MDP Formulation for Optimal Wind Turbine
Placement

Lisa Fu
Department of Computer Science
Stanford University
Stanford, USA
Ifu2 @stanford.edu

Abstract—Wind turbines are vital to green power production,
and strategically placing wind turbines in wind farms can
significantly affect the output and performance of wind farms.
For our project, we focus on optimizing wind turbine placement
to yield the highest reward, where reward is defined in terms of
the power generated by the wind farm. Specifically, we model
this problem as a Markov Decision Process (MDP) and find the
optimal placement of a set number of active wind turbines in grid
representing a wind farm of a set size. We run our MDP on an
array of different algorithms (Value Iteration, Value Iteration GS
(Gauss Seidel), Finite Horizon, Relative Value Iteration, Policy
Iteration, Policy Iteration Modified, and Q-Learning) under three
different reward scenarios (Normal, Corrective Maintenance,
Preventative Maintenance). Overall, we find that in general, our
MDP solvers place active wind turbines at optimal locations
corresponding to those with high wind speeds. However, this is
not true when we take into account corrective maintenance costs,
suggesting that how we account for variables such as turbine
condition and wind speed in the reward function may significantly
impact our MDP solvers’ optimal turbine placements.

I. INTRODUCTION

Wind turbines are an important method of green power
production, and strategic organization of wind turbines can
greatly impact the power productivity and output of wind
farms. Therefore, optimization strategies are vital as we seek
to decrease our reliance on coal-powered energy and increase
the efficiency of green sources of energy production. [4]

A number of factors contribute to the efficiency of a
wind farm, and the two we are examining are wind turbine
placement (its physical location in a geographical space), and
maintenance (induced wind turbine inactivity due to mainte-
nance). Both factors stem from sources of uncertainty: wind
turbine placement is affected by the unforeseeable variability
of wind, or the presence of animals and natural habitats,
or neighboring turbine and/or radar signature interference.
Wind turbine maintenance may be caused by natural disasters,
construction material integrity, or wear and tear over time.

In this project, we take an exploratory approach to modeling
wind turbine placement and maintenance by formulating it
as a Markov Decision Process (MDP) and running various
algorithms to solve the MDP in various maintenance cost
conditions. Our ultimate goal is to understand notable patterns
or trends in wind turbine placement in order to better inform
current and future development of wind farms.
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II. PROBLEM

A. Relevant Literature

Optimal Wind Turbine Placement via Randomized Opti-
mization Techniques [8] tackles the same task of optimal wind
turbine placement using a combination of genetic algorithms
and Markov Chain Monte Carlo methods. A survey of the
literature relevant to our task suggests that genetic algorithms
have been common in wind turbine placement research in
general. However, we tackle this task using without genetic
algorithms, instead deciding to model our problem as an MDP.

Wind Turbine Placement Optimization by means of the
Monte Carlo Simulation Method [2] models the problem of
optimal wind farm turbine placement using the Monte Carlo
simulation method. The inputs to the problem were wind data,
dominant wind direction, and wind intensity, and the paper
finds the optimal placement of 30 wind turbines in a wind
park equally divided into 100 cells. Similarly, our project uses
wind data to find the optimal placement of some set number
of wind turbines in a wind park consisting of some set number
of cells. Due to computational constraints from working with
large sample spaces, we tackle this same problem in a much
smaller scale, as we discuss later.

Season-Dependent Condition-Based Maintenance for a
Wind Turbine Using a Partially Observed Markov Deci-
sion Process [3] addresses the problem of maintaining wind
turbines in a season-dependent and condition-based manner
by modeling the problem as a Partially Observed Markov
Decision Process (POMDP). Although this paper specifically
focuses on maintenance of wind turbines whereas we focus on
optimal placement of wind turbines, this paper was important
in helping us understand and model our problem. The paper
introduces important variables that influence the cost and
rewards of wind turbines (e.g. turbine condition, season) as
well as different actions (minor or major preventative or cor-
rective maintenance) that can optimize these costs in the long
term. Although we do not model our problem in such detail
to account for all these variables, this paper introduces the
importance of changing seasonal conditions on wind turbines’
performance and ways we can improve our MDP approach by
considering more variables moving forward.



Optimal Planning and Learning in Uncertain Environments
for the Management of Wind Farms [5] directly responds to the
work of [3] by addressing the main limitations of POMDPs:
fixed state transitions and observations. The paper notes that
in reality, these state transitions and observations are subject
to a significant amount of uncertainty. Therefore, [5] utilizes
the framework of the Bayes-adaptive POMDP (BA-POMDP)
to treat these transition probabilities as random variables that
are updated using the data. This paper introduces planning
and learning in uncertain dynamic systems (PLUS) within
a BA-POMDP to incorporate the conditional probabilities
of wind turbine degradation and damage as uncertain and
flexible transition probabilities. While this paper specifically
brings up these considerations in the context of POMDPs, its
arguments also apply to our MDP and suggest important areas
for improvement.

B. Problem Formulation

We formulate the problem of optimal wind turbine
placement as an MDP defined with the following state space,
action space, transition probabilities, and rewards.

1. State Space

Each state in our MDP is a set of turbine placements
in a grid representing a section of a wind farm. Each cell of
this grid represents a single possible turbine placement, and
each turbine can be either active (1) or inactive (0). An active
wind turbine is a turbine that is producing energy. An inactive
turbine is a turbine that is not producing energy, possibly due
to maintenance or power curtailment. We assume that every
cell in our grid may contain a turbine, but only a set number
m of these turbines may be active at once.

Due to computational constraints from our large state space,
we define our problem as one section of a wind farm that is
represented by a grid of size

3x5; our task is to decide which m = 2 of these 15 possible
turbine placements are active during a given timestep. Note
that the space complexity of this problem increases drastically
as we increase the grid size or the possible number of active
turbines. In the example of a 3 x 5 grid with m = 2 active
turbines, we would have 15C5 = 105 states in our state space.

To minimize the computational complexity of our imple-
mentation, we leverage numpy arrays to create a “flattened”
representation of each state in the state space. For instance,
consider the flattened states [0, 1] and [3, 4]. Each integer
represents a flattened grid index, such that turbine index 0 =
(0,0), turbine index 1 = (0,1), turbine index 3 = (0,3), and so
on. On a 3 x 5 grid, the expanded grid representation of the
state [0, 1] would look like the following:

1 1.0 0 O

1
0O 0 0 0 O
0 0 0 0 O

In this example, the complete state space consists of all
possible combinations of m = 2 active turbines in a grid of
3 x 5 turbines. As described previously, in this case the state
space would be of size 15C> = 105, and each state would be
represented as an integer array of length 2 where each integer
is the flattened representation of grid coordinates (i, j) where
0<i<2and 0 <5 <4 fora grid of size 3 x 5.

2. Action Space

At each timestep, a turbine can either change its state
or remain in the same state that it was in at the previous
timestep. Effectively, this results in the following four cases:
1) A turbine that was inactive at one timestep can become
active at the next timestep
2) A turbine that was active at one timestep can become
inactive at the next timestep
3) A turbine that was active at one timestep can remain
active at the next timestep
4) A turbine that was inactive at one timestep can remain
inactive at the next timestep

Because our main constraint is that m turbines in the grid
may be active at once, we simplify this problem by making
our action space identical to our state space. For instance, if
the grid representation of our current state is

1 1.0 0 O
0O 0 0 0 O
0O 0 0 0 O

and the grid representation of our action is

1 0 1 0

0 0 0 O

0 0 0 O
then our next state is precisely the action we took. This
action encapsulates all changes that occurred to get from
our original state to the next state (our current action). In
this case, this means making no changes to the turbine at
position (0,0) by leaving it active, changing the turbine at
position (0,1) to be inactive, and changing the turbine at
position (0, 2) to be active, and leaving all other turbines as is.

0
0
0

3. Transition Probabilities

The transition probabilities are straightforward given our
previously defined state and action spaces. After all, given the
current state and action, the next state is deterministic; the next
state is precisely the action we took.

Note that because our transition to the next state is always
deterministic given our action,

1 sf=a

0 otherwise

T(s'|s,a) = {

Examples of T'(s'|s, a) are as follows, where we refer to s,
a, and s’ using their flattened rather than grid representations:



e s=10,1,a=12,3],8 =1[2,3] = T(s'|s,a) = 1.

e s=10,1],a=1[2,3],' =[1,2] = T(s'|s,a) = 0.

Therefore, in our implementation we represent our transition
probabilities as a matrix of dimension |A| x |S| x | S|, where A
corresponds to our action space and S corresponds to our state
space. Each action a € A maps to a |S| x |S| matrix, where
element (¢, 7) in this matrix corresponds to T'(s’ = j|s = i, a).
All values in this matrix are 0 except for the column j where
7 = a (this column is filled with 1s).

For instance, for a given action a corresponding to index 0
in the transition probability matrix, if we have 5 states in our
state space S, the |S| x |S| transition probability matrix for
action a is as follows:

—_— = =
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4. Reward Function

In our model, the reward at some state represents the
amount of money in U.S. dollars earned from power
generation by the wind turbines in that state during one
timestep. We define one timestep to be 1 week (168 hours),
as this is a reasonable time frame over which to run active
turbines continuously before turning some turbines on or off.
To calculate the reward for an entire state, we compute the
reward generated by each turbine in the state, and save these
values in a matrix (our reward matrix). The reward for an
individual turbine is the sum of three components:

1) The amount of revenue generated from selling the power
produced by the turbine to consumers. We calculated this
using the following pieces of information:

o The power curve for the Vestas V80-1.8 wind tur-
bine, which is one off the turbines that is installed
at multiple sites in Northern California according to
the U.S. Department of Energy’s Wind Turbine Data
Set [7]. This power curve provides power output in
kilowatts per hour for the Vestas turbine at different
wind velocity ranges.

e The average wind velocity at the site of the tur-
bine. To calculate this, we leveraged wind velocity
data from the U.S. Western Wind Dataset [6] from
the National Renewable Energy Laboratory. This
dataset provides minimum and maximum expected
wind velocities across the Western United States,
and we were able to use it to generate average wind
velocities for a region in Northern California that
contains a sizeable wind energy farm.

o The price per kilowatt-hour of electricity in Califor-
nia

e The number of hours over which to calculate rev-
enue generation (i.e., the number of hours in one
timestep)

2) The operational cost of switching a wind turbine on and
off (only in cases when a turbine changes state from ac-
tive — inactive or inactive — active). We experimented
with different values for this cost, as it was difficult to
find reliable information that quantified this cost.

3) The cost of performing corrective maintenance or pre-
ventative maintenance on an inactive turbine (since
maintenance is one of the largest causes of wind turbines
being shut off). We experimented with different values
for the cost of corrective and preventative maintenance,
and used the figures presented in [3] as a starting point.
We added the cost of performing corrective maintenance
and preventative maintenance during separate runs, so
that we could compare the optimal policies generated
when all maintenance is done correctively (i.e., only
when a turbine breaks) vs. when all maintenance is done
preventatively (i.e., when a turbine is expected to break,
but it hasn’t broken yet). We also performed some runs
without adding any additional cost for PM or CM, so
that we could compare the policy generated by this run
to runs that accounted for PM and CM (described in
more detail in the Experimental Methodology section).

III. EXPERIMENTAL METHODOLOGY
A. Datasets

We used two datasets to model our problem. The U.S. Wind
Turbine Dataset [7] contains data on U.S. wind turbine place-
ments and characteristics of wind turbines (such as physical
specifications and power output) and the Wind Integration
National Dataset [6] contains data on wind velocity, wind
power production, wind resources, infrastructure, and site
analyses across the continental United States. As described
in the previous section, we utilized these datasets when
calculating the reward for each state (since reward is based
on power output, which in turn depends on a wind turbine’s
specifications and the wind velocity range in a particular
geographic region).

B. MDP Toolbox

We used the MDP Toolbox: mdp module [1] for Python to
formulate and run algorithms against our MDP. Once installed,
this module provides functions for performing value iteration,
policy iteration, and Q-learning on a pre-defined MDP. In
order to use these functions, we had to construct matrices
to represent our states, actions, transitions, and rewards. This
requirement partially motivated the MDP structure that we
described earlier (in which the states, actions, transitions, and
rewards are all represented in matrix form).

C. Experiments

After defining the MDP using the Python mdp module, we
ran the MDP under various state and action space constraints,
with the following algorithms: Value Iteration, Value Iteration
GS (Gauss Seidel), Finite Horizon, Relative Value Iteration,
Policy Iteration, Policy Iteration Modified, and Q-Learning.
We were able to run three different “scenarios”, with different



reward functions depending on the specification of turbine
inactive state. They are named and described in high-level
below:

1) “Normal”: when a turbine is active, it generates revenue
based on power output. When a turbine is inactive,
the only cost is the amount of lost revenue, and any
operational cost of turning a turbine off.

2) “Corrective Maintenance (CM)”: when a turbine is
active, it generates revenue based on power output.
When a turbine is inactive, it accrues a penalty that
is relatively large (in addition to any operational cost),
to reflect the high cost of having to undergo corrective
maintenance [2], or maintenance that may require a
significant amount of time and resources.

3) “Preventative Maintenance (PM)”: when a turbine is
active, it generates revenue based on power output.
When a turbine is inactive, it accrues a small penalty (in
addition to any operational cost), to reflect the minimal
cost of doing preventative maintenance [2].

Having these three distinctions will be interesting to explore
how the MDP solvers may choose optimal policies given the
scenarios, especially since turbine inactivity due to mainte-
nance in the real world is rarely a predictable occurrence and
may require additional foresight and data analytics to help
wind farm managers draw conclusions on how they should
place their wind turbines.

IV. DATA AND RESULTS
A. Optimal Action Frequencies and Connectivity

We started with a qualitative approach to visualize and
reason about optimal policies given the various algorithms we
used to solve our MDP. With a small enough state space (in
this case we used 5C5, where 5 is the total number of available
turbine placements, and we are limited to choosing 2 turbine
locations as “active”), all of the algorithms converged to the
same optimal policy. We compare the optimal policy across
our three different scenarios.

Below are graphs generated using Value Iteration:
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Fig. 1. Value Iteration for Normal Scenario.

It is interesting to see how clusters begin to form in the
graphical representation of the optimal policy, where multiple
states converge to the same action and next state. Qualitatively,
this may denote that there are certain actions that are more
favorable than others, and we are able to sort the optimal

Fig. 2. Value Iteration for CM Scenario.
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Fig. 3. Value Iteration for PM Scenario.

policy into a frequency count instead, and analyze the most
frequent state transition as the final optimal state for turbine
placements.

B. Optimal Policy for 5C5

We needed to limit our state space due to memory and
runtime constraints, so started off with analyzing the optimal
policy for a 5C5 state and action space.

Below are the most frequent actions taken by all the
algorithms, sorted by descending frequency from left to right.
The tables show the top frequent actions by scenario, and
highlighted in green is the most common frequent action
across all algorithms (and those highlighted in yellow are
second common, and highlighted in red are uncommon).

Beneath each table is a graphical representation of the most
frequent action, to show visually what the optimal placement
looks like in grid form, juxtaposed with the actual wind speed
data at each location.

Value Iteration 3 8 1 917]2
Value Iteration GS 3 /8|2 ([9]7]1
Finite Horizon 3|8 119]7(2
Relative Value Iteration B 8 1 917]2
Policy Iteration 3 8 7 9 2 1
Policy Iteration Modified 8 7 913 |2 1
Q-Learning 3(s|8|9|7]2
Most Frequent (Left to Right) 3 8 1 9 | 7|2

Fig. 4. Table of most frequent actions by solver, for "Normal” scenario.
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Fig. 5. Visualization of most frequent action (a=3) for Fig. 4.
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Fig. 6. Table of most frequent actions by solver, for "CM” scenario.

Fig. 7. Visualization of most frequent action for Fig. 6.

Value Iteration 819|174 |3[2]1
Value Iteration GS 819|174 |3[2]1
Finite Horizon 89 |7]|4]|3]2 1
Relative Value Iteration 8 9 1 7 B] 2 |NA
Policy Iteration 8|19 |7 ]|4|3]|2 1
Policy Iteration Modified 89 |7]|4]|3]2 1
Q-Learning 9108 1 | 5 |[NA[NA
Most Frequent (Left to Right) 8 9 7 4 3 2 1

Fig. 8. Table of most frequent actions by solver, for ”"PM” scenario.
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Fig. 9. Visualization of most frequent action for Fig. 8.

C. Optimal Policies for 15C,

After running the MDP solvers for a 5C5 state and action
space, we expanded to both 15C and 15C'5 state/action spaces,
to see if the MDP solvers were still able to find optimal
solutions given the added complexity of additional space.
Below are the visual representations of the most frequent
action across all solvers for the respective state and action
spaces, and for each scenario. The shading of the grid indicates
the velocity of wind speed at each location.

0-5.6 m/s

Fig. 10. Most frequent action for 15C2, same for "Normal” and "PM”
scenarios.

6.4-8 m/s
8-8.8 m/s

Fig. 12. Most frequent action for 15C3, same for "Normal” and "PM”
scenarios.

0-5.6 m/s

8-8.8 m/s

Fig. 13. Most frequent action for 15C3, "CM” scenario.

V. DISCUSSION AND CONCLUSION
A. Notable Trends

From our various experiments, we were able to draw some
insights regarding the strategic placement of wind turbines.

1) Optimal Placements at High Wind Speeds: In general,
the MDP solvers all choose optimally in the “Normal” sce-
nario, meaning they all place active wind turbines in the cells
with the highest wind speeds. This trend makes sense, as high
wind speeds result in higher power outputs and thus greater
reward.

2) “Normal” & “PM” Scenarios vs. “CM” Scenario:
Notice that from Figures 10 and 12, we observe that the MDP
solvers perform similarly for the “Normal” and “PM” scenar-
ios for the 15C5 and 15C5 experiments, respectively. In both of
these scenarios, the solvers choose active turbines optimally by
choosing the turbines in high wind speed locations. However,
note that from Figures 11 and 13 for the 15C5 and 15C5
experiments, respectively, the “CM” scenario selects active
turbines sub-optimally in terms of wind speed.

This makes sense intuitively, as the “Normal” scenario
should determine the optimal wind turbine placement based
on wind speed, and the “PM” scenario should assign a small
penalty when turbines must undergo preventative maintenance.
If this penalty is negligable, the “PM” scenario’s optimal
turbine placements should not differ much from those of



the “Normal” scenario. However, the “CM” scenario assigns
a significantly higher penalty when turbines must undergo
corrective maintenance, meaning that wind speed may not be
the determining factor in this scenario when optimizing turbine
placement.

Although our experiments do not definitively suggest the
reasoning behind the optimal placements in the “CM” sce-
nario, we understand why this difference exists between the
“Normal” & “PM” scenarios and the “CM” scenario.

B. Future Work

There are several ways in which we could extend this
project to more effectively model wind turbine placement and
maintenance policies.

1) POMDP Representation: To begin, we could turn our
model into a POMDP which could account for observations
based on wind turbine sensor data. This is a more realistic
representation of how anomalies and failures are actually
detected in wind turbines: in practice, sensors capture in-
formation about wind turbine failures and alert wind turbine
operators to the need for maintenance. However, sensors are
not always accurate, and can sometimes incorrectly report a
turbine anomaly or failure (either by reporting a failure when
there isn’t one, or by not reporting a failure when one occurs).
A POMDP representation would allow us to use a more
sophisticated transition function that captures the probabilities
of false positives and false negatives in sensor data.

It would also enable us to encode for different degrees of
failure (i.e., a minor failure requiring minimal maintenance
work vs. a major failure requiring significant maintenance
work). Coding for different degrees of failure would allow us
us to construct a more sophisticated reward function that takes
the cost and time of required maintenance work into account
when computing the net reward generated at each timestep.
With a more sophisticated reward function, we could then
compare interesting tradeoffs between various maintenance
policies, such as performing a lot of preventative maintenance
up-front versus handling maintenance issues only when a wind
turbine breaks.

2) Additional Variables: Apart from leveraging a POMDP
representation to better model wind turbine failures, it could
be beneficial to take variables like seasonality and wind angle
into account when constructing our model.

Seasonality is important because the rates of wind turbine
failures (and likely of sensor accuracy) change with the
seasons, particularly in geographic regions with dramatically
different weather in different seasons. Areas with harsh winters
are especially interesting, as severe winter weather conditions
can adversely affect wind turbine performance.

Wind angle is an interesting factor to consider when com-
paring different placements of turbines: the angle at which
a wind turbine’s blades face the wind can have a pronounced
affect on the turbine’s power output, and the draft from nearby
turbines can affect the wind velocity and power output at a
particular turbine. These factors are quite complex to model,

but could prove useful in constructing a model that more
accurately represents how wind turbines operate in practice.
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