to
boost initial exploration. A desirable outcome during learning
of a motor task is to achieve a balance of a fast learning rate
and also good long term gains. A discount factor of 0.95 was
used to help the agent value the former consideration. Table
I in the Appendix lists all the further hyperparameters used
by the solver.

Fig. 6. Plots of (a) mean evaluation trial error, (b) mean evaluation trial time and (c) mean reward, for different weighting on the reward function.

Fig. 7. Plots of (a) mean final evaluation trial error, (b) mean final evaluation trial time and (c) mean final reward, over different weightings on the reward
function.

E. Benchmark Policy

The hand-designed policy was constructed in an intuitive
manner and used as a benchmark for the Deep Q-learned
policies. The hand-designed policy is as follows: a conver-
gent force field with a gain of 7 was used for the first 10
trials to quickly learn the gross desired path, following which
a null field was used for the next 10 trials. Once the user
reached an intermediate level, a divergent field was used with
a gain of 7. We did not opt to use the maximum gains of
15 so as to improve the reward of this policy, since higher
gains were penalized by the action term.

F. Evaluating the Number of Required Training Examples

We evaluated how performance evolves with the number
of training examples by training policies with an increasing
number of training examples to learn from. All policies were
then evaluated 100 times and the mean quantities of the
reward, error and trial time computed. The performance of
the policies was evaluated against the hand-designed policy.

III. RESULTS

A. Number of Required Training Examples

The mean error during evaluation decreased as the number
of training examples increased with n = 100 achieving
comparable performance to the benchmark policy. However
there was some stochasticity in the learning of the policy as
seen by how n = 10 achieved better performance than n = 60
(Fig. 3a). The mean time per trial during evaluation decreased

with increasing n, however the improvement in performance
is negligible after n = 30. The benchmark policy achieved
better performance overall at the end of the 50 evaluation
cycles (Fig. 3b). The learned policies had higher rewards
compared to the benchmark policies mainly because it was
also balancing achieving good performance with reducing
the gains used to achieve that performance. This can be seen
by how the learned policies regulated the gains towards zero
(Fig. 5). In all cases, the rates of improvement over trials are
quite similar to that of the benchmarks for both error and
time. Fig. 4 shows how the number of subjects (or examples)
the policy is trained on stabilizes after a training set of 20
subjects.

B. Variation of Performance due to Changes in the Reward
Function

The reward function also plays a major role in learned
policy performance, so three reward functions were evaluated
as stated in Sec. II-C to investigate the role of individual
reward parameters. The resultant policies were trained on
n = 20 users because results of the previous section showed
that the policy training stabilizes after 20 subjects in the
training set.

Changes in the reward function led to clear changes in
policy, as shown in Fig. 8. When the reward function heavily
penalized trial time, the policy initially applied null, then
applied a convergent field before switching to divergent
field. This explains the performance metrics seen in Fig.
6, where mean trial time is at first drastically driven down

by the convergent field. Then when the user performance
plateaus, the policy switches to divergent field to further
drive down trial time. When the reward function heavily
penalized path error as shown in Fig. 8, the policy becomes
more conservative on accuracy and only applies convergence.
As expected, penalizing error led to a trade-off in trial time,
which is shown by the large deviation in Fig. 7b. However,
this trade-off was not reciprocated in the reverse case where
time was penalized, which may be due to the stochasticity
in learning. When the reward function heavily penalized the
action term, the policy took no actions (null) as expected.

Fig. 8. Plot of mean actions over trials for different reward weightings.
Shaded ribbons denote standard deviations. Convergent actions are denoted
as negative, divergent actions are denoted as positive.

IV. DISCUSSION

The results indicate that the reinforcement learning algo-
rithm only requires 20 users in the training set to before
converging to a reasonable performance, with two users
needed for policy evaluation after every two users that the
Q-learning algorithm runs on. This results in a total of 40
users run needed before being able to reach the performance
presented in the results. While typical haptics studies run
about 20-30 users, 40 users is still within a reasonable scope
in which to conduct an experiment to train a policy. While
the performance is not as good as the benchmark policy, the
magnitude of the forces used to achieve the performance for
the policies, as seen by the reduced gains in Fig. 5 is lower.
This would result in less actuator effort and possibly more
comfort for the user.

The results also indicate that penalizing time to complete
a trial leads to better mean performance, as seen in Fig. 6.
Penalizing time appeared to result in both a lower mean
trial time as well as lower mean path error value. However,
closer look at the results shown in Fig. 8 show that the mean
magnitude of the haptic guidance is also highest for the
reward function that heavily penalizes time in comparison
to the other reward functions tested. This means that the
other penalties (error and action) help balance performance
with actuator and user effort.

While the benchmark policies performed better than the
learned policies, the generative model we used was fit to
the rough trends seen in [3]. This meant that the true model
of human learning could be more non-linear and stochastic

than what we designed especially since we extrapolated the
dynamics of the divergent force fields based on anecdotal
observation and intuition from prior research studies. In
this case, there is potential for the reinforcement learning
algorithm to outperform the hand-designed benchmark al-
gorithm. However the added complexity might also require
more training examples to properly learn the dynamics of
the system.

Another assumption that we made was that the abilities
of the users do not deviate too much from each other. If the
users that the policy is trained on differ quite a lot from each
other, the policy could fail to converge to a good globally
applicable policy.

V. CONCLUSIONS AND FUTURE WORK

In this work, we show that the number of users or training
examples required to learn a Deep Q-learning policy that
achieves comparable performance to a benchmark is reason-
ably within the scope of experiments in the haptics field. We
also show that this policy achieves better energy efficiency
and comfort than the benchmark, which is especially useful
in a RMIS task, and that these benefits can be tuned with
the error and action terms of the reward function at cost of
raw performance.

It remains to be seen if the black-box model we designed
truly reflects the dynamics of the actual task and captures
the variability in human performance adequately. Higher true
complexity could lead to better performance of the model-
free algorithm compared to the benchmark with the possible
downside of requiring more users to be presented to the
agent for robust learning of a policy. Higher variability could
reduce the generalizability of the learned policies and also
require mode users to be presented to the agent to counteract.

We opted for a model-free method based on the assump-
tion that the dynamics of the process were highly non-linear
and stochastic such that learning a model for a model-based
approach would prove to be unsuccessful. Future work would
explore using a model-based reinforcement learning method
and benchmarking this against the model-free method.

In this paper, only one deep reinforcement learning algo-
rithm was implemented and evaluated. It would be useful to
compare the performance of this algorithm to another, such
as policy iteration, which would model the policy as a non-
linear function of the state.

Lastly, we would want to verify our results experimentally
through an actual user study which an experimental design
informed by our findings.

VI. ACKNOWLEDGEMENTS

Zonghe Chua implemented the trial time transition dynam-
ics of the black-box model. He also performed the analyses
of how the number of subjects run on the reinforcement
learning algorithm affected policy performance.

Julia Di implemented the path error transition dynamics
of the black-box model. She also performed the analyses of
how the each term in the reward affected the performance of
the resultant policy.

REFERENCES

[1] M. M. Coad, A. M. Okamura, S. Wren, Y. Mintz, T. S. Lendvay, A. M.
Jarc, and I. Nisky, “Training in divergent and convergent force fields
during 6-dof teleoperation with a robot-assisted surgical system,” in
2017 IEEE World Haptics Conference (WHC). IEEE, 2017, pp. 195–
200.

[2] Y. A. Oquendo, Z. Chua, M. M. Coad, I. Nisky, A. Jarc, S. Wren,
T. S. Lendvay, and A. M. Okamura, “Robot-assisted surgical training
over several days in a virtual surgical environment with divergent and
convergent force fields,” in Hamlyn Symposium, 2019, pp. 81–82.

[3] N. Enayati, A. M. Okamura, A. Mariani, E. Pellegrini, M. M. Coad,
G. Ferrigno, and E. De Momi, “Robotic assistance-as-needed for
enhanced visuomotor learning in surgical robotics training: An experi-
mental study,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 6631–6636.

[4] J. M. Walker, A. M. Okamura, and M. J. Kochenderfer, “Gaussian
process dynamic programming for optimizing ungrounded haptic guid-
ance,” in 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2018, pp. 8758–8764.

[5] D. Sternad, “It’s not (only) the mean that matters: variability, noise and
exploration in skill learning,” Current opinion in behavioral sciences,
vol. 20, pp. 183–195, 2018.

[6] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Thirtieth AAAI conference on artificial
intelligence, 2016.

[7] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” arXiv preprint arXiv:1511.06581, 2015.

[8] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

APPENDIX I
PARAMETERS

TABLE I

Option Value
Learning Rate 1e-5
Max Steps max number of episodes
Log Freq 500
Number of Episodes to Evaluate 100
ε fraction of training set 0.8
ε at end of exploration 0.01
Recurrence false
Double Q true
Dueling true
Prioritized Replay true

TABLE II

Parameter Value
Baseline Process Noise Mean 0
Baseline Process Noise Var 0.5
Process Noise Attenuation Factor e−0.05×trialnumber

Process Noise Mean 0
Process Noise Variation 0.5
Trial Time Upper Bound 60
Trial Time Lower Bound 30
Trial Time Variance 1
Path Error Upper Bound 30
Path Error Lower Bound 10
Path Error Variance 0.5

APPENDIX II
CODE REPOSITORIES

The Github code repository is available upon request from
the authors.

