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Abstract— Beats are the fundamental unit of time in music. 
They can be felt easily by many people as when they tap their feet 
to music. Beats are not directly observed but the notes that are 
played according to the periodicity of the beat are. Using the 
observable musical events of these notes, we can model our belief 
about the beat as a gaussian distribution. The observable beats can 
also be modeled according to gaussian distributions. As such, our 
belief about the beat can be updated over time using a Kalman 
filter. In this paper we update the parameters of the Kalman filter 
offline using local search (gradient ascent) to improve 
performance of the filter. The algorithm was designed to operate 
in real time as events are observed, updating the belief. 

 

I. NOMENCLATURE 
Beat = A basic unit of time in music. 

Musical event = A moment in time that is observable through 
the sound of a note played on an instrument. 

Tempo = The speed at which music is played. A common 
measure is beats per minute (bpm). A faster tempo corresponds 
to a higher bpm as  

BPM = Beats per minute. A common measure of tempo. For 
reference, modern dance music often falls at around 120 bpm. 

 

II. INTRODUCTION 
Music is periodic (rhythmic) and its speed is measured by 

beats, a unit of time in music around which musical events are 
organized. What we refer to as the beat is generally felt by 
people as they tap their foot to music or clap along to music. We 
infer the beat by observing musical events which generally 
correspond to notes played by instruments, whether that be 
harmonic in nature (a note bowed by a violin) or purely rhythmic 
(the striking of a drum). In music the events do not necessarily 
fall directly on the beat, though they will often do so. Events will 
also occur at frequencies that are at integer subdivisions or 
multiples of integer subdivision of the beat, among other places. 

The problem this paper explores is beat detection given a 
series of musical events, that is, determining the length of a beat 
given the observable notes and the spaces between these notes.  
Beats are not directly observable and thus we can model the 
problem as a POMDP. 

The duration of a beat can be represented as a gaussian 
distribution over the duration of a piece of music. Our belief 
about that beat given the observed musical events can also be 
represented as a gaussian distribution over time. As such, a 
Kalman filter can be used to update our belief given some 
observations. In this paper, however, we did not rely on 
statistical analysis to determine the parameters of the Kalman 
filter, rather we used gradient ascent as reinforcement learning 
to tune the parameters of the Kalman filter to improve 
performance of the beat detection algorithm. Bach’s music was 
the source of data for the learning of the Kalman filter 
parameters. Much of his music has been impeccably digitized in 
the form of MIDI files, a format that encodes the notes, the 
durations between them, and the underlying tempo. As the 
tempo of the music is encoded in the file itself, we thus have our 
labeled training data. 

What this paper does not attempt to do 
In this paper we do not attempt to identify musical events 

from an audio source. That is, the algorithms defined here do not 
process any representation of sound. MIDI does not encode 
actual sound. It is more akin to a score, or sheet music. The 
algorithms assume that the location of the musical event in time 
has already been determined (as represented in the MIDI file). 

 

III. RELATED WORK 
A cursory search of related work in the field does not return 

any results showing that solving this problem has been 
attempted using a Kalman filter. Much of the work in the field 
uses discrete wavelet transforms to identify musical events then 
determine the periodicity using resonance filters[1][2]. 

 

IV. APPROACH 

A. The Kalman Filter 
The problem of determining the length of the beat was 

modeled as a POMDP. The underlying beat of a piece of music 
is not directly observable but the musical events which occur at 
frequencies that are at integer subdivisions or multiples of 
integer subdivision of the beat are observable. 

The state of the problem is the bpm of the music. After each 
observable event in the music we can update the bpm 



accordingly. For this process there are no actions or rewards. 
The observation is the time since the last musical event occurred. 

The Kalman filter was implemented as such. On each 
observation the state is updated according to the transition 
function. In this case because x represents bpm, the transition 
function is the identity function because the bpm is assumed to 
remain constant. 

 x = x · h (1) 

The variance of the state belief, p, is updated by the 
parameter q multiplied by our observation t, the time since the 
last observation. This represents the growth in uncertainty of our 
belief over time. 

 p = p + q · t (2) 

Then, we naively infer a bpm given t 

 naïve_bpm = 60 / t (3) 

and multiply that naïve bpm by an observation vector o_v 
defined by interval of some even numbered subdivision of 1 
over some span i.e. [0.125, .25, .5 … 1.75, 2]. The 
intuition behind this is that any of our observations t could 
represent a duration that is proportional to any of these 
subdivisions of the actual duration of the beat. We then get our 
scaled observation vector, s_o_v. 

 s_o_v = o_v · naïve_bpm (4) 

We then find the closest member of s_o_v to our current 
belief, x and this becomes our observation of the current bpm, z.  

 i = argmin(|sov[i] – x|) (5) 

 z = sov[i] (6) 

 We then need to calculate a number to represent the 
variance, r, of this value, z. We use that same i to pull a weight 
out of another vector, our observation weight vector o_w_v and 
add this weight to the squared error of z and x multiplied by some 
other error weight, e_w.  

 r = o_w_v[i] + e_w · (x – z)2 (7) 

We then determine a simplified Kalman gain (K) (the actual 
Kalman filter implementation Kalman gain has more terms, but 
we can factor some out).  

 K = p · hT · (h · p · hT + r)-1 (8) 

Finally we update our state and variance. 

 x = x + K · (z – h · x) (9) 

 p = p - K · h · p (10) 

 

At the beginning of the algorithm the state values x and p 
were set to 120.0 and 160.0 accordingly. The parameters of q, 
the components of the observation weight vector (o_w_v), and 
the error weight (e_w) were all set to 1. The observation vector 
(o_v) was set as previously described. Off the shelf this worked 
very given these default values. 

 

 
While the state values get updated as the algorithm runs, the 

parameters do not. In order to improve performance of the 
algorithm, we used gradient ascent to find better values for the 
parameters to the Kalman filter. Given each MIDI file encodes 
the true bpm of the given portion of the music, we could 
calculate the error of the estimate and try to minimize this. This 
became an MDP problem. 

B. Gradient Ascent 
The MDP for optimizing the Kalman filter parameters, q, the 

individual componenets of the observation weight vector 
(o_w_v), and the error weight (e_w) is defined as such: the state 
is the value for these parameters, the action is some amount by 
which we can increment or decrement one of the parameters or 
its components, the transition function is a deterministic 
application of this action, and the reward function is determined 
by the minimization of the error. The gradient ascent was run for 
77 iterations with a variable number of steps used for the action 
each time, ranging between 1.0 and 0.1. In each iteration we 
updated a single parameter to the Kalman filter and found the set 
of parameters that reduced the error the most. In the following 
step we used the updated parameters as the starting point. I ran 
the gradient ascent against the second book of Bach’s The Well 
Tempered Clavier, randomly sorting the pieces in that collection 

Default parameters: The green line represents the true bpm 
of the entire Goldberg Variations as encoded in the MIDI 
files and in blue is the estimates of the bpm based on the 
results of the default parameters in our Kalman filter. On the 
y axis is the bpm, on the x axis is time in seconds. 

The mean square error of our estimate is 142.8 



to hopefully introduce a slight amount of variation between 
iterations to prevent overfitting. Each time I also computed the 
error against the entire Goldberg Variations.  

 
 

V. RESULTS 
The algorithm performed quite well before training and 

showed improvement after some training.  

 

  

It is not unlikely that the gradient ascent converged on a local 
maximum and that we could find even better parameters. That 
being said it performed extremely well on the simplest of pieces 
such as the Prelude to Bach’s first Cello Suite, in which there is 
almost no rhythmic variation between musical events and even 
still well on the Adagio from Bach’s first Sonata for Solo Violin 
which is rhythmically varied. 

 
 

VI. CONCLUSION AND FUTURE WORK 
The Kalman filter has proven a very effective tool for 

updating the belief about the beat in music. The beat finding 
algorithm performed well and improved after training though 
intuition suggests that extensions to the local search algorithm 
may provide further improvements. Random starting points and 
genetic algorithms may be the ticket. A larger training set may 
also help. Further knowledge about the pitch of the musical 
events can be used to weight each musical event during each 

Performance during gradient ascent: The blue line 
represents the error of the estimate of the training data, book 
two of The Well Tempered Clavier. In each iteration the 
order of the pieces in the collection was shuffled which 
accounts for the fact that the gradient does not descend every 
time. In general it does. The red line represents the error of 
the estimate for the Goldberg Variations which despite not 
being used for the gradient ascent improved in a way that is 
much more pronounced that the training data. 

Above, Prelude, Below, Adagio: In the simple Prelude from 
Bach’s first Cello Suite, the blue line representing our 
estimate is nearly invisible below the true bpm in the MIDI 
file. The MSE is 0.0009. 

In the Adagio from Bach’s first Sonata for Solo Violin, there 
are long pauses without musical events and the notes shift 
quickly between long held notes quarter notes and short 
quick thirty-second notes. The algorithm guessed a bpm that 
was 4 times the true bpm in the MIDI file but still I calculated 
an MSE 0.0638 because I feel that finding a bpm that is a 
double or quadruple of the actual bpm is still a good 
performance. Also, a bpm as low as the true bpm could 
possibly be perceived by the listener as being higher than it 
is by double or quadruple. 

Learned Parameters: The green line represents the true 
bpm of the entire Goldberg Variations as encoded in the 
MIDI files and in blue is the estimates of the bpm based on 
the results of the parameters in our Kalman filter after 
gradient ascent. On the y axis is the bpm, on the x axis is time 
in seconds. The mean square error of our estimate is 92.2 



observation. This would require including a distribution over 
pitch in the belief state. 

Additionally, the existing algorithm can be improved by 
introducing additional training data. Bach is regarded as a 
master of rhythmic and harmonic counterpoint and his musical 
influence has left an imprint on much of western music. 
However, many modernist twentieth century composers have 
composed works that subvert convention and while their works 
still contain beats, the model for how the notes follow these beats 
and the expectation of a steady beat may be drastically different 
from their classical predecessors. 

Further work to extend the algorithm to be more useful 
would be to incorporate online musical event detection from an 
audio source. This would allow the algorithm to determine the 
beat of live music. Applications of such an algorithm would be 
useful for building creative tools for musicians and composers 
i.e. an application for the composer that could play along or 
embellish existing music or for the musician that could sync up 
a digital score to live music so that they could follow along. 
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