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ABSTRACT

For an airline, aging aircraft fleets present a challenge in that
they need more maintenance, and are less efficient than newly
purchased aircraft. Ideally, when a carrier has a mixture of
older and newer aircraft at their disposal, they would always
want to fly the newer, more efficient versions. But contin-
uously flying the newer fleet is impossible, because regular
maintenance of these aircraft is required, which make them
unavailable for that time period. Combined with yearly trends
in passenger flying and stochastic fuel prices,optimal predic-
tive maintenance of more efficient aircraft is beneficial to the
airline, which wants to maximise revenue.

In this paper, we frame the given problem as an MDP and
solve it using several algorithms, exploring the comparison of
average earned profits between an optimal maintenance pol-
icy and other policies like a greedy policy, which is more com-
monly used.

1. INTRODUCTION

With the introduction to the market once every few years of
new aircraft with improved aerodynamics, fuel efficiency and
better avionics, flying is getting cheaper, more fuel efficient
and environment friendly, while also enabling airlines to be-
come more and more profitable. A purchased aircraft has a
life span dependent on pressurization cycles, and short haul
aircraft last anywhere between 15-20 years in service, while
some larger aircraft (like the B-747 ) from the 1980s are still
in service today.

This means that any airline will always have, at a given
time, a mixture of older and newer aircraft in their fleet. With
the introduction of new technology, flying the older models
on commercial routes becomes less desirable, and in the ideal
world a carrier would always want to fly the newest, most
efficient aircraft they have on a route, because using that air-
craft will generate more profits.

But that isn’t always possible, since aircraft must undergo
unscheduled and scheduled maintenance from time to time,
in regulation with aviation law and safety procedures. There
will hence be a portion of an airline fleet, at any given time
that would be unavailable to operate. This would consist of a
mixture of old, almost retired aircraft along with almost new,

technologically superior aircraft.

So why should the timing of maintenance schedules for
aircraft be important? It turns out that passenger volumes
(represented in aviation statistics by a very important fraction
called load factor) are seasonal; i.e there are certain times
of the year in which there is a lot more travel, compared to
others. For example, summer months are the holiday sea-
son in which passenger volume surges. In these months,
ticket prices surge as well, and in these months the profit
per passenger increases. Infact, this seasonality is so pro-
nounced that several airlines globally that have not managed
do well in these holiday months have, in recent years declared
bankruptcy in the following fall months due to a dip in de-
mand and not enough capital accumulation from the holiday
months [1].

Hence, in order for carriers to fully capitalise on the sea-
sonal demand for flying, it would be ideal for them to fly
aircraft such that their profit per passenger flown is maximum
as per season. This is a very complicated problem due to
sizes of aircraft fleet, unscheduled maintenance requirements
and further exacerbated by the fluctuating price of Jet-A fuel,
the number one driver of costs in the aviation industry.

This paper is an attempt to come up with a simplified, 2
aircraft (versus a diverse fleet) model of the problem and solve
it as a Markov Decision Process. We attempt to demonstrate
the benefit of prior planning of scheduling maintenance for
older and newer models of aircraft, in order to maximise ex-
pected revenue. We show comparisons with a greedy policy,
which in the present case is to simply fly the more efficient
aircraft all the time until it is not available due to required
maintenance. We investigate the effect of the search horizon
on the expected profits, and conclude with results and how
this work can be expanded.

2. LITERATURE REVIEW

Due to the increasing costs and competitiveness of flying,
there has been active research to try and reduce the overhead
costs of maintenance for airlines. One of the biggest areas
of work is to enable predictive maintenance of airline fleets
using big data, to improve component failure prediction, in-



crease availability, and optimize profits.

Feo and Bard [9] presented a model that both located
maintenance stations and developed flight schedules, in order
to meet the cyclic maintenance requirement for aircraft. Us-
ing a closed loop network as a model, with nodes representa-
tive of geographical locations where maintenance is possible,
and training their network using data from a fleet of 727s,
they attempted to eliminate some maintenance bases(nodes)
in the network to bring down costs for airlines.

The University of Maryland [7] developed a heuristic
model to optimize aircraft maintenance scheduling and re-
assignment. Sriram and Haghani constructed in their paper
an horizon cyclic schedule with maintenance constraints for
heterogeneous fleet of aircraft. The maintenance-scheduling
problem is modeled as well as a closed loop model which
takes as input an Origin Destination pair for each aircraft.
Maintenance costs minimization is based on maintenance
scheduling and aircraft re-assignments (which induce a
penalty taking into account in the model).

Higle and Johnson in their paper 'Flight Schedule Plan-
ning with Maintenance Considerations’ [7] used a model of
maintenance opportunities. Indeed, they incorporate the dif-
ferent maintenance requirements by counting maintenance
opportunities in the time window where the maintenance
should occurred. They chose the best time to execute the
maintenance while maintaining the schedule.

In light of the above approaches, we wish to modify the
traditional closed-loop network approach taken by modelling
a similar problem as a Markov Decision Process. Instead of
reducing costs as most of the above methods do, we aim to
directly maximize expected profits by making the profit our
utility function.

3. METHODOLOGY

3.1. The Bellman Equation

The fundamental approach in this work is to obtain an opti-
mal action for the current time step, simulate the availability
of aircraft in the next time step, and then obtain the optimal
action for the next time step, and so on. The fundamental
equation solved for this is the Bellman Equation:

Ui (s, a) = mazq(R(s,a) + 73, T(s'|s, ) U1 (s"))

An explanation of every component of the above equation in
this problem, is as follows:

e Reward Function: Estimated using real world data, it is
of the following form:

((T.Px L.F — O.C) x Capacity = N Flights)

where

— T.P: Ticket Price: dependent on demand(load fac-
tor).

— L.F: Load Factor: Obtained at every time step us-
ing real data [2], depends on the month to capture
seasonality of travellers.
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Fig. 1: Load Factor distribution for different months. Note
the difference in mean values.

— 0O.C: Operating cost : Operating cost per seat per
flight of aircraft, obtained from real world data.
[4] [3]. Note that it is modelled as independent of
load factor. It can be further broken down into:

O0.C = F.C + FuelCost + M.C

where

x F.C= Fixed costs: Approximated at 40 $ ,per
seat per flight

* Fuel Cost=Cost per seat per flight. Sampled
from a distribution based on real world data
prediction. US Energy Information adminis-
tration published short-term energy outlook
on fuel price. They detailed futures price and
futures price 95 % confidence interval. [5]
Note: We assume that the total cost of fuel
is independent of the number of passen-
gers flying, since the weight of passengers
flying is a fraction of the total airborne
weight.

* M.C= Maintenance Costs per seat per flight

— Capacity: Seating capacity of aircraft
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Fig. 2: Boeing Maturity Curve[4] depicting factor of mainte-
nance cost due to aging. This means older aircraft have higher
M.C in the formula above, reducing profits

— NFlights: No. of flights being simulated

e T(s’|s,a): Estimated based on the recent history of
flying of the aircraft, by keeping track of counts. A
function updates the “counts” based on the action taken
in the timestep, which modifies T(s’|s,a) for the next
timestep.

e Gamma: For this problem we select it to be 1, because
we have finite horizons and future rewards are as im-
portant as current rewards.

o States: In this MDP states represent availability of air-
craft to fly at the current time step. For example, a state
of [1,0] represents that aircraft 1 is available to use and
aircraft 2 is not (is in maintenance).

e Action: Represents which aircraft(l or 2) we use a the
current timestep. The action space at a timestep is de-
pendent on the state we are in. For example, the action
space at state [1,1] is [1,2] and at [1,0] is [1].
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Fig. 3: Depiction of MDP

It is important to note that the game does not end if
state [0,0] is reached. Achieving that state simply means
no flight was possible at that timestep. The reward asso-
ciated with such a state is obviously the most negative.

In the current problem, we use data on a monthly basis as
available on the internet at the Bureau of Transport Statistics
[2]. Hence, one time step represents a month.

We used two algorithms, namely forward search and pol-
icy iteration.

3.2. Algorithms used

3.2.1. Forward Search

The forward search algorithm uses recursion to search the tree
to some horizon d to find the optimal action to take at the
current timestep. It solves the given MDP exactly upto the
given horizon.

Algorithm 4.6 Forward search

1: function SeLEcTACTION(S, )

2: ifd =0

3: return (N1L, ()

4: (a*,v*) « (N1, —00)

5: fora € As)

6: v o— R(J,II)

7 for s’ € S(s,q)

8: (a’,v') < SELEcTACTION(s . d — 1)
9: ve—v+yT(s|s,a)

10: if v>0*

11: (/z‘,y‘)(—(ﬂ,y)
12: return (2, v*)

Fig. 4: The Forward Search Algorithm [6]

3.2.2. Policy Iteration

The policy iteration algorithm computes the optimal policy by
following two steps:

e Policy evaluation: The algorithm estimates the reward
of a given policy.

e Policy improvement: The algorithm finds the best pol-
icy among the possible policies.

Algorithm 4.2 Policy iteration

1: function POLICYITERATION(7z,))

2 k0

3: repeat

4: Compute U™

5: 741 (s) = argmax, (R(s,a)+y >, T(s" | s,a)U™(s")) for all states s
6: fo—k+1

7: until T =TT

8: return 7,

Fig. 5: Policy Iteration Algorithm [6]

3.3. Execution of Policy and Time Stepping

With the theoretical approach declared above, we can solve
the MDP at every timestep. With the absence of real-world
data on the results of execution of various types of policies,



we instead use a simulation of timestepping. The simula-
tion proceeds according to the same probabilities defined in
T(s’|s,a). We perform as many time steps as nMonths, the
number of months we wish to simulate.

Because the results are stochastic, we carry out many sim-
ulations, with each simulation executing timesteps nMonths
from the same initial time. The results demonstrate the con-
vergence of simulated rewards.

4. RESULTS

4.1. Results from Forward Search
4.1.1. Convergence of Simulations

In this section, we aim to demonstrate convergence of simula-
tions. Due to the inherently stochastic nature of the problem,
we demonstrate convergence of simulated rewards by track-
ing the running average of the same against number of simu-
lations. Every simulation is independent of the previous one.

—— Average Reward for Optimal Policy

350000

300000 -

250000 -

200000 -

HUnNnINg Average or Hewara

150000

T T T T T T
0 200 400 600 800 1000 1200
Simulation Iteration

Fig. 6: Simulated reward for 5 months using a search horizon
of 3. The running average converges to a value, which is the
expected reward of following an optimal policy.

4.1.2. Effect of Horizon

In this section, we show the effect of search depth on both
the expected simulated reward and the running time of the
simulation. We calculate an average 10-month reward using
various search horizons and compare the results.

With an increase of search depth, we do not see much im-
provement between converged optimal policy results and
greedy policy results, however the time to compute rises
very quickly. This suggests that while using some looka-
head(depth) is a good idea, looking to far ahead into the

future does not help.

Depth 1 3 5 7

Time to Converge(s) 7.36 | 50.5 | 976.5 | 22664

Optimal Reward(x10°) | 7.7 | 8.14 | 8.23 8.31
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Fig. 7: Effect of horizon experiment: Depth=1, which implies
greedy search.
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Fig. 8: Effect of horizon experiment: Depth=3. Does better
than greedy search.

—— Average Reward for Optimal Policy
900000 Average Reward for Greedy Policy

850000 A

800000 +

750000 A

HUNNING Average of Kewara

700000 A

T T T T T T T T
0 200 400 600 800 1000 1200 1400
Simulation Iteration

Fig. 9: Effect of horizon experiment: Depth=5. Approxi-
mately the same convergent reward as d=3.



4.2. Policy Iteration

So far we employed an online method. The drawback of em-
ploying an online method for this problem is that while ob-
taining the optimum action for the last months we end up
looking at months further ahead which aren’t factored into
our reward. Hence, now we use an offline method to predict
an optimal policy which gives us the best policy for our frame
of search (10 months), without considering the future after
that.

The policy iteration algorithm aims to find the best pol-
icy among the possible policies given the number of future
months to look at. It obtains the optimal reward by iterating
through all possible policies for that number of future months.
Due to stochasticity in the problem dynamics, we ran policy
iteration multiple times until convergence.
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Fig. 10: Policy iteration: converged reward for a 10 month
plan.

From the plot it is immediately visible that policy itera-
tion gives us a much better result than forward search does.
This was expected since since policy iteration gives us the
best plan for exactly 10 months. However, it does not take
into account time after that.

From looking at the resultant optimal policies, we can see
that in the most crowed months (June, July, August), these
policies use the new aircraft(i.e the action is always 1). On the
contrary, the greedy policies may not be able to use the new
aircraft as it has been used in previous months and should go
to maintenance.

S. CONCLUSIONS AND FUTURE WORK

The aim of the work was to demonstrate how planning into
the future can help optimize policy to maximise a reward
function over a specified time period. Specifically, how this
can be applied to the problem of aviation scheduling in order

to make optimum use of improved technology, seasonal load
factor cycles, while keeping taking into account stochastic
variations in the main drivers of industry cost such as fuel
price.

We were able to demonstrate the usefulness of such plan-
ning, and also showed comparative studies of problem hyper-
parameters such as search depth.

We demonstrated two different algorithms and showed the
expected rewards from them.

This work can be easily and rapidly expanded to an in-
dustrial scale with the availability of more accurate real world
data, on various time scales.

e Although the present study has been based on monthly
data, in industry the practice we have tried to optimise
occurs on a time scale closer to a weekly basis.

e In industry, many more factors would have to be taken
into account such as the size and demographics of the
fleet, further routing of aircraft(here we assume the air-
craft flies between just 2 ports for the entire time), avail-
ability of maintenance facilities at given ports, to name
a few.

e The results shown are heavily dependent on the prob-
lem dynamics. Modeling the probabilistic problem dy-
namics in this case is a rather subjective matter. A bet-
ter way to do it would be using real world data on main-
tenance requirements with continuous usage of an air-
frame, but such information is not public and is highly
region/law dependent.
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