
Autonomous Offroading : Terrain Aware Motion Planning for
Ground Vehicles

Kshitij Kumbar∗, Pranav Keni † and Varun Nayak ‡

Current efforts in autonomous vehicle planning and controls generally assume ideal road
conditions. With themotivation ofmaking controllersmore adaptive to general terrain profiles,
we propose a velocity trajectory planner for a bumpy road to provide a smooth ride for the
passenger, using different reinforcement learning techniques. We pose the problem as anMDP
with a finite look-ahead terrain profile and unknown vehicle dynamics.

I. Introduction
Passenger safety and comfort has long been an interesting problem to study due to the wide spread approaches

spanning different areas of research. This includes approaches ranging from active suspension design using optimal
control approaches such as LQR/LQG [1] to cost based planning algorithms such as A* and D* [2]. However, the
active suspension approaches do not consider any lookahead at all, only helping in increasing comfort at each step. The
latter algorithms help in planning paths around difficult terrains and incorporating the additional distance to travel over
slopes but do not plan velocity profiles that maximize comfort. These algorithms also suffer from computational issues
especially when the map is unknown.
In this paper, a velocity trajectory planner is proposed for autonomous vehicles based on the knowledge of the terrain
upto a certain lookahead distance with some uncertainty. The problem is modelled as a discretized Markov Decision
Process, where at each state the action taken is the desired velocity commanded at the next state such that it maximizes
comfort while minimizing time taken to reach the goal. The initial attempts use model-free reinforcement learning
algorithms (SARSA and Q-Learning) to build up the Q matrix using random paths and velocity profiles. An alternate
approach to learn the model from this randomly generated data is also discussed.

II. Baseline Approach
To create a proof of concept for the proposed approach, a model-free approach involving a simplified state space was

implemented and tested. First, we defined a path along which the vehicle would travel. This information encoded in this
path was the change of the gradient of the path (as our reward model would depend on how fast the car would go over
this change of gradient). This was implemented as a randomly generated array of positive values within [0,10]:

P1:n = [∇
2h1 ∇

2h2, , ...∇
2hk, ...∇2hn]

A fixed set of policies which involved using fixed velocity profiles for the path, were used. These velocities profiles were
generated from all possible velocities that the vehicle could achieve. An implementation of the SARSA[3] learning
algorithm was carried out to build our state-action value function Q(s,a) and selected the optimal policy by extracting
maxak

Q(sk,ak).

A. Problem Formulation
The problem formulation involved defining states of the system as:

S =

[
∇2h
dgoal

]
|S | = 10 × 100

where ∇2h is the change of gradient and dgoal is the distance to the goal.

∗Department of Mechanical Engineering, Stanford University, kshitijk@stanford.edu
†Department of Mechanical Engineering, Stanford University, pranavk8@stanford.edu
‡Department of Mechanical Engineering, Stanford University, vunayak@stanford.edu

1

Table 1 Baseline Approach: Results

Algorithm Training Time Advantage over Random Policy
SARSA 2-3 minutes (100 iterations) 22.7%

The action space is the possible velocities that the vehicle should be at for the next state i.e. the vehicle would
achieve the commanded velocity at the next step. Note that instead of time steps, we index our states using the path
index k.

A = ak = vk+1 |A| = 10

A deterministic equation was used for the reward model to populate the rewards for each sample generated during the
learning process. The objective is to penalize high velocities in the presence of large change of gradients of the road
while rewarding high velocities when there is a large distance to goal. This represents greater comfort for the passenger
in the presence of bumps while ensuring the time taken to reach the goal is minimized. The reward model, addressing
the objective of reaching the goal as fast as possible (first term) while making sure to go slow over large bumps (second
term) was formulated as follows:

R(sk,ak) = a1dgoalk |vk | + a2
∇2hk
|vk |

(1)

Here, a1 and a2 are judiciously chosen coefficients. Thus, our problem was defined as an MDP.

B. Training and Results
State, action and reward samples for the learning algorithm are generated from exhaustive simulations using the

reward model developed below. Based on these simulations, we populated the state action value function Q(s,a) using
SARSA and extracted the optimal policy from it during testing. The optimal policy learned using SARSA was tested
against a random policy for a test path. The optimal policy consistently performed 20% better than the random policy
on the test path. The advantage over the random policy was computed as follows:

adv =
∑

rπ∗ −
∑

rπr and∑
rπr and

× 100%

III. Finite Horizon Approach
In the initial approach, a proof of concept was developed which performed noticably better than the random policy

for a given path. However, the finite horizon in terms of value of change of gradients was not considered. In this section
a finite horizon is considered for policy generation with different model based and model free learning methods and a
few methods are used to improve upon the observations from the baseline model.

A. Augmented Problem formulation
The previously formulated state vector is now augmented with current velocity and observed next change of gradient

to get the following augmented state formulation:

S =


Vk

∇2hk
∇2hk+1

dgoal


|S | = 10 × 10 × 10 × 100

where ∇2h is the change of gradient and dgoal is the distance to the goal. It is noted that the state space has significantly
expanded following this addition. Measures taken to account for this increase in state space are described in one of the
later sections.

2

B. Reward Function
With the addition of current velocity values and observed change of gradients, the reward function is now augmented

to account for these state values and generate the rewards accordingly

R(sk,ak) = a1dgoalk |vk | + a2
∇2hk
|vk |

+ a3
∇2hk+1

|ak |
(2)

C. State Space Discretization
Initial observations from the baseline formulation indicated that the fine discretization of dgoal had a negligible effect

on the reward of the system. To counter this, a change in weights was proposed which did not lead to an improvement
in scores. Thus, dgoal values were binned by a factor of 10 to observe the effect it had on the reward output. It was
observed that this binning of the dgoal resulted in negligible difference in the optimal policy score. Thus implementing
binning reduces the state space dimensionality by a factor of 10.

D. Transition Model
In the baseline approach, we assumed that the vehicle could achieve any desired velocity. However, from physics,

we know that this is not true. Therefore, we introduced richer dynamics (with noise) that computed the next velocity as
a function of the current velocity and the desired velocity.

vk+1 = vk + clamp(vdesired − vk,+2,−2) + vnoise

Where vnoise is a number sampled uniformly from the set {−1,0,1}, representing stochasticity in the vehicle dynamics.
The clamp() function represents the acceleration limits of the vehicle.

IV. Training Methods
Three reinforcement learning techniques were implemented: SARSA, Q-Learning and Maximum Likelihood

Model-Based Reinforcement Learning with Randomized Updates (Dyna), as described in [3].

Algorithm 1 SARSA
Require:
Sates S = {1, . . . ,nx}

Actions A = {1, . . . ,na}, A : X ⇒ A
Reward function R : X × A → R
Learning rate α ∈ [0,1]
Discounting factor γ ∈ [0,1]
procedure SARSA(X, A, R, α, γ, λ)

s0 ← initial state
Initialize Q arbitrarily
while k in n do

Select ak based on Q and some exploration strategy
while s is not terminal do

rk ← Robs(sk,ak) . Observe the reward
sk+1 ← Tobs(sk,ak) . Observe the new state
Calculate π based on Q and some exploration strategy
ak+1 ← π(sk+1)

Q(sk,ak) ← Q(sk,ak) + α · (rk + γQ(sk+1,ak+1) −Q(sk,ak))
return Q

3

Algorithm 2 Q-Learning
Require:
Sates S = {1, . . . ,nx}

Actions A = {1, . . . ,na}, A : X ⇒ A
Reward function R : X × A → R
Learning rate α ∈ [0,1]
Discounting factor γ ∈ [0,1]
procedure Q-Learning(X, A, R, α, γ, λ)

s0 ← initial state
Initialize Q arbitrarily
while k in n do

Select ak based on Q and some exploration strategy
while s is not terminal do

rk ← Robs(sk,ak) . Observe the reward
sk+1 ← Tobs(sk,ak) . Observe the new state
Q(sk,ak) ← Q(sk,ak) + α · (rk + γmaxa′ Q(sk+1,a′) −Q(sk,ak))

return Q

Algorithm 3 Max Likelihood Model-Based RL using Dyna
Require:
States S = {1, . . . ,nx}

Actions A = {1, . . . ,na}, A : X ⇒ A
Reward function R : X × A → R
Learning rate α ∈ [0,1]
Discounting factor γ ∈ [0,1]
procedure MaxLikelihoodModelBasedRL(X, A, R, α, γ, λ)

s0 ← initial state
Initialize Q arbitrarily
N, ρ,T,R←φ
for episode in episodes do . Loop through all simulated episodes

while k in samples do
rk ∼ R(sk,ak) . Observe the reward
sk+1 ∼ T(sk,ak) . Observe the new state
Increment N(sk,ak, sk+1
Increment ρ(sk,ak)
Update T,R (Max Likelihood)
Update Q using T,R (Dyna)

return Q

V. Results

Table 2 Policy Generation Approaches : Performance

Algorithm #Episodes Training Time #Iterations to Converge Advantage over Random Policy
SARSA 900 episodes 260 sec >200 50.58%

Q-Learning 900 episodes 233 sec 160 62.88%
Model-Based RL 900 episodes ∼ 38 min N.A. 49.6%

As we can see from the plots for optimal policies, the vehicle attempts to slow down for significant bumps on the road
i.e. large change of gradients. Model-based RL seems to perform worse than expected as we use randomized updates
over a fraction of the state space. In future, prioritized sweeping could be used to address this lack of performance.

4

Fig. 1 SARSA vs Random Policy Velocity Profile.

Fig. 2 Q-Learning vs Random Policy Velocity Profile.

Fig. 3 Model-Based RL vs Random Policy Velocity Profile.

5

Augmented Horizon
Having observed a significant improvement in the optimal policy with the additon of a single observed change of

gradient to the state space, we attemped to include a larger horizon of observed change of gradients. This attempt proved
to be detrimental as the various iterations of this approach resulted in a maximum performance improvement of 71%
with 104 episodes, apart from the added state space size and run time increase associated with it.

VI. Conclusion
In this project we formulated an MDP for vehicle motion planning problem based on a terrain profile, first by

exploring the results of a no horizon based model-free reinforcement learning approach to generating a velocity profile
over a given terrain length and profile and later using these observations to explore a possible alternative approach
in the form of iterative Q-learning with finite terrain horizon information and introduce methods that reduce state
space complexity and increase test performance with the additional state information in the form of observed terrain
information. A combination of these methods resulted in a respectable improvement in overall optimum policy
performance over a random policy.

Even with these improvements, it was evident that the performance could be improved using many different
techniques. A possible approach explored was to increase the number of observed change of gradients to increase
the finite horizon information. However, with an increase in state vector, the size of the state space increases by a
factor of 10. This results in a sparse Q(s,a) information table which is undesirable. A possible approach is to use Deep
Reinforcement learning methods to approximate the Q function to over come the need to store and traverse the expanded
state space for optimum policy generation.

VII. Contributions
• Kshitij: Developed environment simulator and sampler. Augmented and tuned reward function with additional
state considerations. Testing and fine tuning QLearning Algorithm for additional states, path and velocity profiles.

• Pranav: Formulated function for the reward calculation. Implemented the function for clamping the set of possible
velocities at each state and adding noise.

• Varun: Also contributed towards developing the simulator, learning and testing pipelines. Implemented the
model-based RL approach.

Link to Github Repo: https://github.com/varununayak/aa228_project

References
[1] Taghirad, H. D., and Esmailzadeh, E., “Automobile passenger comfort assured through LQG/LQR active suspension,” Journal of

vibration and control, Vol. 4, No. 5, 1998, pp. 603–618.

[2] Saranya, C., Unnikrishnan, M., Ali, S. A., Sheela, D., and Lalithambika, V., “Terrain Based D Algorithm for Path Planning,”
IFAC-PapersOnLine, Vol. 49, No. 1, 2016, pp. 178–182.

[3] Kochenderfer, M. J., Decision making under uncertainty: theory and application, MIT press, 2015.

6

https://github.com/varununayak/aa228_project

	Introduction
	Baseline Approach
	Problem Formulation
	Training and Results

	Finite Horizon Approach
	Augmented Problem formulation
	Reward Function
	State Space Discretization
	Transition Model

	Training Methods
	Results
	Conclusion
	Contributions

