

Finding Rhythm in Music Using Kalman Filters
Optimized with Local Search

George Woskob - AA228 Fall 2019 - Dec 6, 2019

Examine the code at https://github.com/aphera/aa228-final-project

Abstract— Beats are the fundamental unit of time in music.
They can be felt easily by many people as when they tap their feet
to music. Beats are not directly observed but the notes that are
played according to the periodicity of the beat are. Using the
observable musical events of these notes, we can model our belief
about the beat as a gaussian distribution. The observable beats can
also be modeled according to gaussian distributions. As such, our
belief about the beat can be updated over time using a Kalman
filter. In this paper we update the parameters of the Kalman filter
offline using local search (gradient ascent) to improve
performance of the filter. The algorithm was designed to operate
in real time as events are observed, updating the belief.

I. NOMENCLATURE
Beat = A basic unit of time in music.

Musical event = A moment in time that is observable through
the sound of a note played on an instrument.

Tempo = The speed at which music is played. A common
measure is beats per minute (bpm). A faster tempo corresponds
to a higher bpm as

BPM = Beats per minute. A common measure of tempo. For
reference, modern dance music often falls at around 120 bpm.

II. INTRODUCTION
Music is periodic (rhythmic) and its speed is measured by

beats, a unit of time in music around which musical events are
organized. What we refer to as the beat is generally felt by
people as they tap their foot to music or clap along to music. We
infer the beat by observing musical events which generally
correspond to notes played by instruments, whether that be
harmonic in nature (a note bowed by a violin) or purely rhythmic
(the striking of a drum). In music the events do not necessarily
fall directly on the beat, though they will often do so. Events will
also occur at frequencies that are at integer subdivisions or
multiples of integer subdivision of the beat, among other places.

The problem this paper explores is beat detection given a
series of musical events, that is, determining the length of a beat
given the observable notes and the spaces between these notes.
Beats are not directly observable and thus we can model the
problem as a POMDP.

The duration of a beat can be represented as a gaussian
distribution over the duration of a piece of music. Our belief
about that beat given the observed musical events can also be
represented as a gaussian distribution over time. As such, a
Kalman filter can be used to update our belief given some
observations. In this paper, however, we did not rely on
statistical analysis to determine the parameters of the Kalman
filter, rather we used gradient ascent as reinforcement learning
to tune the parameters of the Kalman filter to improve
performance of the beat detection algorithm. Bach’s music was
the source of data for the learning of the Kalman filter
parameters. Much of his music has been impeccably digitized in
the form of MIDI files, a format that encodes the notes, the
durations between them, and the underlying tempo. As the
tempo of the music is encoded in the file itself, we thus have our
labeled training data.

What this paper does not attempt to do
In this paper we do not attempt to identify musical events

from an audio source. That is, the algorithms defined here do not
process any representation of sound. MIDI does not encode
actual sound. It is more akin to a score, or sheet music. The
algorithms assume that the location of the musical event in time
has already been determined (as represented in the MIDI file).

III. RELATED WORK
A cursory search of related work in the field does not return

any results showing that solving this problem has been
attempted using a Kalman filter. Much of the work in the field
uses discrete wavelet transforms to identify musical events then
determine the periodicity using resonance filters[1][2].

IV. APPROACH

A. The Kalman Filter
The problem of determining the length of the beat was

modeled as a POMDP. The underlying beat of a piece of music
is not directly observable but the musical events which occur at
frequencies that are at integer subdivisions or multiples of
integer subdivision of the beat are observable.

The state of the problem is the bpm of the music. After each
observable event in the music we can update the bpm

accordingly. For this process there are no actions or rewards.
The observation is the time since the last musical event occurred.

The Kalman filter was implemented as such. On each
observation the state is updated according to the transition
function. In this case because x represents bpm, the transition
function is the identity function because the bpm is assumed to
remain constant.

 x = x · h (1)

The variance of the state belief, p, is updated by the
parameter q multiplied by our observation t, the time since the
last observation. This represents the growth in uncertainty of our
belief over time.

 p = p + q · t (2)

Then, we naively infer a bpm given t

 naïve_bpm = 60 / t (3)

and multiply that naïve bpm by an observation vector o_v
defined by interval of some even numbered subdivision of 1
over some span i.e. [0.125, .25, .5 … 1.75, 2]. The
intuition behind this is that any of our observations t could
represent a duration that is proportional to any of these
subdivisions of the actual duration of the beat. We then get our
scaled observation vector, s_o_v.

 s_o_v = o_v · naïve_bpm (4)

We then find the closest member of s_o_v to our current
belief, x and this becomes our observation of the current bpm, z.

 i = argmin(|sov[i] – x|) (5)

 z = sov[i] (6)

 We then need to calculate a number to represent the
variance, r, of this value, z. We use that same i to pull a weight
out of another vector, our observation weight vector o_w_v and
add this weight to the squared error of z and x multiplied by some
other error weight, e_w.

 r = o_w_v[i] + e_w · (x – z)2 (7)

We then determine a simplified Kalman gain (K) (the actual
Kalman filter implementation Kalman gain has more terms, but
we can factor some out).

 K = p · hT · (h · p · hT + r)-1 (8)

Finally we update our state and variance.

 x = x + K · (z – h · x) (9)

 p = p - K · h · p (10)

At the beginning of the algorithm the state values x and p
were set to 120.0 and 160.0 accordingly. The parameters of q,
the components of the observation weight vector (o_w_v), and
the error weight (e_w) were all set to 1. The observation vector
(o_v) was set as previously described. Off the shelf this worked
very given these default values.

While the state values get updated as the algorithm runs, the

parameters do not. In order to improve performance of the
algorithm, we used gradient ascent to find better values for the
parameters to the Kalman filter. Given each MIDI file encodes
the true bpm of the given portion of the music, we could
calculate the error of the estimate and try to minimize this. This
became an MDP problem.

B. Gradient Ascent
The MDP for optimizing the Kalman filter parameters, q, the

individual componenets of the observation weight vector
(o_w_v), and the error weight (e_w) is defined as such: the state
is the value for these parameters, the action is some amount by
which we can increment or decrement one of the parameters or
its components, the transition function is a deterministic
application of this action, and the reward function is determined
by the minimization of the error. The gradient ascent was run for
77 iterations with a variable number of steps used for the action
each time, ranging between 1.0 and 0.1. In each iteration we
updated a single parameter to the Kalman filter and found the set
of parameters that reduced the error the most. In the following
step we used the updated parameters as the starting point. I ran
the gradient ascent against the second book of Bach’s The Well
Tempered Clavier, randomly sorting the pieces in that collection

Default parameters: The green line represents the true bpm
of the entire Goldberg Variations as encoded in the MIDI
files and in blue is the estimates of the bpm based on the
results of the default parameters in our Kalman filter. On the
y axis is the bpm, on the x axis is time in seconds.

The mean square error of our estimate is 142.8

to hopefully introduce a slight amount of variation between
iterations to prevent overfitting. Each time I also computed the
error against the entire Goldberg Variations.

V. RESULTS
The algorithm performed quite well before training and

showed improvement after some training.

It is not unlikely that the gradient ascent converged on a local
maximum and that we could find even better parameters. That
being said it performed extremely well on the simplest of pieces
such as the Prelude to Bach’s first Cello Suite, in which there is
almost no rhythmic variation between musical events and even
still well on the Adagio from Bach’s first Sonata for Solo Violin
which is rhythmically varied.

VI. CONCLUSION AND FUTURE WORK
The Kalman filter has proven a very effective tool for

updating the belief about the beat in music. The beat finding
algorithm performed well and improved after training though
intuition suggests that extensions to the local search algorithm
may provide further improvements. Random starting points and
genetic algorithms may be the ticket. A larger training set may
also help. Further knowledge about the pitch of the musical
events can be used to weight each musical event during each

Performance during gradient ascent: The blue line
represents the error of the estimate of the training data, book
two of The Well Tempered Clavier. In each iteration the
order of the pieces in the collection was shuffled which
accounts for the fact that the gradient does not descend every
time. In general it does. The red line represents the error of
the estimate for the Goldberg Variations which despite not
being used for the gradient ascent improved in a way that is
much more pronounced that the training data.

Above, Prelude, Below, Adagio: In the simple Prelude from
Bach’s first Cello Suite, the blue line representing our
estimate is nearly invisible below the true bpm in the MIDI
file. The MSE is 0.0009.

In the Adagio from Bach’s first Sonata for Solo Violin, there
are long pauses without musical events and the notes shift
quickly between long held notes quarter notes and short
quick thirty-second notes. The algorithm guessed a bpm that
was 4 times the true bpm in the MIDI file but still I calculated
an MSE 0.0638 because I feel that finding a bpm that is a
double or quadruple of the actual bpm is still a good
performance. Also, a bpm as low as the true bpm could
possibly be perceived by the listener as being higher than it
is by double or quadruple.

Learned Parameters: The green line represents the true
bpm of the entire Goldberg Variations as encoded in the
MIDI files and in blue is the estimates of the bpm based on
the results of the parameters in our Kalman filter after
gradient ascent. On the y axis is the bpm, on the x axis is time
in seconds. The mean square error of our estimate is 92.2

observation. This would require including a distribution over
pitch in the belief state.

Additionally, the existing algorithm can be improved by
introducing additional training data. Bach is regarded as a
master of rhythmic and harmonic counterpoint and his musical
influence has left an imprint on much of western music.
However, many modernist twentieth century composers have
composed works that subvert convention and while their works
still contain beats, the model for how the notes follow these beats
and the expectation of a steady beat may be drastically different
from their classical predecessors.

Further work to extend the algorithm to be more useful
would be to incorporate online musical event detection from an
audio source. This would allow the algorithm to determine the
beat of live music. Applications of such an algorithm would be
useful for building creative tools for musicians and composers
i.e. an application for the composer that could play along or
embellish existing music or for the musician that could sync up
a digital score to live music so that they could follow along.

ACKNOWLEDGMENT
A big shoutout to the author of article[4] for helping the

author understand the intuitions behind the Kalman filter, which
helped guide this paper and its process.

Another enormous shoutout to Dave Grossman’s
impeccable MIDI transcriptions of Bach’s seminal works. What
an achievement that is. Dave is a legend. And he wins the award
for the most beautiful website to come out of the 90s.

And thank you Bach for always being an inspiration.

Lastly, a shoutout to the teaching staff of AA228. Thank you
so much.

REFERENCES

[1] Eric D. Scheirer, “Tempo and beat analysis of acoustic musical signals,”
J. Acoust. Soc. Am. Vol. 103, No. 1, 1998, 558-601. [5] Special issue on
Wavelets

[2] George Tzanetakis, Georg Essl, Perry Cook, “Audio Analysis using the
Discrete Wavelet Transform,” Proceedings of the WSES International
Conference Acoustics and Music: Theory and Applications (AMTA
2001)

[3] Mykel J Kochenderfer. Decision making under uncertainty: theory and
application. MIT press, 2015.

[4] Tim Babb. How a Kalman filter works, in pictures. Aug. 2015. url:
https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/

[5] Johann
[6] David J. Grossman. How a Kalman filter works, in pictures. Aug. 2015.

url:
[7] Tim Babb. Dave’s J.S. Bach Page: MIDI Files. Oct. 1997. url:

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/

