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Solving The Lunar Lander Problem under
Uncertainty using Reinforcement Learning

Yunfeng Xin, Soham Gadgil, Chengzhe Xu

Abstract—Reinforcement Learning (RL) is an area of machine learning concerned with enabling an agent to navigate an environment
with uncertainty in order to maximize some notion of cumulative long-term reward. In this paper, we implement and analyze two
different RL techniques, Sarsa and Deep Q-Learning on OpenAI Gym’s LunarLander-v2 environment. We then introduce additional
uncertainty to the original problem to test the robustness of the mentioned techniques. With our best models, we are able to achieve an
average reward of 170 with the Sarsa agent and 200 with the Deep Q-Learning agent on the original problem. We also experiment with
additional uncertainty using these trained models, and discuss how the agents perform under these added uncertainties.

Index Terms—Deep Reinforcement Learning, Neural Networks, Q-Learning, POMDP, Sarsa
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1 INTRODUCTION

O VER the past several years, reinforcement learning [1]
has been proven to have a wide variety of success-

ful applications including robotic control [2], [3]. Different
approaches have been proposed and implemented to solve
such problems [4], [5]. In this paper, we solve a well-known
robotic control problem — the lunar lander problem using
different reinforcement learning algorithms, and then test
the agents’ performances under environment uncertainties
and agent uncertainties.

2 PROBLEM DEFINITION

We aim to solve the lunar lander environment in the Ope-
nAI gym kit using reinforcement learning methods.1 The
environment simulates the situation where a lander needs
to land at a specific location under low-gravity conditions,
and has a well-defined physics engine implemented.

The main goal of the game is to direct the agent to the
landing pad with as softly and fuel-efficiently as possible.
The state space is continuous as in real physics, but the
action space is discrete.

3 RELATED WORK

There has been previous works done in solving the lunar
lander environment using different techniques. [6] makes
use of modified policy gradient techniques for evolving
neural network topologies. [7] uses a control-model-based
approach that learns the optimal control parameters instead
of the dynamics of the system. [8] explores spiking neural
networks as a solution to OpenAI virtual environments.

These approaches show the effectiveness of a particular
algorithm for solving the problem. However, they do not
consider additional uncertainty. Thus, we aim to first solve
the lunar lander problem using traditional Q-learning tech-
niques, and then analyze different techniques for solving the
problem as well as verify the robustness of these techniques
as additional uncertainty is added.

1. Our code is available at https://github.com/rogerxcn/lunar
lander project

Fig. 1: Visulization of the lunar lander problem.

4 MODEL

4.1 Framework
The framework used for the lunar lander problem is gym,
a toolkit made by OpenAI [9] for developing and com-
paring reinforcement learning algorithms. It supports envi-
ronments for various learning environments, ranging from
Atari games to robotics. The simulator we use is called
Box2D and the environment is called LunarLander-v2.

4.2 Observations and State Space
The observation space determines various attributes about
the lander. Specifically, there are 8 state variables associated
with the state space, as shown below:

state→



x coordinate of the lander
y coordinate of the lander
vx, the horizontal velocity
vy , the vertical velocity
θ, the orientation in space
vθ , the angular velocity
Left leg touching the ground (Boolean)
Right leg touching the ground (Boolean)

All the coordinate values are given relative to the landing
pad instead of the lower left corner of the window. The
x coordinate of the lander is 0 when the lander is on the

https://github.com/rogerxcn/lunar_lander_project
https://github.com/rogerxcn/lunar_lander_project
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Fig. 2: Performance comparison between Sarsa agent under
naive state discretization and random agent.

line connecting the center of the landing pad to the top of
the screen. Therefore, it is positive on the right side of the
screen and negative on the left. The y coordinate is positve
at the level above the landing pad and is negative at the
level below.

4.3 Action Space
There are four discrete actions available: do nothing, fire
left orientation engine, fire right orientation engine, and fire
main engine. Firing the left and right engines introduces a
torque on the lander, which causes it to rotate, and makes
stabilizing difficult.

4.4 Reward
Defining a proper reward directly affects the performance of
the agent. The agent needs to maintain both a good posture
mid-air and reach the landing pad as quickly as possible.
Specifically, in our model, the reward is defined to be:

Reward(st) = −100 ∗ (dt − dt−1)− 100 ∗ (vt − vt−1)
−100 ∗ (ωt − ωt−1) + hasLanded(st)

where dt is the distance to the landing pad, vt is the
velocity of the agent, and ωt is angular velocity of the agent
at time t. hasLanded() is the reward function of landing,
which is a linear combination of the boolean state values
representing whether the agent has landed softly on the
landing pad.

With this reward function, we encourage the agent to
lower its distance to the landing pad, decrease the speed
to land smoothly, keep the angular speed at minimum to
prevent rolling, and not to take off again after landing.

5 APPROACHES

5.1 Sarsa
Since we do not encode any prior knowledge about the out-
side world into the agent and the state transition function is
hard to model, Sarsa [10] seems to be a reasonable approach
to train the agent using an exploration policy. The update
rule for Sarsa is:

Q(st, at) = Q(st, at) + α[rt +Q(st+1, at+1)−Q(st, at)]

Fig. 3: Diagram showing the state discretization and gener-
alization scheme of the x coordinate state variable.

At any given state, the agent chooses the action with the
highest Q value corresponding to:

a = argmaxa∈actionsQ(s, a)

From the equation we can see that we need to discretize
the states and assign Q values for each state-action pair, and
that we also need to assign a policy to balance exploitation
and exploration since Sarsa is an on-policy algorithm.

Intuitively, a simple exploration policy can be the ε-
greedy policy [11], where the agent randomly chooses an
action with probability ε and chooses the best actions with
probability 1 − ε. A simple way of discretizing the state is
to divide each continuous state variable into several discrete
values. However, as shown in Fig. 2, the result shows that
the agent can only reach marginally better performance than
a random agent, and cannot manage to get positive rewards
even after 10,000 episodes of training. It then becomes
obvious that we cannot simply adopt these algorithms out-
of-the-box, and we need to tailor them for our lunar lander
problem.

5.1.1 State Discretization
There are five continuous state variables and two boolean
state variables, so the complexity of the state space is on the
order of O(n5×2×2), where n is the number of discretized
values for each state variable. Thus, even discretizing each
state variable into 10 values can produce 400,000 states,
which is far too large to explore within a reasonable number
of training episodes. It explains the poor performance we
were seeing previously. Therefore, we need to devise a new
discretization scheme for these states.

Specifically, we examine the initial Q values learned by
the agent and observe that the agent wants to move to the
right when it is in the left half of the space, and move to the
left when it is in the right half of the space. As a result, all
the x coordinates far from the center can be generalized into
one single state because the agent will always tend to move
in one direction (as shown in Fig. 3), which helps reduce the
state space.

Therefore, we define the discretization of the x coordi-
nate at any state with the discretization step size set at 0.05
as:

d(x) = min(bn
2
c,max(−bn

2
c, x

0.05
))
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The same intuition of generalization is applied to other
state variables as well. In total, we experiment with 4 dif-
ferent ways of discretizing and generalizing the states with
different number of discretization levels.

5.1.2 Exploration Policy
As the size of the state space exceeds 10,000 even after the
process of discretization and generalization, the probability
ε in the ε-greedy policy needs to be set to a fairly large
number (around 20%) for the agent to explore most of the
state within a reasonable number of episodes. However, this
means that the agent will pick a sub-optimal move once
every five steps.

In order to minimize the performance impact of the
ε-greedy policy while still getting reasonable exploration,
we decay ε in different stages of training. The intuition is
that the agent in the initial episodes knows little about the
environment, and thus more exploration is needed. After an
extensive period of exploration, the agent has learnt enough
information about the outside world, and needs to switch
to exploitation so that the Q value for each state-action pair
can eventually converge.

Specifically, the epsilon is set based on the following
rules:

ε =


0.5 #Iteration ∈ [0, 100)
0.2 #Iteration ∈ [100, 500)
0.1 #Iteration ∈ [500, 2500)
0.01 #Iteration ∈ [2500, 7500)
0 #Iteration ∈ [7500, 10000)

5.2 Deep Q-Learning
The deep Q-Learning method [12], [13] makes use of a
multi-layer perceptron, called a Deep Q-Network (DQN),
to estimate the Q values. The input to the network is the
current state (8-dimensional in our case) and the outputs
are the Q values for all state-action pairs for that state. The
Q-Learning update rule is as follows:

Q(s, a) = Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a))

The optimal Q-value Q∗(s, a) is estimated using the neural
network with parameters θ. This becomes a regression task,
so the loss function at iteration i is obtained by the temporal
difference error:

Li(θi) = E(s,a)∼ρ(.)[(yi −Q(s, a; θi))
2]

where

yi = Es′∼E [r + γmax
a′

Q(s′, a′; θi−1)]

Here, θi−1 are the network parameters from the previous
iteration, ρ(s, a) is a probability distribution over states s
and actions a, and E is the environment the agent interacts
with. Gradient descent is then used to optimise the loss
function and update the neural network weights. The neural
network parameters from the previous iteration, θi−1, are
kept fixed while optimizing Li(θi).

One of the challenges here is that the successive samples
are highly correlated since the next state depends on the
current state and action. This is not the case in traditional
supervised learning problems where the successive samples

are iid. To tackle this problem, the transitions encountered
by the agent are stored in a replay memory D. Random
minibatches of transitions {s, a, r, s′} are sampled from D
during training to train the network. This technique is called
experience replay [14].

We use a 3 layer neural network, as shown in Fig.
3, with 128 neurons in the hidden layers. We use ReLU
activation for the hidden layers and LINEAR activation for
the output layer. The number of hidden neurons are chosen
based on analyzing different values, as shown in section
6.2.1. The learning rate used is 0.001 and the minibatch size
is 64.

...

...
...

...
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Fig. 4: Neural Network used for Deep Q-Learning

5.2.1 Exploration Policy

Similar to Sarsa, an improved ε-greedy policy is used to
select the action, with ε starting at 1 to favor exploration
and decaying by 0.996 for every iteration, until it reaches
0.01, after which it stays the same.

6 EXPERIMENTS

6.1 The Original Problem

The goal of the problem is to direct the lander to the landing
pad between two flag poles as softly and fuel efficiently
as possible. Both legs of the lander should be in contact
with the pad while landing. The lander should reach the
landing pad as quickly as possible, while maintaining a
stable posture and minimum angular speed. Also, once
landed, the lander should not take off again. In the original
problem, uncertainty is added by applying a randomized
force to the center of the lander at the beginning of each
iteration. This causes the lander to be pushed in a random
direction. The lander must recover from this force and head
to the landing pad.

We experiment with tackling the original problem using
Sarsa and deep Q-learning as described in our approach
section, and our observations are demonstrated in section 7.

6.2 Introducing Additional Uncertainty

After solving the original lunar lander problem, we ana-
lyze how introducing additional uncertainty can affect the
performance of the agents and evaluate their robustness to
different uncertainties.
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6.2.1 Noisy Observations
Retrieving the exact state of an object in a physical world
can be hard, and we need to rely on noisy observations
such as a radar to infer the real state of the object. Thus,
instead of directly using the exact observations provided by
the environment, we add a zero-mean Gaussian noise of
scale 0.05 into our observation of the location of the lander.
The standard deviation is deliberately set to 0.05, which
corresponds to our discretization step size. Specifically, for
each observation of x, we sample a random zero-mean
Gaussian noise

s ∼ N (µ = 0, σ = 0.05)

and add the noise to the observation, so that the resulting
random variable becomes

Observation(x) ∼ N (x, 0.05)

We then evaluate the resulting performance of two
agents: one using the original Q values from the original
problem, and the other using the Q values trained under
such noisy observations.

We notice that we can frame this problem as a POMDP,
and compare its performance with the two Sarsa agents
mentioned above. We calculate the alpha vector of each
action using one-step lookahead policy using the Q values
from the original problem, and calculate the belief vector
using the Gaussian probability density function

PDF(x) =
1√
2πσ

e−
(o(x)−x)2

2σ2

This way, we can get the expected utility of each action
under uncertainty by taking the inner product of the corre-
sponding alpha vector and the belief vector. The resulting
policy simply picks the action with the highest expected
utility.

Notice that we could have used transition probabilities
of locations to assist determining the exact location of the
agent. However, after experimenting with different transi-
tion probability functions, we concluded that the transition
probability in a continuous space is very hard to model, and
naive transition probability functions will cause the agent to
perform even worse than the random agent.

6.2.2 Random Engine Failure
Another source of uncertainty in the physical world can be
random engine failures due to the various unpredictable
conditions in the agent’s environment. The model needs to
be robust enough to overcome such failures without impact-
ing performance too much. To simulate this, we introduce
action failure in the lunar lander. The agent takes the action
provided 80% of the time, but 20% of the time the engines
fail and it takes no action even though the provided action
is firing an engine.

6.2.3 Random Force
Uncertainty can also come from unstable particle winds in
the space such as solar winds, which result in random forces
being applied to the center of the lander while landing. The
model is expected to manage the random force and have
stable Q maps with enough fault tolerance.

Fig. 5: Performance comparison of our state discretization
and policy scheme (green), naive state discretization and
policy scheme (blue), and random agent (grey).

Fig. 6: Performance comparison of different state discretiza-
tion schemes in Sarsa.

We apply a random force each time the agent interacts
with the environment and modify the state accordingly. The
force is sampled from a Gaussian distribution for better
simulation of real-world random forces. The mean and
variance of the Gaussian distribution are set in proportion to
the engine power to avoid making the random force either
too small to have any effect on the agent or too large to
maintain control of the agent.

7 RESULTS AND ANALYSIS

7.1 Sarsa
7.1.1 The Original Problem
Fig. 5 shows the average reward acquired by the the random
agent and the Sarsa agent with naive state discretization
and our customized discretization scheme. With a naive dis-
cretization which quantizes each state variable into 10 equal
steps, the agent cannot learn about the outside world very
effectively even after 10,000 episodes of training. Due to the
huge state space, the acquired reward is only marginally bet-
ter than the random agent. In contrast, with our customized
discretization scheme which combines small-step discretiza-
tion and large-step generalization, the agent is able to learn
the Q values rapidly and gather positive rewards after 500
episodes of training. The results show that for continuous
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state spaces, proper discretization and generalization of the
states help the agent learn the values faster and better.

Fig. 6 also shows how different discretization schemes
affects the learning speed and the final performance the
agent is able to achieve. The notation aXbY is used to
denote that the the x coordinate is discretized into a levels
while the y coordinate is discretized into b levels. The results
indicate that as the number of discretization level increases,
the agent in general learns the Q values more slowly, but is
able to achieve higher performance after convergence.

7.1.2 Handling Noisy Observations
Fig. 7 shows the results after feeding the noisy observations
under three agents. The first agent uses the Q values learnt
from the original problem under discretization scheme 5X4Y
and takes the noisy observations as if they were exact. The
second agent is re-trained under the noisy environment
using the noisy observations. The third agent uses the Q
values learnt from the orginal problem, but uses one-step
lookahead alpha vectors to calculate the expected reward
for each action.

Each data point in Fig. 7 represents the average acquired
reward in 10 episodes and can help eliminate outliers. The
results show that the POMDP agent (POMDP in Fig. 7)
receives the highest average rewards and outperforms the
other agents. Of the other two agents, the agent trained
under noisy observations (Trained Q in Fig. 7) fails to
generalize information from these episodes.

In general, there is a significant performance impact in
terms of average acquired rewards with the added uncer-
tainty of noisy observation, and such a result is expected:
when the agent is close to the center of the space, a noisy
x observation can significantly change the action which
the agent picks. For example, when x = 0.05, a noisy
observation has a 15.87% probability of flipping the sign so
that x < 0 according the Gaussian cumulative distribution
function

CDF(x) =
1√

2π × 0.05

∫ −0.05
−∞

e
− (x−0.05)2

2×0.052 dx

This means that the noise has a decent chance of tricking
the agent into believing that it is in the left half of the screen
while it is in fact in the right half of the screen. Therefore,
the agent will pick an action that helps the agent move right,
instead of original optimal action of moving left.

The POMDP agent has the correct learned Q value and
takes the aforementioned sign-flipping observation scenario
into account using the belief vector, which explains why it is
performing the best by getting the highest average rewards.
The agent trained under noisy observation, however, is
learning the wrong Q value in the wrong state due to the
noisy observation and does not take the noisy observation
into account. Thus, it is performing the worst of all three
agents.

7.1.3 Handling Random Force
Fig. 8 shows the result after applying different random
forces to the Sarsa agent under state discretization of 5X4Y.

In the experiments, we introduce three kinds of random
forces: regular, medium and large. In the regular cases, we
ensure that random forces do not go too much beyond the

Fig. 7: Comparison of different agent performance under
noisy observations.

Fig. 8: Comparison of agent performance under different
random forces.

agent’s engine power. In the medium case, we relax that con-
straint, and in the large case, we ensure that the agent cannot
control itself because the random force becomes much larger
than the engine power. The details are described as follows:

1) regular 00: mean equals 0 and variance equals
engine power/3

2) regular 01: mean equals 0 on the x-axis and
engine power/6 on the y-axis, variance equals
engine power/3

3) regular 10: mean equals engine power/6 on the x-
axis and 0 on the y-axis, variance equals engine power/3

4) regular 11: mean equals engine power/6 on both x-
axis and y-axis, variance equals engine power/3

5) medium: mean equals engine power on both x-axis
and y-axis, variance equals engine power ∗ 3

6) large: mean equals engine power ∗ 2 on both x-axis
and y-axis, variance equals engine power ∗ 5

The result suggests that agents would perform well and
offset the effect of the random force in regular cases, while
in the medium and large cases where random forces are
more likely to exceed the maximum range engines could
compensate, there would be an obvious reduction in reward
indicating that the random forces make landing harder. The
results reveal the fact that Sarsa agents have learned a robust
and smooth Q map where similar state-action pairs would
have similar Q value distributions. Slight state variations
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Fig. 9: Average reward obtained by DQN agent for different
number of hidden neurons

caused by random forces would have small influences on
Q value and action selection, which increases the fault
tolerance of the agent.

When state variations become too large, Q maps would
be noisy and total rewards would decrease, in which case
agents tend to lose control because of the random forces.

7.2 Deep Q-Learning

7.2.1 The Original Problem
Fig. 9 shows the average reward obtained (over the previous
100 episodes) by the DQN agent for different number of
neurons in the hidden layers of the neural network used for
predicting the Q-values. At the start, the average reward is
highly negative since the agent is essentially exploring all
the time and collecting more transitions for storing in mem-
ory D. As the agent learns, the Q-values start to converge
and the agent is able to get positive average reward. For
both the plots, the DQN agent is able to converge pretty
quickly, doing so in ∼ 320 iterations. The DQN implementa-
tion performs well and results in good scores. However, the
training time for the DQN agent is quite long (∼ 8 hours).
It is observed that the neural network with 128 neurons in
the hidden layers performs the best and it is chosen as the
hyperparameter value.

7.2.2 Handling Random Engine Failure
Fig. 10 shows a comparison between the agent using Q-
values learned from the original problem when there are
engine failures, the re-trained DQN agent when there are
engine failures, and the original DQN agent when there are
no engine failures. For all the plots, the number of neurons
in the hidden layers of the neural network is 128.

The trained DQN agent performs well on the new envi-
ronment with random engine failures and is able to obtain
positive average rewards of 100+. This shows that even
without retraining, the original agent is able to adjust to
the uncertainty.

For the re-trained agents, at the start, the curves are
almost the same since this is the exploration phase, and
both agents are taking random actions and engine failure
does not affect the reward much. However, in the later
iterations, as the agent learns the environment, the lander

Fig. 10: Comparison of DQN agents under engine failure

without engine failure achieves higher average reward. This
is expected since the random engine failures require the
agent to adjust to the unexpected behavior while trying to
maximise reward. However, even with engine failure, the
agent shows the same increasing trend in average reward as
the original problem and is able to achieve positive rewards
around 100. This shows that the DQN agent is able to
estimate the optimal Q-values well even with the added
uncertainty.

8 CONCLUSION

In conclusion, we observe that both the Sarsa and the DQN
agents perform well on the orignal lunar lander problem.
When we introduce additional uncertainty, the Sarsa agent
is able to handle random forces and the DQN agent is able
to handle engine failures quite well. However, the re-trained
Sarsa agent fails to handle noisy observations. This is under-
standable since the noisy observations affect the underlying
state space and the agent isn’t able to generalize information
from its environment during training. The POMDP agent
performs well with noisy observations and is able to get
positive average rewards since it makes use of belief vectors
to model a distribution over the possible states.

For future work, we would like to combine the different
uncertainties together and analyze how the different agents
perform. Also, we would like to consider all uncertain-
ties while testing the different agents rather than testing
the agents on different additional uncertainties. This will
provide a more holistic overview of the robustness of the
different agents.
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