
Landing on the Moon with Deep Deterministic
Policy Gradients

Adam Gjersvik
gjersvik@stanford.edu

Abstract—Ask Niel Armstrong, landing on the Moon is no easy
feat - which is why ideally we would like to have computers
do it for us. This work will explore an extremely simplified
lunar environment and attempt to train a computerized agent
to perform a successful moon landing. The action space in this
environment consists of continuous control variables for 3 engines
onboard a lunar lander that must be utilized by the computer
agent in order to safely bring the lander to rest on the landing
pad. The approach to solve this decision-making/continuous
control problem is the application of a Deep Deterministic Policy
Gradient (DDPG) algorithm. The objective of the DDPG agent
is to learn an optimal state-action value function during mission
training and then use it to attempt a successful lunar landing.
Two different techniques for value function exploration are tested
and the best one is chosen for additional training and evaluation.
Ultimately, the DDPG agent is able to make successful lunar
landings under favorable initial conditions, however, it was not
able to gain mastery over all possible circumstances. It did, on
the other hand, learn how to cheat in certain scenarios.

Index Terms—Deep Deterministic Policy Gradient, Q-
Learning, Decision Making Under Uncertainty

I. PROBLEM DESCRIPTION

The objective is to solve the 2D LunarLanderContinuous-
v2 environment in the OpenAI Gym. in the environment, a
landing pad is always located at coordinates (0, 0) and the
surrounding lunar surface is randomly generated with each
attempt. The lander has perfect observability of the state-space
and 3 engines to control: a main engine on its under-belly and
two engines on each side.

Fig. 1. LunarLanderContinuous-v2 environment render.

A. Actions

The action space consists of two continuous variables both
on the interval [-1, 1]. The first real-valued continuous action
variable controls the main engine, where [-1, 0] results in

engine-off and (0, 1] throttles from 50% to 100% power. The
second real-valued continuous action variable controls both of
the side thrusters where [-1, -0.5] fires the left thruster, [0.5,
1] fires the right thruster, and (-0.5, 0.5) is engine-off.

B. Rewards

The typical reward for moving from the top of the screen
to the landing pad and achieving zero speed is between
approximately 100 and 140 total points. Firing the main engine
results in -0.3 points for each frame and additional reward
is lost if the lander moves away from the landing pad. The
episode finishes when the lander either crashes or comes to
rest, receiving -100 or +100 points respectively, and +200
points is earned for landing on the pad. Landing outside of
the landing pad is possible and fuel is infinite.

II. DEEP DETERMINISTIC POLICY GRADIENT

The Deep Deterministic Policy Gradient (DDPG) algorithm
was chosen as the method to solve this problem because it is
uniquely equipped for environments with continuous action
spaces [1] [2]. To demonstrate how and why the DDPG
algorithm is suitable for these types of problems, let us begin
with the basic theory and motivation behind Q-Learning. If
an optimal state-action value function is known, then in any
given state the optimal action is:

(1)

When there is a finite set (of reasonable size) of discrete
actions, then computing the maximum over the action space
can be done directly in a reasonable amount of time. However,
when the action space becomes continuous, the value of
every state-action pair cannot be directly computed efficiently
in order to compute the maximum. Thus the assumption is
made that the optimal state-action value function Q∗(s, a) is
differentiable with respect to the action variable because the
action space is contunous. This allows for an efficient gradient-
based learning rule for a policy over the state space.

The DDPG algorithm consists of two concurrent learning
tasks: learning a Q function and learning a policy. Before
describing the first learning task, recall the Bellman equation
which describes the optimal state-action value function for Q-
Learning problems:

where s′ P represents samples of s′ drawn from the
environment with probability distribution P (|̇s, a).



(2)

We wish to learn an approximator of Q∗(s, a) with a dataset
D of transitions (s, a, r, s′) which we will refer to as Qφ(s, a)
with parameters φ. To measure how closely our approximator
comes to satisfying the Bellman equation, the following mean-
square Bellman error (MSBE) can be computed for any given
approximation of the Q-function:

(3)

The objective is then to minimize the MSBE loss function
in order to approximate the true state-action value function.
In DDPG, deep feed-forward neural networks are utilized
as Q-function approximators and the network parameters are
updated through backpropogation of the error gradient.

In order to train the Q-function deep neural network, the
DDPG algorithm utilizes a replay buffer of past experiences. It
is a dataset D of variable size containing previous transitions,
making DDPG an off-policy algorithm. This simply means that
the experience history data was collected using an outdated
policy - in other words, using a policy different than the current
behavior policy. It is important to note that a replay buffer that
is too small can result in over-fitting of the most-recent data,
and a replay buffer that is too large can significantly slow
down training.

Another attribute of DDPG which is common with other
Q-learning algorithms is the use of target networks. When
minimizing the MSBE loss, we are trying to get the Q-function
closer to following target:

(4)

This target, however, depends on the parameters of the
network that are being updated, φ. To improve the stability
of training, the target network is updated once per update by
polyak averaging of the updated network and previous target
network parameters:

(5)

This results in minimizing the following MSBE loss:
where µθtarg(s

′) is the target policy. Now that we have
established the means of learning an optimal state-action value
function Qφ(s, a) for continuous actions, we still need to learn
a deterministic policy which gives the action that maximizes

(6)

Qφ(s, a). Recalling that we have made the assumption that the
value function is differentiable with respect to the continuous
action variable, we can simply perform gradient ascent with
fixed Q-function parameters to find an optimal policy:

(7)

III. EXPLORATION VS. EXPLOITATION

As mentioned above, DDPG is an off-policy algorithm,
meaning it learns from previous experiences collected from
previous policies. In order to help the algorithm explore better
during training, we can add noise to the output of the Q-
function network or the network parameters themselves in
order to experience more randomized transitions. These two
techniques have both been demonstrated to improve training
performance [3] [4].

A. Action Noise

Applying noise to the output of the Q-function network,
the actions, is one technique of promoting exploration during
network training. This allows the model to select a wider
distribution of actions and experience a broader range of
transitions. Various distributions can be used when applying
noise to actions and it is common to use noise generated by a
Ornstein-Uhlenbeck process. However, it has been shown that
mean-zero Gaussian noise can work just as well [4]. It is also
a possibility to scale down the noise as training progresses in
order to collect more accurate training data.

Fig. 2. Left: Application of action noise. Right: Application of parame-
ter noise. Image taken from https://openai.com/blog/better-exploration-with-
parameter-noise/ [4]



Fig. 3. Left column: Training performance with action noise. Right column: Training performance with parameter noise. Top row: Network input reward vs
training episode. Bottom row: Total episode reward vs training episode.

B. Parameter Noise

In contrast to applying noise directly to the actions output
from the learned policy, noise can instead be applied directly to
the parameters of the learned policy. This type of exploration
technique has been shown to accelerate training and improve
performance in comparison to action noise. Often times the
standard deviation of the parameter noise is scaled adaptively
during training because it’s unknown how the magnitude of the
noise influences the policy. Adaptive noise scaling typically
depends on how much the parameter perturbations affect the
actions chosen.

IV. PERFORMANCE RESULTS

A. Training

To understand the impacts of the two exploration techniques
described above, the Lunar Lander agent was trained for
50,000 episodes with no noise, action noise, and parameter
noise applied separately. Figure 3 shows the training results
for the three cases with the performance of the two noise
techniques overlayed on noiseless training.

As seen in the training performance plots, both action
and parameter noise achieve higher reward inputs to the
network than the noiseless case as training progresses, with
parameter noise slightly beating out action noise. In regard
to the total episodic reward during training, the action noise
network appears to acheive similar and sometimes lower
reward than the noiseless case, while parameter noise results
in consistently higher reward with less variance. This is not

Fig. 4. Progression of adaptive parameter noise standard deviations during
training.

incredibly surprising considering that applying noise to the
actions likely results in more random exploration, whereas
adaptive parameter noise correlates exploration to the actual
network parameters. Figure 4 additionally shows how the
standard deviation of the adaptive parameter noise changes
as training progresses.

It may be tempting to apply both exploration techniques
during training in an attempt to accelerate learning even
further, however, Figure 5 demonstrates that that may not be
the case. Interestingly, the training performance could even be
considered to have degraded when both noise techniques are
incorporated. This is likely due to too much error in the model
which ultimately degradeds training accuracy.



Fig. 5. Comparison of training with both action and parameter noise. Top:
network input rewards during training. Bottom: Total episode rewards during
training.

Notice that after 50,000 episodes, not even parameter noise
training has reached the typical reward of a solved environment
(100 to 140 points). From Figure 3 it appears that the networks
from all training techniques may be approaching an asymptote,
but there is really only one way to find out. Scaling up
the number training episodes by a factor of 10 for only the
parameter noise technique results in the training performance
shown in Figure 6. Notice that after approximately 150k
episodes some higher-reward experiences are explored that
begin to drive learning up towards the rewards that are
typically achieved during successful landings.

B. Evaluation

A qualitative evaluation of the learned models’ behaviors
after 50,000 training episodes reveals that, even though they
have not solved the environment yet, they are all exceedingly
good at stabilizing themselves after being initialized with some
random downward/horizontal velocity. However, it appears
they have not yet learned how to approach the landing pad and
come to rest after stabilizing. Either they will hover to the left
or right of the landing pad (depending on the direction of their
initial velocities) or touch the lunar surface and then rocket
away. This behavior is most likely due to the fact that they
have not yet explored very many, if any, successful landings. In
other words, they are stuck in a local minimum of stable flight
near the landing pad with insufficient experience of actually
landing on the pad to drive their learning.

Fig. 6. Training performance with parameter noise exploration for 500,000
episodes.

Luckily, overcoming this local minimum can be achieved by
simply training longer and allowing the agent to explore more.
Figure 6 again demonstrates this jump in reward after discov-
ering higher-reward episodes. With this more heavily trained
neural network model, the agent is able to successfully land on
the landing pad, however, only under certain initial conditions.
A qualitative evaluation of the lander’s performance reveals
that the agent can only perform a successful landing when its
initial velocity vector is favorable - and also by cheating.

If the lander is initialized with small horizontal velocities in
either direction, it can gracefully maneuver down to landing
pad and come to rest. When there is a large initial horizontal
velocity, however, the lander tends to over-correct and is
not able to slow its vertical velocity causing it to crash. It
seems that with prolonged training the agent was able to
learn that landing on the pad has high reward, but it forgot
how to stabilize itself like it was so good at doing in the
local minimum. This is a good example of how reinforcement
learning algorithms don’t necessarily retain all information that
was previously learned when the training/exploration duration
is increased.

Another interesting aspect of reinforcement learning and
a strategy that this agent has picked up on is the ability to
“cheat”. The agent discovered that if it is able to come to
rest on the lunar surface outside of the landing pad without
crashing and if the lunar surface is not to steep, it can use
one of its side engines to slide into the landing zone. This
was obviously not the intended objective of the agent, but
it was able to pick up this strategy by learning about the
lunar environment - a good example of emergent behavior of
reinforcement learning algorithms.

V. CONCLUSION

In this work, a Deep Deterministic Policy Gradient algo-
rithm was applied to solve the OpenAI Gym Lunar Lander
continuous environment. The DDPG algorithm was chosen
because it is uniquely equipped and suitable for environments
with continuous actions spaces. Two noise-based exploration
strategies were investigated in order to accelerate learning:



Fig. 7. Environment snapshots of a successful lunar landing. (The color of the lunar surface was modified for appearance.)

Fig. 8. Snapshots from more successful and unsuccessful landings.

noise applied to the action outputs of the value function neural
network model, and noise applied to the neural network model
parameters themselves. Parameter noise was demonstrated
to result in better training performance and this exploration
technique was chosen for further training of the agent in
an attempt to solve the problem. By proloning the training
duration with the parameter noise exploration strategy, the
agent was able to make successful lunar landings under
favorable initial conditions. Although it didn’t quite master
the environment with the training that it had, it could possibly
achieve mastery with simply more training. It also happened
to pick up some unexpected emergent behavior: cheating in
order to get into the landing zone after already landing outside.
Ultimately, the DDPG algorithm proved to be a very effective
and efficient model for nearly solving the continuous Lunar

Lander problem (only training for about an hour to achieve
successful landings), and is demonstrably susceptible to the
well known characteristics of general reinforcement learning
techniques.

REFERENCES

[1] D. Silver and G. e. a. Lever, “Deterministic Policy Gradient Algorithms,”
in Proceedings of the 31st International Conference on MachineLearning,
vol. 32, 2014.

[2] T. Lillicarp, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Solver, and
D. Wierstra, “Continuous Control with Deep Reinforcement Learning,”
in International Conference on Learning Representations, 2016.

[3] OpenAI. (2018) OpenAI Spinning Up. [Online]. Available:
https://spinningup.openai.com/en/latest/index.html

[4] OpenAI. (2017) Better Exploration with Parameter Noise.
[Online]. Available: https://openai.com/blog/better-exploration-with-
parameter-noise/


