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Abstract

Online advertising is increasingly becoming a predominant source of revenue
for major retailers in the global market. The goal of any platform that relies on
displaying ads to its user base is to try to find an optimal strategy for deciding
which ads to purchase in real-time such that a certain key performance indicator
(KPI) is maximized given a constrained budget. In this paper, we explore various
approaches for modeling the bidding process including formulating the problem in
the Multi-armed Bandits setting as well as considering the policy optimization in
terms of a Markov Decision Process with state represented in terms of unspent
budget, auction number, and a feature vector representing the current auction.
Total clicks or predicted click-through rate (pCTR) serve as the respective rewards
for these two settings. Though we optimize for user clicks, this is easily extensible
to other performance indicators. We find that the multi-armed bandits formulation
using the Upper Confidence Bound and Thompson Sampling algorithms provide
the most promising outcomes on a simulated dataset in comparison to a random
policy, and that optimizing CTR in a constrained budget setting using MDP value
iteration results in strong improvement over random policies.

1 Introduction

Online advertising is a major industry worldwide, accounting for an estimated $333.25 billion in
global spend in 2019 [[1]]. For many businesses, ads are the most commonly used method for driving
customer happiness, conversions, and revenue. The way the digital ad system operates usually
resembles an auction model in which multiple companies bid for the right to show their content to a
given user. Thus, companies must intelligently allocate their limited money towards the best set of
bids that can maximize future revenue.

The standard method that companies have used in digital campaigns to validate which advertisements
to show and when is A/B testing, an approach that relies on showing different groups of users different
content, evaluating the resulting behavior, and statistically analyzing the results [2]]. However, there
are numerous drawbacks with this approach. For one, the process of running A/B tests can be very
long and result in substantial expense. Many organizations have multiple different versions of an ad
that they would like to test, leading to several weeks of experimentation (sequentially) and extensive
engineering and data science efforts [3]. Secondly, these tests are conducted at a given moment of
time without any consideration for ad campaigns that have occurred earlier, which inherently limits
the richness of the conclusions drawn. Finally, A/B tests are static in nature, meaning that if data
distributions and user preferences change over time, a new A/B test must be run to reflect this updated
information.

Given these concerns, reinforcement learning is an attractive method for enabling businesses to
optimize future ad revenue. By balancing exploration and exploitation in real time, reinforcement
learning allows for dynamic decision making regarding which ad to display to a user so as to maximize



overall engagement throughout a campaign. Furthermore, reinforcement learning offers flexibility to
adjust to changes in user preferences while still prioritizing the ads that are most effective.

In this work, we introduce reinforcement learning approaches to optimize the process of deciding
which ad to show a user in a web-based setting. We utilize two primary methods with slightly different
applications: Multi-armed Bandits and Markov Decision Processes (MDPs). In the following sections,
we describe the datasets used and the results achieved using various algorithms.

2 Background and Related Work

Bidding strategy is one of the critical parts of online advertising. In real-time bidding, a Demand-Side
Platform (DSP) moderates the process of competing bids from multiple advertisers, with the winner
of bid being determined by the Ad Exchange (which facilitates the auction transaction of buying and
selling the ad impressions). Each advertiser receives partial information of the auction through the
DSP and is then permitted to make a bid with millisecond latency [4]. Thus, it is crucial to learn a
policy mapping such that with high probability a chosen bidding price for a given auction maximizes
the KPI of interest (in our case CTR) over ¢ auctions. Previous work has considered linear bidding
strategies, where bid price for a given auction is linearly higher for ads with higher expected CTR [5].
Jin et. al., on the other hand, considered the multi-armed bandits setting attempting to choose bid
price in such a way that the expected regret bound after ¢ auctions is minimized [6]]. However, in both
approaches the additional constraint of budget is not a primary consideration (Jin et al. minimize
total purchase cost but do not perform the optimization given a constrained budget).

Cai et. al. approached bidding optimization using MDP’s through a two-step procedure [[7]. First,
they use the existing partial auction binary features from the iPinyou public auction dataset to predict
CTR using logistic regression and use this as the reward for the MDP. To validate the choice of
reward, they compute the mutual information between the market price (part of iPinyou dataset) and
the predicted CTR to show a high correlation. Then, they use value iteration and linear programming
to optimize the MDP such that each bidding choice considers a constrained budget and finds a strategy
that conforms closely to the predicted CTR. Du et. al. build off of this approach considering the
constrained MDP but using a non-linear program to optimize for expected cost per click rather than
CTR which led to an overall improvement in bidding strategy [I].

3 Multi-armed Bandits

3.1 Approach

We can formulate the ad optimization problem as follows. We have d different ads, any of which can
be shown to n successive users. At each time step, we monitor whether or not the user clicks on the
ad we have chosen (assume this happens in real time). If a click occurs, we receive a reward r of 1
and otherwise a reward of 0. The objective is to choose an ad at each time step so as to maximize the
reward, only knowing the previous sequence of actions and rewards. Note that this method ignores
the budget of the advertiser and assumes they have the bandwidth to show an ad to each user.

3.2 Dataset

Due to the lack of publicly-available and relevant datasets, we synthetically generated a dataset with
n = 50,000 and d = 9. These values, while somewhat arbitrary, were chosen because they resemble
a realistic scenario for most companies, given that many sites would have about 50, 000 visitors over
the course of a few weeks and most likely have fewer than 10 variations of an ad to test.

The data for this problem consisted of a n * d matrix of users and the ads they would click on, as
represented by 1’s and 0’s. For example, if data[5, 3] = 1, then user 5 would click on ad 3, meaning
we would get a reward of 1 if we chose to display ad 3 to user 5. Note that while only one ad can
be chosen at a given timestep (for a maximum reward of 1), multiple columns in a given row can
have a value of 1 to represent the possibility of a user having affinity for multiple ads. To create the
simulated data, we seeded the first row of the matrix with a single 1 corresponding to a random ad. For
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Figure 1: Click distribution for ads in simulated dataset ~ Figure 2: Distribution of ads chosen randomly

any ensuing row (user m), for each ad d;, we define P(user m clicks on d;|user m-1 clicked on d;)
and P(user m clicks on d;|user m-1 did not click on d;) to be random values between 0.05 and 0.3
upfront. While there are many valid approaches that we explored, this method was effective in
ensuring sparsity and in most datasets generated (including the one used for experiments) resulted in
some asymmetry among total clicks per ad, allowing for more interesting analysis.

3.3 Data Distribution

To gain a better sense of what the simulated data looks like using our approach, we produced a
histogram of how many potential clicks (i.e. 1’s) there were for each ad in question. From Fig. [T} we
see that ad 2 and ad 0 have the highest counts, while ad 1 and ad 7 have the lowest. Thus, we would
expect any reasonable policy to show the former ads more often and the latter ones less often.

3.4 Random Policy

As a baseline, we first explore a random policy whereby each user is shown a random ad. Figure 2]
shows the number of times each ad is shown to a user. As expected, the distribution is uniform, while
Table [T)indicates that this policy performs very poorly.

3.5 e-Greedy

The e-greedy algorithm balances exploration with exploitation by choosing a random action with
probability € and the best action based on prior data with probability (1 — €) [9]. Figure 3]shows that
reward increases with the value of € up till € = 0.05, at which point there is a steady decay in rewards
corresponding to underexploiting the best ads. As shown in Table[T} this method has substantial
variance, which meant that we had to obtain multiple samples at each value of ¢ and then compute
the mean to produce reasonable reward estimates.

3.6 Upper Confidence Bound (UCB)

The UCB algorithm results in choosing the action (ad) with the highest upper confidence bound at
any given point in time. This approach enables the exploitation of actions with high average rewards
and low variances in addition to the exploration of actions that we still have significant uncertainty
about. More specifically, in accordance with the UCB1 version of the algorithm, we choose the ad
that maximizes the upper bound for each user m, where x; represents the average reward associated
with ad j and n; represents the number of times we have shown that ad previously, as shown below

[10]. . i T m
J* = argmax z; + §log(f)

J nj

As expected, given the more sophisticated management of exploration and exploitation, UCB gives
the best results on the dataset as shown in Table[I] Note that this algorithm is deterministic since we
do not take extra effort to vary the first ad chosen. Figure ] shows that ad number 2 is almost always
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shown to the users. Given the distribution of the data in Fig. [I] we can determine that the superior
performance is a result of heavily exploiting the ad with the highest engagement.

3.7 Thompson Sampling

The final algorithm we explore is Thompson sampling. For each ad, we maintain a Beta distribution
of successes and failures (using a uniform prior). At any point in time, we can draw samples from
each ad’s distribution and select the ad that gives us the highest value (high chance of receiving a
reward). Based on whether we observe a success (click) or failure, we can update the chosen ad’s
Beta distribution and continue the process with all ensuing users [[L1]. Given the relative simplicity
of the data, Thompson sampling is reasonably efficient and can quickly converge on the set of ads
that are most beneficial to repeatedly show.

Table[T]shows that Thompson Sampling is on par with the UCB algorithm, yielding slightly better
results in some cases and slightly worse ones in others. Figure 5] shows that the decision making
between the two algorithms is also very similar, although Thompson Sampling chooses ad 0 slightly
more often. Irrespective, we see that both methods are better than e-greedy (even with an optimized
€ value), and far better than the random baseline, indicating the potential for certain reinforcement
learning algorithms to aid in real-time ad selection.

4 Markov Decision Processes (MDPs)

Given that the constraint of budget is ignored in the Multi-armed Bandits case, we developed an
MDP approach to model the bidding process using the publicly available iPinyou auction dataset.
This dataset contains partial auction information with 10,000 rows per location and is stripped of all
sensitive PII data. Each row contains 12 columns including timestamp, location, IP address, bidding
price, market price, paying price, user clicked, and advertisement id. The data is heavily skewed with



Mean Reward | Standard Deviation
Random 10574.4 85.6
e-greedy (e = 0.05) | 16725.6 263.3
UCB 17128.0 N/A
Thompson Sampling | 17105.7 23.0

Table 1: Results using different algorithms on the simulated dataset

Clicks | Win-Rate | Cost ($)
Random | 19 2.31% 744,883
MDP 271 16.56% 687,794

Table 2: Results using different algorithms on the iPinyou dataset

< 2% of auctions having being clicked by the user. We apply the preprocessing approach adopted in
Cai et. al. to reduce the dataset to include only whether the user clicked the ad, the market price, and
the predicted click-through rate of the auction (using logistic regression of the auction feature vector
from the original dataset) [7]. We split the resulting preprocessed dataset into training and validation
sets with 15% of the data left for validation.

To formulate the task concretely, we represent the bidding process in terms of a Markov Decision
Process constrained by budget where the we define the MDP in terms of a <S, A, P, R, C> tuple. We
consider Click-through rate (CTR) and remaining budget as the state, bidding price as the action,
number of clicks as the reward to maximize, and market price as the cost. We represent the transition
probability as a function of the predicted CTR independent of the current state (S) or action (A).
Thus, P(S’|S, A) = petr(S’) as shown in [7] and is consistent with the MDP as state is represented
in terms of CTR. Thus, the objective of the MDP is to solve the optimization problem and find the
probabilistic policy map such that R is maximal with budget B:

maz,R = Zp(s, a) - R(s,a)

s,a

s.th(s,a) -C(s,a) < B

Here p(s, a) represents the probability of being in state s and taking action a. We want to the find the
optimal policy distribution that maximizes the reward considering a budget constraint. We leverage
scipy linear program libraries to compute the optimization over the preprocessed dataset.

Table [ shows the results when comparing with a random bidding choice over the held out testing set
of preprocessed data. Here, the random policy is generated by choosing a random bid price within
the range of remaining budget at each given auction until the total budget has run out. Then, we
use the truth values to compute performance statistics of each of the algorithms. We see that the
MDP significantly outperforms random bidding in terms of both win rate and cost, while the random
approach seems to approximate the initial click-rate skew found in the original data.

5 Conclusion

Ultimately, we see that both the Multi-armed Bandit and Markov Decision Process approaches to
formulating advertisement optimization have substantial value, while overcoming efficiency and
scale issues that arise with industry-standard techniques like A/B testing. In the case of Multi-armed
Bandits, both the UCB and Thompson Sampling approaches perform very well comparing to random
policy. In the MDP formulation, we find that the optimized policy distribution results in significantly
higher number of clicks and won bids compared to randomly assigning a bid price considering total
budget.

The primary shortcoming with the Multi-armed Bandit experiments conducted is that the simulated
dataset, while designed to represent a real-world scenario, is likely not perfect. Thus, running our
models on real data would add another layer of context to our results. Furthermore, given more



time, additional effort could have been placed on exploring other, newer algorithms and variants
(UCB-ALP, for instance).

In terms of the MDP approaches, in future work, we can attempt to improve on the algorithms by
considering a continuous space of actions and state rather than the discrete setting as analyzed in this
paper. It would be interesting to explore any improvements to number of clicks or cost efficiency that
would result through reinforcement learning algorithms such as Q-learning.

Overall, this set of approaches presents an exciting set of possibilities for modernizing the advertising
industry, and additional work centered on practicality can help bring this to fruition.

6 Contributions

Both V.E and S.S discussed and analyzed the background, related work, and problem formulation.
V.E was responsible for all experimental work pertaining to the Multi-armed Bandits section, while
S.S focused efforts on exploring Markov Decision Processes. The writing of this paper was split
along those lines, with all other sections being equally divided. All code can be found at https:
//github.com/samirsen/rtb-agent.
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