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Abstract—Energy storage systems (ESSs) on the electric grid
participate in grid applications, for which their dispatch (charge
and discharge) are financially compensated based on the value
of that application. Furthermore, a single ESS is capable of
participating in multiple grid applications, with the potential
for multiple value streams for a single system, termed ’value-
stacking”. This paper introduces a framework for decision
making using reinforcement learning to analyze the financial
advantage of value-stacking for ESSs, as applied to a single
residential home with a single ESS. A policy is developed via Q-
learning to dispatch the ESS between two grid applications: time-
of-use (TOU) bill reduction and energy arbitrage on locational
marginal price (LMP). The performance of the dispatch resulting
from this learned policy is then compared to four other dispatch
cases: a baseline of no dispatch, a naively-determined dispatch,
and the optimal (highest revenue) dispatches for TOU and LMP
separately. The TOU+LMP dispatch policy obtained via Q-
learning led to the highest revenue and the lowest cost among
all dispatch methods, successfully demonstrating the financial
advantage of value-stacking.

I. INTRODUCTION

Energy storage systems (ESSs) are a critical part of the
renewable-fueled, sustainable energy grid of the future. Cur-
rently, ESSs are used in such renewable grid systems in
grid applications, which support a variety of different stake-
holders, including utilities, transmission operators, and utility
customers (i.e. consumers of electricity) [1]. Generally, these
services can be divided into “behind-the-meter” (BTM) ser-
vices, which support customers, e.g. providing power during a
blackout, and “front-of-meter” (FOM) services, which support
the grid at large, e.g. regulating grid voltage. Currently, a
single energy storage asset can only participate (provide and
be compensated for) BTM or FOM services, but not both.

However, ESSs are still expensive, and many applications
do not require energy storage dispatch at all times. From
this, many operators of ESSs seek to use the ESSs in “value-
stacking”; that is, using a singular energy storage resource for
multiple different services/grid applications. Value-stacking is
supported by federal energy policy, via FERC Order 841,
which directed transmission grid operators to provide means
for energy storage to participate in both BTM and FOM
services [2]]. It is also supported by California legislation, via

Ed Han Xue
Dept. of Chemical Engineering
Stanford University
Stanford, CA, USA
edmondx @stanford.edu

Kevin Moy
Dept. of Energy Resources
Engineering
Stanford University
Stanford, CA, USA
kmoy 14 @stanford.edu

the Multi-Use Application framework{ﬂ We hope to validate
the premise of value-stacking: That by having the option to
choose between multiple different grid applications, that the
value is greater than participating in either grid application
alone.

II. METHODOLOGY
A. Problem description

We can reduce the problem down into two grid applications:
First, the application of time-of-use (TOU) bill reduction,
or dispatching the energy storage to reduce the utility bill,
by reducing the energy consumed by the load as measured
through a utility meter, and second, the application of energy
arbitrage, or “buying low/selling high” on the energy mar-
ketplace according to locational marginal prices (LMP). We
assume a system that will allow for both such behavior, as
shown in Figure

We size the system to be equivalent to a Tesla Powerwall,
rated at 5kW continuous power and 14kWh rated energyﬂ
and assume that the energy storage has no degradation and
a dispatching efficiency of 100%, with SOC limits of 10%
and 90% of rated energy. We also assume that the continuous
power rating of 5 kW holds as the power limit for both
charging and discharging.

The decision is whether to participate in TOU dispatch,
LMP dispatch, or neither, for the goal of maximizing value,
or the total TOU savings + LMP energy arbitrage revenue
over the entire year. We can define this explicitly with the
following equation and definitions in Table [} to define the
cumulative revenue V' from the beginning of the year up until
time period t:

V(1) = h 3 mlt') [dn(t') — em(t)] 0

Uhttps://www.utilitydive.com/news/california-regulators-first-to-allow-
multiple-revenue-streams-for-energy-st/516927/
Zhttps://www.tesla.com/powerwall
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Fig. 1. Power flow diagram of system in this paper. Arrows denote direction
of power flow. The ESS can charge and discharge via TOU to offset the
energy consumed by the load from the grid, as measured via the utility meter.
Likewise, it can also charge and discharge directly to the grid, buying and
selling energy via LMP energy arbitrage.

The different terms in the summation represent different
operation of the ESS. The first term represents direct power
flow between the ESS and the grid, buying and selling energy
on the LMP. The second term represents the power flow as
measured by the utility meter, including the dispatch of the
ESS for TOU. We restrict our ESS to prevent backfeeding, or
the flow of energy back through the energy to the electric grid,
which would result in a negative utility bill. Such behavior is
not currently allowed under FERC Order 841.

TABLE I
LIST OF DEFINED VARIABLES IN THE PROBLEM DESCRIPTION.

Variable  Name Units
V(T) Total revenue up to time ¢ $
m(t) LMP for time ¢ $/kWh
u(t) TOU for time ¢ $/kWh
1(t) Load at time ¢ kW
E(t) SOC of energy storage at time ¢ kWh
cem(t) Charging power from LMP at time ¢ kW
dm (t) Discharging power to LMP at time ¢ kW
cu(t) Charging power for TOU at time ¢ kW
duy (t) Discharging power for TOU at time ¢ kW

h Period, in hours, of the data (=0.25 for this paper)  unitless
Cmaz Maximum charging power kW
Dz Maximum discharging power kW
FErin Minimum SOC kWh
Fmax Maximum SOC kWh

B. Data and Features

The data needed for BTM services problem is time-series
data of: the building load, the TOU (price of energy bought
from the grid), and for the FOM services problem, we use the
LMP (price of energy on the energy marketplace). First, we
obtained load data from the Pecan Street Dataport database|
for a house in San Diego. From this, we selected the LMP
pricing data from the COVID-EMDA datahub, using CAISO
data for a node in the same location [3]]. We also selected

3https://www.pecanstreet.org/dataport/

the relevant TOU pricing data (plan TOU-DR1) from the San
Diego Gas & Electric tariﬁﬂ All data are obtained at 15-
minute intervals for the dates of July 8th 00:00 to June 30th
23:45 of the next year, representing our year of data. For the
LMP data, we collected data from July 8th 2018, 00:00 to 30
June 2019, 23:45 for the URBAN-NOO5 node in San Diego
from CAISO’s Open Access Same-Time Information System
(OASIS) LMP DataBase E] as the data for the 2014-2015 period
wasn’t available.

C. Q-learning implementation

We use the method of Q-learning to learn the best action
for the ESS to take, given the TOU cost of energy, the LMP
price of energy, the ESS state-of-charge (SOC), and the load
profile.

1) State Space: Our state space includes four components,
discretized as shown below:

1) TOU: There are only six unique prices, so this is already

discretized to a space of 6.

2) SOC: The SOC is discretized into the following val-
ues: [1.4, 2.65, 3.9, 5.15, 6.4, 7.65, 8.9, 10.15, 11.4,
12.6]. This was determined using the Python function
arange (0.1%14, 0.9x14, 5%0.25), which en-
sures that the SOC is only a function of the maximum
power rating (5 kW) of the ESS, given that we initialize
the SOC E(0) = 5.15 kWh.

3) LMP: The LMP is a continuous cost, so we discretize
it into 10 evenly spaced bins.

4) Load: Like LMP, the load is a continuous power, SO we
discretize it into 100 evenly spaced bins.

Each time step in the dataset is therefore represented with

a tuple in R*.

2) Action Space: Our action space includes five compo-
nents, discretized as shown below. Only one action is taken
per time step (i.e. state tuple).

1) Charge from LMP (c;,(t)), buying the energy for charg-

ing the ESS at the current LMP price

2) Discharge to LMP (d,,(t)), selling the energy discharged
from the ESS at the current LMP price

3) Do nothing, do not charge or discharge the ESS

4) Charge from TOU (c,(t)), adding the energy for charg-
ing the ESS to the load energy consumption as billed at
the TOU price

5) Discharge to TOU (d,(t)), subtracting the energy dis-
charged from the ESS from the load energy consumption
as billed by the TOU price

This definition of the action space prevents the energy
storage from attempting to charge and discharge at the same
time, or charge/discharge from multiple sources.

In each action, the ESS will attempt to charge or discharge at
the maximum allowable rate. In the case that the ESS does not
run the risk of over/under charging, i.e. the charge/discharge
does not cause E(t) to go above or below E,;, or Fpgz,

“https://www.sdge.com/whenmatters
Shttp://oasis.caiso.com/mrioasis/logon.do



then the dispatch will be at full rated power (5 kW), which
will change the SOC by (+5kWh) * 0.25hr = +1.25kWh.
Otherwise, the ESS will do nothing. This ensures that our SOC
can be discretized as in the previous section.

Additionally, we ensure that the ESS will not cause the load
to go negative (i.e. backfeed into the grid).

3) Reward function: We draw upon previous work for RL-
based ESS energy arbitrage to determine the reward function
as a moving average of recently observed prices [5].

This is kept separate from the overall performance of the
policy, or the dollar cost paid for energy by the end of the
dataset, that we are comparing between strategies.

At each timestep ¢ (representing a single state), and possible
action a, we construct the action function by using the moving
average LMP m(t), but without the moving average on the
TOU price, as the cost is dependent on the pre-determined
and uncontrollable load I(¢), and therefore not subject to the
same exploration benefit as for LMP energy arbitrage.

r(t,a) = B[ (m(F) = m(®) n(Ola, —dm(O)la:)
—u(t) (1) + cu(t)]as—du(t)]as)] »
m(d) = (1= nym(t — 1) +nm(t)

We use the vertical line notation to refer to terms which
are not zeroed out given a specific action. For example,
action 1 (a1) only preserves the ¢,,(¢) term, with all other
dpm(t), cu(t), dy(t) = 0. This ensures that the reward directly
follows from our action space definitions.

As the policy is developed and the actions are obtained, we
can use Equation E] to determine the cumulative revenue, Vg .

4) Exploration: An e-greedy approach to exploration was
applied with the value of ¢ = 0.65. The algorithm helps
balance exploration and exploitation of what we know. It
chooses a random valid action with 65% probability given
the SOC and chooses the best action with the other 35%
probability.

5) Q-Learning Model: For the Q-learning model, we devel-
oped a python class, Residential, that would take care of the
hyperparameters and parameters of the model and exploration.
This class takes care of action maps, generation of the initial
Q, S, and policy. A high level pseudocode of this program is

given in Algorithm
D. Comparison to other dispatch methods

We also compare the dispatch behavior from Q-learning to
other dispatch methods, using Equation |l| as a comparison.
These dispatch methods are shown below.

a) Baseline case: In this case, V is calculated with no
dispatch from the ESS. Therefore, the cumulative revenue
takes on a simple expression:

vaaseline (t) =h Z u(tl) [_l(t,)} (2)
t’'=0

The full codebase can be found on Github:
https://github.com/kmoy 14-stanford/aa-228- final- project

Algorithm 1: Overall Residential Class- Q-Learning
Algorithm

Initialize Q, S, €, A, 7, constants;

get_allowed_actions(state)

epsilonGreedyPolicy(Q, ¢, a_n)

Q_learning()

get_next_state_reward(s, a)

calc_revenue(): Use Equation 1 to calculate
cumulative reward & Store best policy 7

b) Naive TOU dispatch case: For the most naive use of
TOU pricing, the ESS charges at the full rated power only at
the lowest tariff price, and discharges only at the highest tariff
price. If the time periods of the lowest tariff price form the set
Tiow, and the highest tariff price T},;4p, then the cumulative
revenue takes on the following expression:

t'=0
cu(t)
) Chae t' € Tiow 3)
o 0.W.
dy(t)
o Dmaw t/eThigh
o 0.W.

¢) Optimal TOU dispatch case: We solve the well-
studied LP optimization problem below for TOU pricing, with
g(t) as the total power drawn from the grid, {,(¢) the load
power supplied by the grid, and F(¢) initialized to some value
E(0) = Einit [4]:

Cu(t) < Cmaa:
s. t.: du(t) S Dmaz 7Vt € {OaTm,(m?}
Emzn < E(t) < Emaw

E(t) > h*dy(t)
9(t),14(t), cu(t), du(t), E(t) = 0

E(t) = B(t — 1) + hleu(t — 1) — du(t - 1)],
vt € {1, Tonax }

Once the optimal dispatch ¢}, and d;, are achieved, we can
use EquationE]with Cm = d,, = 0 to determine the cumulative
revenue, V.


https://github.com/kmoy14-stanford/aa-228-final-project

d) Optimal LMP dispatch case: We solve the well-
studied energy arbitrage LP problem as shown below for
LMP pricing, with s(¢) as the dispatch in for timestep ¢, i.e.
s(t) = dm(t) — cm(t), p(t) the LMP at timestep ¢, and E(t)
initialized to some randomized value E(0) = FEj;,;; between
Emaa: and Emzn [E[Iv []E[]:

Tmaz

max. : h Z p(t) * s(t)

- {Cmaz < 5(t) < Dinas
Emin < E(t) < Enas
E(t) = E(t —1) + hr(t — 1),
Vit € {1, Trax}

Vit € {0, Thnax }

Here, the rate is negative in the case that the ESS is buying
energy from the grid at LMP, thus converting the revenue into
a cost. Once the optimal dispatch s(t) is achieved, we can use
Equation (1| with ¢, = d,, = 0 and by setting ¢,,(¢) and d,, (1)
as the negative and positive components of s(t), i.e ¢, (t) =
—min(0, s(t)) and d,,(t) = max(0,s(t)), to determine the
cumulative revenue, V;;,p.

III. RESULTS

We learn a policy for the combination of TOU and LMP
dispatch using Q-learning as in Section [[I-=C| and apply it
to our dataset. The resulting cumulative cost of dispatching
according to the Q-learning policy, as well as all other dispatch
methods, is shown in Figure [2 We find that the Q-learning
policy resulted in actions that reduced the total energy cost
the most from the baseline case.
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Fig. 2. Comparison of cumulative cost for the dataset for each dispatch
method. Note that the cost is negative revenue; all methods resulted in net
system costs.

To explain this, we can also examine the distribution of
Q-learning policy actions throughout the year. This is shown
below in Figure[3] We can see that this policy actually chose a
majority of the time to discharge the ESS for TOU, offsetting

the TOU cost of energy for the load, and spends the least
time selling energy at LMP. Therefore, the policy is choosing
to minimize the negative reward over exploiting the potential
revenue on the LMP market. However, we also highlight that
the cost savings is far greater than that for TOU alone. First,
while relatively infrequent, the policy is able to generate some
revenue by selling into the LMP market. More importantly, the
policy is taking advantage of two sources of energy, charging
from either TOU or LMP, and therefore able to choose the
cheaper of the two, further reducing the cost of energy.

TOU_discharge

LMP_buy

LMP_sell

TOU_buy

Fig. 3. Distribution of actions throughout the year for the Q-learning policy.

IV. CONCLUSIONS

We presented an application of Q-learning to the problem
of an ESS participating in multiple different grid applications,
with the aim of maximizing the revenue and reducing the cost
of energy for a given system. We successfully demonstrated
that for the combination of TOU dispatch and LMP energy
arbitrage, that following a policy obtained via Q-learning lead
to the greatest reduction in energy cost, by taking advantage
of multiple sources of energy at different costs. Therefore, we
also successfully validated the premise of value-stacking, in
that the cost savings combining two different grid applications
was greater than either application alone, and even reduced the
cost more than both separate grid applications combined.

For future work, we could study whether this policy has
been overtrained to our particular dataset, and whether we can
extend or generalize the policy to apply to multiple different
systems. We can also try to add other grid applications,
such as frequency regulation, to study whether there could
be further reductions in cost, or even a net positive revenue.
The system we chose also originally had solar power, which
actually produced net positive power for some time periods.
The inclusion of solar power would add an additional power
source and potential for even greater revenue, but will add
complexity to our action space (e.g. using solar power to
supply the load, charge the ESS, or sell at LMP). Lastly,
we can perform more hyperparameter tuning, or try different



reinforcement learning approaches, such as Deep Q-Networks,
SARSA, or the addition of eligibility traces, to see whether
improvements could be made towards learning the dispatch
policy.
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