
CS238: Reinforcement Learning for solving Coda Game

Yanlong Ma
yanlong@stanford.edu

Yu Zeng
zengyu@stanford.edu

Jiahao Zhang
jiahao21@stanford.edu

December 7, 2019

Abstract
This paper presents a reinforcement learning approach
to the famous board game Coda (also called DaVinci
Code). We modeled the game as a Markov Decision Pro-
cess and attempted to solve it using methods learned in
CS238. Due to the game’s massive state-action space, we
adopted global approximation and implemented both on-
line and offline solution techniques to solve the problem.
We tested the developed policies according to theirs win
rates against an opponent doing random actions. The re-
sult indicates our best agent outperforms the naive bench-
mark by five percent while remains potential for further
improvement.

1 Introduction

Figure 1: Coda (aka. DaVinci Code) Preview.

The Da Vinci Code game is a card game played by
multiple players. The goal of the Da Vinci Code game is
to reveal the player opponent’s secret codes before they

uncover the player. Each player begins by drawing a
certain (depending on the number of players) numbered
tiles from a pool. After each player lines up the tiles in
numeric order so that only he or she can see them, play
begins.
On the player turn, draw a new tile from the pool and
set it to the side of your lineup. Choose a tile in the
opponent’s array, and then attempt to identify it (e.g.
”This is a Black 1.”). If the player is correct, the opponent
reveals the tile. If the player is wrong, he/she must show
the tile drawn from the pile and insert it into your lineup,
in sequential order. As long as the player make cor-
rect guesses, the player can keep guessing additional tiles.

• Section II: reviews related work, including previous
approaches for solving card games;

• Section III: define the game model, include state and
action;

• Section IV: details our reinforcement learning ap-
proach;

• Section V: compare and analyze our experimental re-
sults;

• Section VI: make conclusions for our approach.

2 Related Work
Da Vinci Code game is a typical card game that has well
definite rules. This kind of imperfect information card
game with a relatively small state space and action space
could be solved by reinforcement learning well. Exam-
ples range from simple Blackjack and UNO games to

1

much more complicated games such as Mahjong and Go.
In fact, there are many toolkits developed to solve card
games. In RLCard [5], the authors build several envi-
ronments for different card games with different algo-
rithms. For the Da Vinci Code game, in particular, there
are heuristic approaches [4] but no prior work has been
found. We review several works done similar to this
game. Deep Q-Learning as a relatively simple algorithm
has been used widely, some other algorithms include Neu-
ral Fictitious Self-Play (NFSP) [3], Deep Counterfactual
Regret Minimization (DeepCFR), [1], etc. In our project,
rather than using a single algorithm, we try out using sev-
eral basic algorithms to compare the performance with
Deep Q-Learning and Double Deep Q-Learning.

3 Definition
The game can be represented as a typical reinforcement
learning problem which consists of states, actions, transi-
tions, and rewards. In addition, in order to simplify the
problem, we make three assumptions below:

• The game ignores the 2 Jokers in the normal game.

• The number of players will be 2.

• The player has to continue guessing if he/she makes
a correct guess.

3.1 State
In a game with a total of n cards, We define the state space
S as a vector with 3n components, which can either be 0
or 1. As shown in the Figure 2, the first 2n components
of the vector are used to denotes whether each card from
the pool is displayed or hidden by the agent and the last n
components represent the cards that have been displayed
by the opponent. The state vector can be seen as the repre-
sentation of information a human player can gather during
playing the game.

3.2 Action
Since in the worst case one player can hold n cards and
for each card there are n possible values, we can define
the action space as a n2-vector. Action kn + j, where

Figure 2: Vector representation of the state space.

k ∈ [0, n − 1], j ∈ [0, n − 1], denotes the guess of the
kth card being card value j. The components, which we
would later obtain, are the Q values for the actions.

Figure 3: Vector representation of the action space.

3.3 Transition
Since the state vector consists of binary numbers, the tran-
sition is simple. If the agent gets a new card or has to show
a card, then change the number 0 at the corresponding po-
sition to number 1.

Figure 4: Vector representation of the transition.

2

3.4 Reward
There are two types of rewards:

• Step reward: the reward after each guess. If correct
receive 10 points else reduce 10 points;

• Final reward: the reward after each game. If won
receive 10000 points else receive -10000 points.

In order to win the game in fewer steps, a discount factor
γ will be applied for each step.

3.5 Addition
Note, the game will end in three conditions:

• Agent wins: the opponent has no hidden card;

• Opponent wins: the agent has no hidden card;

• The last player wins: the pool is empty; the player
draws the last card wins since he can infer all the
cards.

4 Methods
In this project, we build 5 policy for the agent and the
opponent. The performance is estimated by the winning
rate of a certain policy to the basic random policy.

4.1 Base - Random Policy
This policy just randomly chooses a random feasible ac-
tion (position, guessing). The random policy is only used
by the opponent to estimate the performance of other poli-
cies. By calculating the winning rate of the agent, we can
estimate the performance of a certain policy.

4.2 Benchmark - Heuristic Policy
The heuristic policy is an approach to the problem that
employs a human player’s practical method. The ap-
proach is concluded as the following 6 steps [4]:

• Filter out the game’s secret which finds all the possi-
ble number of the opponent’s hidden card;

• Keep the same color with the chosen card. Since we
know the color of the chosen card, we can get rid of
the possible numbers with a different color;

• Find the lower and upper bounds based on the card
position. Since the i-th card has rank > I and last
card have rank < n – I, we can get rid of the impos-
sible potential numbers.

• Get the lower and upper bounds based on the nearest
shown card. Since the cards are ranked, we can refine
the potential solutions.

• Exclude the rank from the same color to refine the
possible numbers.

• Calculate the probability of each potential number
and return the largest one.

The heuristic policy does not base on any learning algo-
rithm, but due to the complexity of the game, it works
well in general. We use heuristic policy as a benchmark
to check how well the other policies perform.

4.3 Q-Learning and Sarsa
The size of state space is 23n and the size of the action
space is n2. Therefore, the problem’s complexity makes
it hard to use Mode-Based learning algorithms (e.g. Max-
imum Likelihood Model-Based Methods). Instead, using
model-free learning which do not need the transition and
reward matrices is a better choice. In fact, all the princi-
pal approaches of this paper are model-free reinforcement
learning. Q-learning is the core approach of all the model-
free reinforcement used in this paper.
Although the ideal size of the state space is large, a fair
proportion of states will never be shown up. For exam-
ple, [1, . . . , 1; 1, . . . , 1, . . .] is an impossible state because
a card cannot be both shown and hidden. Thus, the Q-
Learning and Sarsa algorithms are not too memory inten-
sive. The maximum epochs used in this paper is 10000.

4.4 Deep Q-Learning
As the state size and action size become larger and larger,
it is hard to infer the Q value from the states we already
explored. The amount of both memory and time required
boom. By using the neural network to approximate the

3

Q value, we modify the original Q-Learning algorithm to
Deep Q-Learning algorithms.

Q(st, at)← Q(st, at)+

α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
The key steps of Deep Q-Learning summarize in the

following:

• Store all the past explore;

• Choose the action by maximizing the output of the
Q-network;

• Calculate the loss function which is the squared error
of the predicted Q value and the target Q value.

θk+1 ← θk−

α∇θEs′∼P (s′|s,a)

[
(Qθ(s, a)− target (s′))

2
]∣∣∣
θ=θk

where target = r + γmaxa′ Q(s′, a′; θ)

The figure below shows the difference between Q-
Learning and Deep Q-Learning.

Figure 5: Q-Learning v.s. Deep Q-Learning.

4.5 Double DQN
Double Q-learning is an off-policy reinforcement learn-
ing algorithm, where a different policy is used for value
evaluation than what is used to select the next action. In

practice, two separate value functions are trained in a mu-
tually symmetric fashion using separate experiences, QA

and QB [2]. The double Q-learning update step is then as
follows:

Define a∗ = argmaxaQ
A (s′, a)

QA(s, a)← QA(s, a) + α(s, a)
(
r + γQB (s′, a∗)−QA(s, a)

)
Define b∗ = argmaxaQ

B (s′, a)
QB(s, a)← QB(s, a) + α(s, a)

(
r + γQA (s′, b∗)−QB(s, a)

)
Similar to Deep Q-Learning, we use the neural network

to approximate the Q values and obtain the Double Deep
Q-Learning algorithm.

5 Results
The parameters used for each approach is summarized as
the table below:

Parameters
Approach Number

of Cards
(n)

Initial
Cards
(nStart)*

Epoch

Heuristic Policy 24 1 N.A.
Q-Learning 24 1 10000
Sarsa 24 1 10000
Deep Q-Learning 24 1 2000**
Double Deep Q-Learning 24 1 2000**

* initial number of cards for each player.
** due to the complexity of the neural network comput-
ing, we limit the Epoch for Deep Q-Learning and Double
Deep Q-Learning to 2000.

The performance of each approach is summarized as
the table below:

Performance
Approach Winning Rate

(n)
Running
Time (sec)

Heuristic Policy 0.839 6.43
Q-Learning 0.963 11.58
Sarsa 0.965 13.73
Deep Q-Learning 0.895 18 / 32*
Double Deep Q-Learning 0.915 25 / 128*

4

* batch size = 32 / batch size = 128

The Heuristic Policy approach does not need to train
the model. We ask the agent played 10000 games with
the random opponent directly. For both Q-Learning and
Sarsa approaches, the training phase consists of 10000
games versus a random opponent. For Deep Q-Learning
and Double Deep Q-Learning, the training phase consists
of 2000 games versus a random opponent. After training
the model, we ask the agent played 200 games with the
random opponent. The results show:

• The performances of Sarsa and Q-Learning are very
close. They have the best performance among all the
approaches;

• The performance of Double Deep Q-Learning is bet-
ter than Deep Q-Learning. Both of them perform
well;

• The Heuristic Policy has the worst performance
among the 5 approaches. However, 84% winning
rate is still acceptable.

All the 4 model-free reinforcement learning ap-
proaches work well in this game. Both Deep Q-Learning
and Double Deep Q-Learning use neural networks to
estimate the Q values. However, since the game is not
very complex, both state space and action space are
not large. It is possible to infer the Q values for all the
potential states and actions. Thus, the performances
of Q-Learning and Sarsa are better because they can
estimate Q values more accurate.
If we keep increasing the state space and action space
size, the Deep Q-Learning and Double Deep Q-Learning
will show their advantages.
As expected, the cost of the two neural networks-based
models is expensive since the additional time cost on
training one more neural networks.

6 Conclusion/Future Work
In this paper, we presented a heuristic policy and 4 re-
inforcement learning approaches to the Da Vince Code
game. All the approaches were able to win the ran-
dom policy opponent. The 4 reinforcement learning

Figure 6: Loss of Deep Q-Learning.

Figure 7: Loss of Double Deep Q-Learning.

approaches had better performance than the benchmark
agent. Due to the complexity of this game, Q-learning and
Sarsa achieved the best success with an over 95% winning
rate.
For future work, we need to consider the exemptions
above. The agent could choose to stop guessing. Besides,
we could add the 2 Jokers which will hugely increase the
complexity of the game. Moreover, we could try the other
reinforcement learning approaches mentioned in the re-
lated work section.

5

7 Contributions
Jiahao Zhang’s work focused on the model simulation
and the Deep Q-Learning approach as well as surveying
the relevant works and making suggestions.
Yu Zeng’s work focused on the practice of all the
approaches, improving the performance of the code, and
looking for the related works.
Yanlong Ma’s work focused on the summary of the
approaches, results, and creation of the framework of the
paper.

References
[1] N. Brown, A. Lerer, S. Gross, and T. Sandholm. Deep coun-

terfactual regret minimization, 2018.
[2] H. V. Hasselt. Double q-learning. In J. D. Lafferty, C. K. I.

Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, ed-
itors, Advances in Neural Information Processing Systems
23, pages 2613–2621. Curran Associates, Inc., 2010.

[3] J. Heinrich and D. Silver. Deep reinforcement learning from
self-play in imperfect-information games, 2016.

[4] hello-world zsp. The-da-vinci-code-board-game, 2017.
[5] D. Zha, K.-H. Lai, Y. Cao, S. Huang, R. Wei, J. Guo, and

X. Hu. Rlcard: A toolkit for reinforcement learning in card
games. arXiv preprint arXiv:1910.04376, 2019.

6

