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Abstract

Sparse rewards or a difficult environment is often a challenge for reinforcement
learning algorithms that begin with randomly initialized agents. Curriculum learn-
ing, or progressively increasing the difficulty of environments, has been sug-
gested as a way to alleviate this problem. A random agent starts off on a sim-
ple level with easy and common rewards and the environment gets increasingly
harder as the agent improves. In this project, we apply curriculum learning to
Snake and demonstrate how it helps to accelerate the learning of an agent, es-
pecially for large grid sizes. A code repository for this project can be found at
https://github.com/greentfrapp/snake.

1 Introduction

Reinforcement learning revolves around the notion of an agent learning to take a sequence of actions
that maximizes the total reward obtained in a given environment. The environment is often modeled
as a Markov decision process, comprising of a state space, a transition matrix, an action space and a
set of reward mappings. The state space consists of all the possible states that the environment can
take on. The transition matrix refers models the distributions of the next state s’, given the current
state s and an action a. The action space consists of all the possible actions. The reward mappings
refer to the immediate reward that the agent receives from taking action a in state s.

While previous reinforcement learning algorithms have relied on handcrafted features to model the
environment, recent works have moved towards the use of deep learning methods such as Deep
Q Network (DQN) (Mnih et al.| 2013},|2015} |Schulman et al., 2015 [Lillicrap et al.| |2015)). These
methods rely on the use of general learners, typically neural networks and variants, in order to extract
high-level features from a given state. Despite challenges such as sparse and noisy rewards or labels
and highly correlated samples in the training set, deep learning methods have demonstrated superior
performance. In many cases, these methods have also resulted in superhuman agents that have beaten
human world champions in very complex games such as Go (Silver et al., 2016} 2017), Dota 2 (Berner|
et al.,[2019) and Starcraft 2 (Vinyals et al., 2019).

The sparsity of rewards in reinforcement learning has been a major challenge impeding effective
implementation of learning algorithms. Specifically, these algorithms typically begin with a randomly
initialized agent. This untrained agent explores the environment and learns from rollouts of its
exploration experiences. However, if the environment is too difficult or have very few reward signals
when explored randomly, the agent is unable to effectively learn from its experiences.

Consider the game of Snake, where an agent-controlled snake moves around in a grid world and
gains points from eating food pellets. If the grid world is too large, an untrained agent is unlikely to
randomly chance upon a single food pellet. As such, the agent might only learn to avoid death but
never learns to move towards food pellets. Alternatively, the agent takes an extremely long time to
learn from a slow accumulation of these rare instances where it randomly eats up a pellet.
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One approach to alleviate this is the concept of curriculum learning (Elmanl |1993} Bengio et al.,[2009;
Narvekar, 2017). As its name suggests, curriculum learning uses a "curriculum" - a modification
to the environment such that initial levels are easier, with more common rewards, and gradually
increasing in difficulty as the agent progresses.

This project explores the use of curriculum learning on the game of Snake. More precisely, we
first examine the performance of a DQN algorithm (Mnih et al., [2013) on Snake environments with
varying grid sizes, ranging from 4 by 4 to 20 by 20. Then, we demonstrate the effectiveness of
curriculum learning on a 20 by 20 Snake environment and show that the agent’s improvement is
vastly accelerated compared to the baseline.

2 Problem

Snake is a classic video game where the player typically controls a snake in a 2D grid world. The
snake is simply a line of pixels. Points are scored whenever the snake comes into contact with food
pellets, which are commonly represented as single pixels. In addition, the snake also increases in
length when it consumes food pellets. The game ends when the snake touches or "eats" itself.

For this project, we implement a custom version of Snake that inherits OpenAl gym’s gym. Env class
(Brockman et al.,|2016). This helped to integrate our work with various open-source libraries such as
OpenAl baselines (Dhariwal et al.,|2017) and stable-baselines (Hill et al.,2018).

In our custom implementation, the snake starts off as a line of 2 pixels and gains a pixel whenever
it consumes a pellet. In addition to the rules described above, the game also ends when the snake
exceeds the boundary of the grid world. The reward scheme is as follows:

e Consuming a pellet: +10

e Eating itself or exceeding boundary: -1 and game ends

e Consuming the last pellet (i.e. no free space left on grid): +100 and game ends
e Otherwise: 0

This also implies that the maximum total score attainable in a single game with a .S x S grid is
1052 + 70.

The state of the environment is represented as a  x W x 3 matrix, where I and W are the height
and width of the grid world. The 3 channels correspond to (1) food location, (2) the head location of
the snake and (3) the full body location including the head. Since the state representation only shows
the current frame, the head location is required to help the agent disambiguate the head and tail ends
of the snake. Other possible implementations include showing the last n frames, where n is equal to
a small value such as 3. Values in the matrix are either 0 or 255, to accommodate the input range to
the neural network. For example, a 2 x 2 grid with the snake at the top left and a food pellet at the
bottom right will be represented as follows:
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Finally, to facilitate our experiments, our custom implementation also allows for defining of the grid
world dimensions (i.e. height and width).

A code repository for this project, including scripts for the environment and experiments, can be
found at https://github.com/greentfrapp/snake!

3 Experiments

3.1 Implementation

We use the DQN implementation in the stable-baselines library (Hill et al., |2018)) along with
a custom network architecture. We implement a convolutional neural network with the following
layers:


https://github.com/greentfrapp/snake

Figure 1: A random start state for S = 8 and C' = 0.5. The green circles represent food pellets and
the blue square represent the snake with the darker blue representing the head. With C' = 0.5, 50%
of the board is covered with food at the beginning, instead of just 1 pellet. In addition, since C' = 0.5,
if the agent turns left or up (i.e. touching itself or the boundary), it will have a 50% chance of dying
instead.

e 32 channels of 3x3 kernel with stride 1 and padding 1
e 04 channels of 3x3 kernel with stride 1 and padding 1
e 128 channels of 3x3 kernel with stride 1 and padding 0

e Linear layer of 256 neurons

In the DQN algorithm, this network parameterizes the action-value function or Q function. As such,
the network takes the state as input, whichis a H x W x 3 matrix, where H and W are the height
and width of the grid environment. The network outputs a vector with 4 elements, each corresponding
to the Q-value of an action taken from the input state (UP, DOWN, LEFT, RIGHT).

3.2 Baseline

We first evaluate the baseline performance of the DQN algorithm without curriculum learning. We
do this by training an agent with DQN across a variety of grid sizes in the Snake environment. In
all environments the grid is a S x S square, where S ranges from 3 to 10. During the training, we
periodically test the trained agent every 10k steps, with a deterministic policy via choosing the action
with the highest Q-value. The agent is tested on 10 randomly initialized S' x S Snake environments
for a maximum of 500 time steps. We then average the total scores obtained in the environments.
We report the change in averaged scores across the training iterations. We stop the training when the
agent obtains the maximum score in at least one of the random test environments or when the highest
obtained average score does not change for 100 tests or more (equivalent to 1 million iterations).

3.3 Curriculum Learning

Next, we train agents with curriculum learning and show that the agent is able to improve more
quickly. Our curriculum scheme is designed to alleviate two challenges:

1. Sparse rewards because of difficulty in encountering food in large grid world

2. Sparse experience in end-game states
Our implementation of curriculum learning modifies the environment slightly tuned by a curriculum
parameter C', which has a range of [0, 1].

Instead of randomly placing a single food pellet, we start by placing food pellets on randomly selected
C x 100% of the grid world (see Figure|ll We do not immediately replenish pellets as they are eaten.
Instead, we only replenish the last pellet to ensure that at least one pellet remains in the grid world.
This increases the probability of encountering food pellets compared to the vanilla environment.



In addition, instead of immediately ending the game when the snake hits the side of the grid world
or eats itself, there is a C' x 100% chance that the agent continues the game from the previous state,
with a reward of -1. This increases presence of end-game states in the stored rollouts.

We begin with C' = 0.5 at the start of the training and update C <— 0.975C' every time the agent
gets a new maximum average score in the periodic tests. This means that C' gradually decreases
as the agent improves and as C approaches 0, the curriculum environment approaches the real test
environment. Note that in our periodic tests, the agent is subjected to the actual test environment.

3.4 Results
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Figure 2: Average test scores over time as the agent is trained for both vanilla (red) and curriculum
(green) environments, across different grid sizes S. Circles indicate that the agent achieved the
maximum score available for that grid size, while crosses indicate that the agent plateaued before
achieving the maximum score. Notice that for larger grid sizes (above S = 5), the agent learns
significantly faster in the curriculum environment.

Figure[2]shows the average test scores over time as the agent is trained for both vanilla and curriculum
environments. Note that both vanilla and curriculum agents are subjected to the same vanilla
environment at test time. We see that the agent trained under the curriculum scheme improves faster
than in the vanilla scheme. In addition, under the curriculum, the agent is more likely to eventually
achieve the maximum score, such as in Figures[2d|and Pe| where the curriculum agent achieved the
maximum score in several runs, while the vanilla agent failed to achieve the maximum score in any
run.

However, Figure 2] also shows that curriculum training may result in a train-test mismatch that causes
worse performance, especially in the early stages of training. This is especially clear in Figures[21]
and 2g| where the curriculum agent is initially much worse than the vanilla agent in the first 1 to 2
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Figure 3: Comparison of maximum average test scores achieved by vanilla versus curriculum training.

million iterations. This mismatch is likely worsened by large grid sizes, since the chance of randomly
encountering a pellet is very different between vanilla and curriculum environments, particularly
at the early stages. However, we do see that if the agent manages to get past this initial hurdle,
curriculum training does help to improve performance significantly.

Finally, Figure 3 explicitly shows that curriculum training outperforms vanilla training, especially on
larger grid sizes. This advantage diminishes as grid sizes increase, which may be attributed to the
train-test mismatch mentioned previously.

4 Conclusion

In this project, we explore the application of curriculum learning to the Snake environment. We
demonstrate that curriculum learning can help to accelerate the training of agents, especially in
large grid worlds. However, we also note that the creation of a curriculum is non-trivial. While
undocumented in this report, we also experimented with alternative curriculums, such as imposing
an artificial boundary on the grid that gradually expands as the agent improves. In contrast to the
curriculum documented in this report, these alternative schemes did not demonstrate any significant
improvement on agent training. In light of this, there are alternative approaches such as teacher-guided
curriculum (Graves et al.,[2017), curriculum through self-play (Sukhbaatar et al.,[2017)) and automatic
goal generation (Florensa et al.|, 2018} [Racaniere et al., 2019), which provide an automated way of
designing a suitable curriculum.
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