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Abstract

This work provides a thorough study on how reward scal-
ing can affect performance of deep reinforcement learning
agents. In particular, we would like to answer the question
that How does reward scaling affect non-saturating ReLU
networks in RL? This question matters because ReLU is
one of the most effective activation functions for deep learn-
ing models. We also propose an Adaptive Network Scaling
framework to find a suitable scale of the rewards during learn-
ing for better performance. We conducted empirical studies to
justify the solution.

1 Introduction
Deep reinforcement learning (RL) has achieved tremendous
success in a variety of domains such as recommendation
systems (Chen et al. 2018; Dulac-Arnold et al. 2015) and
board games (Silver et al. 2017). However, training a ro-
bust DRL agent is generally considered as non-trivial. Sev-
eral factors such as network architecture (activation func-
tions, number of layers, learning rate), codebases (Duan et
al. 2016), random seed, and reward scale (Henderson et al.
2017) are shown to have significant impact on the overall
performance of RL agents. This paper focuses on the re-
ward scaling problem as reported in (Henderson et al. 2017;
Gu et al. 2016; Duan et al. 2016), in which it is discov-
ered that different reward scales can result in performance
change by a large margin, transforming an unlearnable task
into a learnable task. Given activation functions like sigmoid
or tanh, the problem of saturation (Glorot and Bengio 2010;
Vincent, de Brébisson, and Bouthillier 2015; Montavon, Orr,
and Müller 1998) seems to be the reason why large reward
scales cause performance drop since it is harder for bounded
output to handle targets of large scale. One plausible rem-
edy is to choose the Rectified Linear Unit (ReLU) (Nair and
Hinton 2010) since it is not a saturating activation; that is,

lim
x→∞

ReLU(x) = +∞.

A question therefore arises, How does ReLU react to dif-
ferent scales of reward? The answer does matter because
ReLU is faster and the consequent sparse representations
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have shown remarkable performance in training deep neu-
ral networks (Glorot, Bordes, and Bengio 2011). We would
also like to study how the reward scaling affects the dying
ReLU problem, and how some potential solutions such as
Leaky-ReLU (Maas, Hannun, and Ng 2013) and ELU (Clev-
ert, Unterthiner, and Hochreiter 2015) can be affected by the
scaling of rewards. One of the major conclusion in this pa-
per is that different from the intuition that smaller reward
scale seems to be better (which is usually true for sigmoid
or tanh), for ReLU a larger scale on rewards generally leads
to a better performance. In a nutshell, we would like to an-
swer the following questions in this work.

Q1. What is the difference between adjusting learning rate and
reward scaling?

Q2. How is ReLU networks affected by reward scales and
whether it is related to the level of dying ReLU?

Q3. Does non-saturating Leaky-ReLU and ELU improve the
performance of RL by avoiding the dying-ReLU problem
and how do they react when different reward scales are
applied?

Q4. Since reward scale matters, how to find appropriate re-
ward scales yielding better ReLU-based DRL models?

Section 2 gives answers to Q1, Q2, and Q3. We have
shown that the change of learning rate actually shows oppo-
site effect with the change of reward scale in terms of dying
ReLU. We further show that the influence of reward scal-
ing is significant – unlearnable tasks can become learnable
when appropriate scale is adapted. Finally, the performance
of ELU and leaky-ReLU can be greatly changed with differ-
ent reward scales as well. Based on the empirical evidence
obtained in our experiments, we solve Q4 by proposing the
adaptive network scaling (ANS) framework, which enables
ReLU networks to find the proper scale for reward targets
and quickly update the parameters accordingly, without the
need to retrain RL models after scaling.

1.1 Preliminaries
RL defines a class of algorithms solving problems modeled
as a Markov Decision Process (MDP). An MDP consists of
a tuple (S,A, T ,R, γ), where S is the space of state s, A is
the space of action a, T is the transition function with proba-
bility distribution Pr(s′|s, a),R(s, a) is the reward function



that outputs a scalar feedback given action a made at state s,
and γ is the discount factor.

In actor-critic framework, the actor is the policy function
πθ(a|s), which is used to react to environments and collect
samples of experience (s, a, r). Those samples are used to
update the critic, the value function Qπ(s, a) that outputs
the estimate of cumulative reward of current policy πθ,

Qπ(st, at) = Est+1,at+1,...

[ ∞∑
i=0

γir(st+i)

]
. (1)

The output of value function can be further used to up-
date policy function, which aims to maximize the expected
return J(θ). Policy gradient method (Sutton et al. 2000;
Kakade 2002) is usually preferable to update the policy in
actor-critic methods. The policy gradient can be written as

∇θJ(θ) = Eτ∼πθ(τ) [∇θ log πθ(τ)r(τ)] , (2)

where πθ is the policy function and τ is the trajectories gen-
erated from the interaction between π and the environment.
Here the cumulative reward r(s, a) is sometimes replaced
with Q-value function Q(s, a) or advantage function,

A(s, a) = Q(s, a)− V (s) (3)

so as to reduce the variance of policy gradient.
Neural networks (Rosenblatt 1962) is a powerful func-

tion approximator trained with back-propagation. Differ-
ent optimizers such as Stochastic Gradient Descent (SGD)
(Rumelhart, Hinton, and Williams 1985) or Adam (Kingma
and Ba 2014) are adapted to stabilize the parameter update,
which can further improve the outcome of the learning pro-
cess. SGD updates the parameters with shuffled order of in-
stances and usually incorporates Nesterov momentum (Nes-
terov 1983) to prevent from taking a big jump in the di-
rection of the updated gradient. On the other hand, Adam
optimizer considers the first and the second moment of the
gradient sequence with bias correction for parameter update

θt ← θt−1 − α
m̂t√
v̂t + ε

, (4)

where m̂t and v̂t is the unbiased first and the second moment
of gradients respectively.

2 Influence of Reward Scaling
Reward scaling indicates the change in MDP from
(S,A, T ,R, γ) to (S,A, T , cR, γ), where c ∈ R+. When it
comes to reward scaling, the first question is usually – what
is the difference between scaling learning rate and scaling
reward function (Q1)? By considering the gradient update
with loss function L(f(θ), y), we have

θt ← θt−1 − α∇fL(f(θ), y)∇θf(θ). (5)

If mean-square-error (MSE) loss is used, the update rule be-
comes

θt ← θt−1 −
2α

N

∑
i

(fθ(xi)− yi)∇θfθ(xi). (6)

By scaling learning rate, the magnitude of the update term
is scaled equally, and the signs of the gradients remain the
same. However, if the target y is scaled, the distance be-
tween the target and the estimate is changed instead of being
scaled, which brings different sign distribution from the one
without scaling. It is possible to scale the target y so as to
obtain a more informative gradient distribution. It can also
potentially prevent the zig-zagging phenomena (Zisserman
2013) by making gradients have different signs (i.e. if the
gradients are of the same sign, the parameters of neural net-
works are updated to the same direction, which may cause
overshooting and require another update with opposite di-
rection). Such zig-zagging results in optimization in an in-
efficient manner. On the other hand, if inappropriate reward
scale is applied, the performance drops drastically as shown
in (Henderson et al. 2017).

The other aspect that reward scaling affects the learn-
ing performance are the saturation problem (Glorot and
Bengio 2010; Vincent, de Brébisson, and Bouthillier 2015;
Montavon, Orr, and Müller 1998) and the dying ReLU prob-
lem. For activation functions like sigmoid or tanh, the output
of the value is bounded and the gradients at these regions
are almost zero. By chain rule, the gradient of the weight
and bias in previous layers are diminished if the gradient
of the activation is close to zero, which blocks the gradi-
ent signal from flowing to the subsequent layers. For ReLU,
a large gradient may prevent neurons to output values larger
than zero for all instances. Consequently, the gradient passed
through the neurons becomes zero, resulting in the dying
ReLU problem. Even though dying ReLU is not completely
irreversible 1, it may take large amount of time to recover
and thus slow down the learning process.

Since the data are coming in an online fashion for RL,
it is hard to apply the definition of dying-ReLU – for all
input x of the batch data, the output of neuron n is negative.
Consequently, here we define pseudo-dying ReLU, which is
used to evaluate the tendency of neurons that may become
dying.

Definition 2.1 For a set of collected samples B with |B| =
B, if

fn(fp(xxx)) ≤ 0,∀xxx ∈ B, (7)

where fp is the output of the previous layer and fn is the
function of neuron n. For this case, we define neuron n with
ReLU as a pseudo-dying ReLU with respect to B.

Proposition 2.1 Consider fn(ppp) = www>ppp + b and ‖ppp‖ =
fp(B) is normally distributed 2. For the distribution of the
angle between www and ppp, we follow empirical distribution if
necessary. If neuron n is pseudo-dying with respect to B,
then the probability that B∪{xxxB+1} does not cause pseudo-
dying ReLU is upper bounded by

1Technically, except for the first layer, the update of other pa-
rameters can change the distribution of the input of the dying neu-
rons, which is possible to make them alive again.

2A more proper setting is to assume a truncated normal distri-
bution. However, to simplified the derivation we use normal distri-
bution and assume that the distribution is far enough from zero.



1. |www>pppi| ≥ |b| andwww>pppi < 0

Pr(not pseudo-dying ReLU) ≤ 1

2

[
1 + erf

(
−1√
2B

)]
.

(8)

2. |www>pppi| ≤ |b| and b < 0

Pr(not pseudo-dying ReLU)

≤ 1

2

[
1− erf

(√
2(B − 1)

B

(
1− µ̄

|b|/‖www‖|cos θmin|

))]
.

(9)
For other cases, Pr(not pseudo-dying ReLU) = 0.
The proof for Proposition 2.1 is in the appendix. The physi-
cal meaning of the proposition is that if neuron n is currently
pseudo-dying, then the probability that it is still pseudo-
dying with subsequent samples is high.

In the following context, we use pseudo-dying ReLU as
an indicator of the true dying ReLU. Using this indicator is
computationally cheaper and more efficient than checking
whether the neuron is really dying or not. Here we also de-
fine pseudo-dying ReLU ratio (PDRR). For layer i, we have,

PDRRi =
number of pseudo-dying ReLU in layer i

number of neurons in layer i
. (10)

It should be noted that, in actor-critic approaches, the
value network is where we can differentiate between chang-
ing learning rate and reward scaling. If the target of value
network is scaled, the subsequent gradients can have differ-
ent sign distribution as mentioned instead of simply being
scaled. For policy network, as shown in Equation 2, chang-
ing the scale of the estimate is the same as changing the mag-
nitude of policy gradients. Especially, for RMSprop (Tiele-
man and Hinton 2012) and Adam (Kingma and Ba 2014)
optimizers, as suggested in Equation 4, such scaling actu-
ally makes no difference because the division of the first mo-
ment to the squared root of the second moment cancels out
the scale. In our experiments, to reduce variables that may
affect experiment results, if the reward is scaled c for the
critic, we multiply the estimate from the critic with 1/c so
that the magnitude of the estimate to the actor is the same.

2.1 ReLU Experiments
In this section, we aim to answer the following questions by
conducting extensive experiments: (Q1) What is the differ-
ence between changing learning rate and changing reward
scale in terms of cumulative rewards and PDRR? (Q2) How
does ReLU network respond to different reward scales in
terms of cumulative rewards and PDRR? (Q3) How is the
performance of the variants of ReLU without dying-ReLU
issue such as Leaky-ReLU and ELU? Are such activations
insensitive to reward scales? To answer these questions, we
compare different settings on DDPG (Lillicrap et al. 2015)
and A2C (Mnih et al. 2016) to make sure the results are con-
sistent with different actor-critic models. In this work, our
experiments are built upon Mujoco environment (Todorov,
Erez, and Tassa 2012), which is a physics engine for contin-
uous control and provides multi-joint dynamics simulation.

Background DDPG extends the deterministic policy gra-
dient to continuous action spaces with actor-critic approach
and utilizes Ornstein-Uhlenbeck process for exploration.
The actor is updated by the differential of the expected re-
turn from the start distribution J with respect to the actor
parameters:

∇θJ ≈ Est∼ρβ
[
∇θQ(s, a)|s=st,a=µ(st)

]
,

where ρβ is the state distribution following stochastic policy
β. The critic is updated with expected return that is estimated
from target networks:

yt = rt + γQ′(st+1, µ
′(st+1)),

where Q′ is the target critic and µ′ is the target actor. To
make the learning more stable, “soft” update is used to up-
date target networks so that the output of the target networks
will not change too fast.

The other model that we use here is advantage actor critic
(A2C), which is a synchronous and batched version of asyn-
chronous actor critic (A3C) (Mnih et al. 2016). It utilizes
policy gradient as indicated in Equation 2 to update the pol-
icy. Advantage function A(s, a) is used in place of reward
r(τ) to scale the gradient∇θ log πθ because it obtains lower
variance for gradient estimation. What makes A3C and A2C
different from other actor-critic methods is that it accumu-
lates gradients of workers and use them to update the global
model.

Exponential Linear Unit (ELU) is similar to ReLU except
for negative inputs,

ELU(x) = max(0, x) + min(0, α(exp(x)− 1)).

An interesting result of this form is that the gradient can be
computed with addition:

ELU′(x) =

{
1, if x > 0

ELU(x) + α, otherwise.
On the other hand, Leaky-ReLU allows a mild slope when
input is negative,

LeakyReLU(x) = max(0, x) + αmin(0, x),

where α is usually set to a small value such as 0.01.
In the following experiments, we use three-layer neural

networks as function approximators. Since the two ReLU
layers have similar patterns, we show ReLU in the second
layer, which shows significant difference across variables.
For clarity and conciseness, the most representative figures
are presented, and we leave others in appendix.

Results on Adjusting Learning Rates Figures 1 shows
how cumulative reward and PDRR change with respect to
different learning rate. The results are not surprising as too
large learning rate results in high PDRR, which impedes
further performance improvement because of limited avail-
able computation units. It should be noted that although high
PDRR leads to bad performance, the same correlation does
not apply when PDRR is lower than a threshold. For 10−3

and 7 · 10−4 learning rate, even though they have higher
PDRR than 10−4 and 10−5, their returns are higher. It may
be caused by the fact that it is possible for neural networks to
have excessive computation capacity (Guss and Salakhutdi-
nov 2018) for certain tasks; consequently, PDRR may pose
no harm under such situation.



(a) PDRR

(b) Return

Figure 1: A2C learning rate comparison on Hopper-v2.

Reward Scale In Figure 2 and 3, they show that reward
scales can have tremendous influence on the performance of
RL models with ReLU networks. With proper reward scales,
the results can be changed from learning nothing to a well-
trained model. Another fact worth noting is that large reward
scale does not cause significant PDRR compared with other
scales; on the contrary, 0.5 reward scale shows a tendency
to cause higher PDRR as suggested in Figure 2c. Such phe-
nomenon also reflects on cumulative reward as A2C with 0.5
reward scale is unable to converge to a satisfactory solution.

The phenomenon of small reward scale resulting in dying-
ReLU can be explained as follows. Consider a layer with
ReLU outputs a scalar as ReLU(www>xxx+ b) = y. If the target
ŷ is scaled by c < 1 and xxx remains unchanged, then the
positive outputs of www>xxx + b should be reduced while the
negative part is not affected (the value does not even matter).
In this case, b is updated to make y smaller, which potentially
increase the probability of getting trapped by dying ReLU.
In contrast, reducing learning rate decreases the magnitude
of parameter updates in all directions, which proportionally
make dying ReLU less probable.

The results reveal that reward scales over certain unknown
threshold usually allows RL models with ReLU to learn bet-
ter. It can be caused by the fact that larger reward scales
enlarge the difference between positive and negative returns
and therefore the information of rewards becomes clearer. It
can be confirmed by the outcome of the experiments that the

influence of reward scaling on A2C is much larger than that
on DDPG because A2C makes use of advantage function
that has zero expected value with respect to actions. How-
ever, larger reward scale does not always mean better. Too
large reward scale may introduce large gradients as well,
which makes RL models unable to converge easily. As a re-
sult, to improve the performance of RL models, finding the
reward scale that gives enough information of reward func-
tions and meanwhile is not too large to converge to a good
solution is where we can put effort.

Leaky-ReLU and ELU We try variants of ReLU, Leaky-
ReLU, and ELU to illustrate (1) how the performance of
models with ELU or Leaky-ReLU changes with different
reward scales, and (2) if the variants of ReLU without dy-
ing ReLU issue can outperform ReLU in RL problems.
As Figure 4 suggests, ELU generally outperforms ReLU
and Leaky-ReLU slightly; on the other hand, even though
Leaky-ReLU does not suffer from dying ReLU, it still per-
forms empirically worse than ReLU when it comes to cu-
mulative rewards. Reward scaling is still an important factor
to the performance of ELU and Leaky-ReLU. With proper
reward scales, the RL models also converge to a much better
solution.

A Short Summary Learning rate and reward scale show
utterly different pattern in terms of PDRR – larger learning
rate can result in higher PDRR whereas the higher reward
scale have lower PDRR. The recommendation drawn from
our experiments is that ELU slightly outperforms ReLU but
is also computationally more costly than ReLU, so there is
a trade-off. Even though Leaky-ReLU allows information to
flow when the input is negative, empirically its performance
is worse than ReLU. Since the magnitude of reward func-
tions depends on the design of the environment, it is hard to
give suggestions on reward scales. In spite of that, it seems
that for ELU, Leaky-ReLU, and ReLU, a slightly larger re-
ward scale such as 5 or 10 usually poses no harm and poten-
tially brings benefits such as better performance.

3 Adaptive Network Scaling
We have shown that reward scaling has the potential to im-
prove the performance of RL models by a large margin.
In this section, we propose the Adaptive Network Scaling
(ANS) framework to answer the question: (Q4) How to ef-
ficiently find an appropriate reward scale to improve the
performance? This question can be decomposed into two
sub-problems: (1) How to find a suitable reward scale? and
(2) How to scale the reward while learning and transfer the
learned parameters instead of learning from scratch? For the
first sub-problem, we propose a search strategy that requires
few queries to find a satisfactory solution. For the second
sub-problem, our solution is to transfer the model trained
previously to the current reward scale so that retraining is
not required. ANS is the combination of these two solutions.

3.1 Adaptive Search Strategy
Our previous experiments suggest that to achieve the best
performance, the reward scale should be able to balance the



(a) PDRR (b) Return (c) Reward scales vs. PDRR

Figure 2: A2C reward scales comparison on Walker2d-v2 and the correlation between reward scales and PDRR in five Mujoco
environments.

Figure 3: DDPG reward scales comparison on HalfCheetah-
v2.

Figure 4: Activation comparison on Hopper-v2 with A2C.

magnitude of gradients and the maximization of the diver-
sity between positive and negative samples. We first assume
that the landscape of reward scale search space is concave as
indicated in Assumption 3.1.

Assumption 3.1 We assume that for some reward scale sx
and sy , and for any α ∈ [0, 1],

g(αsx + (1− α)sy) > αg(sx) + (1− α)g(sy), (11)

where g is the function that indicates the highest cumulative
reward that the RL model can achieve with this reward scale.

Even though it is a strong assumption for the landscape,

we still need to be careful not to use too many queries while
optimizing it since estimating g(s) requires solving an MDP.
To derive a near-optimal solution under Assumption 3.1, we
propose an adaptive search strategy that can find a satisfac-
tory scale efficiently and is easy to implement.

At the beginning of the strategy, we choose to multiply
the reward scale with cinc > 1. If the “performance” is better
than the previous scale, we continue to multiply the reward
scale with the same cinc until the improvement stops. ANS
then considers the case as overshooting and multiply the re-
ward scale with cdec slightly less than one to refine the result
and so on. It should be noted that the near-optimal scale can
be found even when the optimal scale is less than one.

To derive the performance of the current scale, we
leverage exponential moving average with bias correction
(Kingma and Ba 2014),

mt ← βmt−1 + (1− β)Rt

m̂t ← mt/(1− βt),

where Rt is the return of the t-th episodes and m̂t is the un-
biased estimate of the mean. We record the highest unbiased
estimate of mean m̂max. If it is not updated in T episodes,
then ANS considers this case as getting trapped by a local
optimum and m̂max is treated as the performance of the cur-
rent scale.

The main advantage of this search method is that we do
not need many queries of g to find a satisfactory solution. In
addition, if the optimal reward scale is bounded by smax and
one, we have a bounded number of steps nmax,

nmax ≤ dlogcinc
smaxe − blogcdec

cincc. (12)

Empirically, ANS requires less than six steps to achieve
competitive performance of the best reward scale in our
ReLU experiments and the computation cost is much lower
than grid searching for the best scale. We leave the detailed
pseudo-code in the appendix.

3.2 Network Scaling
When the reward function is scaled, the target of state-action
valueQ(s, a) and the state value V (s) are scaled equally be-
cause they are exponentially weighted sum of rewards. Since



learning from scratch is time consuming, here we introduce
network scaling, which allows us to preserve scaled outputs
of the function,

cfW ′,b′(xxx) = fW,b(cxxx). (13)

To achieve Equation 13, we utilize the scaling property of
ReLU,

c · ReLU(xxx) = ReLU(cxxx). (14)

The ReLU network can be expressed as

fW,b(xxx) = WWWn(...(WWW 2(WWW 1xxx
′ + bbb1)) + bbb2)...) + bbbn, (15)

where we omit ReLU in each layer for clarity and concise-
ness. If we scale each parameter,

fW ′,b′(xxx) = WWW ′n(...(WWW ′2(WWW ′1xxx+ bbb′1) + bbb′2)...) + bbb′n (16)
= cnWWWn(...(c1WWW 1xxx+ r1bbb1)...) + rnbbbn (17)

by obeying the following constraints, we are able to preserve
the scaled output as Equation 13,

t∏
i=1

ci = rt, for t = 1, ..., n (18)

bn = c. (19)

We consider ci = n
√
c in the following derivation and our

experiments. However, it is straightforward to extend to dif-
ferent values of ci, which can be determined by the condition
of each layer.

The change of the weights and the corresponding gradi-
ents are,

WWW new
i ← n

√
cWWW i (20)

∇WWW new
i
L ← c(2− 1

n )∇WWW i
L. (21)

For each bias, we have similar result,

bbbnew
i ← n

√
cibbbi (22)

∇bbbnew
i
L ← c(2− i

n )∇bbbiL. (23)

We may consider reward scaling as a transfer approach
that provides an initialization closed to the new solution
space, which saves a lot of time to train RL models from
scratch. The result with and without network scaling is
shown in Figure 5. Note that unless care is taken, manipu-
lating parameters of neural networks can result in instability
in the first few epochs of training; consequently, we strictly
clip the gradients by imposing maximal norm on the policy
network after scaling and gradually relax the norm, which
prevents the trained policy network from being misled by
the scaled value network at the beginning.

3.3 Related Work
To the best of our knowledge, Pop-Art (van Hasselt et al.
2016) is the only framework that directly deals with reward
scales. Their work is mainly for value-based RL approaches
while we focus on actor-critic approaches, which is capable

Figure 5: Comparison of ANS with and without network
scaling on A2C.

of achieving competitive performances (Duan et al. 2016)
such as DDPG (Lillicrap et al. 2015), PPO (Schulman et al.
2017), and A2C (Mnih et al. 2016). The main difference be-
tween Pop-Art and our approach is that ANS finds the best
reward scale in terms of learning performance whereas Pop-
Art maintains a normalized reward distribution, which may
not guarantee to improve the outcome of learning.

Pop-Art considers the neural network as

f(x) = ΣΣΣgθ,WWW,bbb(x) +µµµ = ΣΣΣ(WWWhθ(x) + bbb) +µµµ, (24)

where gθ,WWW,bbb is a normalized function and hθ is a parame-
terized (non-linear) function. To preserve the output of the
unnormalized function f while maintaining the normalized
function gθ,WWW,bbb, that is,

fθ,ΣΣΣ,WWW,bbb,µµµ(x) = fθ,ΣΣΣnew,WWW new,bbbnew,µµµnew , (25)

they apply incremental update to derive zero mean and unit
variance with ΣΣΣnew and bbbnew. Additionally, the output can be
preserved by the following update

WWW new = ΣΣΣ−1
newΣΣΣWWW (26)

bbbnew = ΣΣΣ−1
new(ΣΣΣbbb+µµµ−µµµnew). (27)

They claim that their approach is able to deal with the
problem that the magnitude of value target can change over
time. However, even though maintaining the magnitude to a
predetermined range is a straightforward approach to stabi-
lizing the learning process, empirically, the performance is
not generally good – the performance drops in nearly fifty
percent of the Atari games with Pop-Art approach as re-
ported. This can be caused by the fact that it is hard to deter-
mine appropriate values that the mean and variance should
be scaled to. Conceptually, we claim that the scaling method
should consider the training status such as improvement in
cumulative reward, which is the ultimate objective of RL.

3.4 Experiments
In our experiment, we use DDPG and A2C models to show
how ANS and Pop-Art influence the performance. For per-
formance evaluation, we follow (Henderson et al. 2017) to
use final average across 5 trials of returns across the last 100



Algorithm HalfCheetah-v2 Hopper-v2 Walker2d-v2 Swimmer-v2 Ant-v2
DDPG (ReLU) 7944.54 264.19 705.96 - -
DDPG (ELU) 7899.17 795.83 1256.20 - -
DDPG (Sigmoid) 7730.29 1173.10 695.21 - -
DDPG (Tanh) 1802.56 808.24 723.77 - -
DDPG+Pop-Art 1273.33 287.92 356.08 - -
DDPG+ANS 9393.24 1233.73 1643.47 - -
A2C (ReLU) 1132.85 1341.84 44.81 11.80 -15.77
A2C (ELU) 1280.25 1489.04 -1086.8 27.14 -15.73
A2C (Sigmoid) 832.32 1494.26 155.51 -3.46 -13.25
A2C (Tanh) 622.83 1495.83 140.67 25.12 -17.84
A2C+Pop-Art -455.57 207.99 -572.62 -16.27 -148.40
A2C+ANS 3689.64 1533.48 1760.07 83.00 1000.57

Table 1: Results of different frameworks applied to RL models. Final average across 5 trials of returns across the last 100
trajectories after N frames.

(a) Swimmer-v2 (A2C) (b) HalfCheetah-v2 (A2C) (c) Walker2d-v2 (DDPG)

Figure 6: Performance comparison between original models, models with Pop-Art, and models with ANS.

trajectories after N frames. It should be noted that it is pos-
sible for ANS to terminate beforeN frames and we continue
to train the model until N frames are reached.

Since A2C undergoes 16 environments at the same time,
we use 100 updates as tolerance T . For DDPG, 100-episode
tolerance is adapted for Walker2d-v2 and Hopper-v2, and
500-episode tolerance is used for HalfCheetah-v2. Simi-
larly, the total number of frames N for A2C is 10 mil-
lion. For DDPG, we use one million frames for Walker2d-v2
and Hopper-v2, and two million frames for HalfCheetah-v2.
Different number of frames and tolerance are adapted be-
cause DDPG keeps improving within one million frames on
HalfCheetah-v2, which makes it difficult to apply ANS. We
fix β = 0.9, cinc = 8.0 and cdec = 0.9 to avoid cumber-
some parameter tuning. The performance of Swimmer-v2
and Ant-v2 in DDPG is not included since they can hardly
be trained even with reward scaling.

As indicated in Figure 6, our experiments show that
the performance of ReLU is competitive with other acti-
vations although it is faster to compute. Besides, RL mod-
els equipped with Pop-Art even perform worse than orig-
inal models. It indicates that unit variance and zero mean
may not be the appropriate setting for ReLU networks. The
other reason could be that Pop-Art is at first crafted for
value-based RL approaches such as Dueling DQN (Wang et
al. 2015) instead of actor-critic models. On the other hand,
ANS reaches competitive performance with the proper re-
ward scales in ReLU experiments. The most important thing
is that we have no prior information about how the reward
scale should be and ANS is able to find it with limited num-
ber of frames. ANS also outperforms models with ELU, sig-

moid and tanh when no reward scaling is applied. The ad-
vantages of ReLU networks with ANS over them are three-
fold: (1) It is easier to compute and therefore the learning
process is faster. (2) It is able to preserve the sparsity prop-
erty of ReLU. (3) The performance is better by a large mar-
gin. Another observation is that in most of the cases, ANS
starts to shrink the reward scale after continuously increas-
ing till reaches 64, which agrees with our previous experi-
ments that the optimal scale is less than 64.

4 Conclusion
Here is the brief summary of the contribution of this work
• We conduct thorough experiments and provide analysis

to show that ReLU is a competitive activation function to
used for training DRL, but its performance can be influ-
enced by the scale of the rewards.

• The idea of pseudo-dying ReLU is proposed for DRL
models to evaluate the dying-ReLU situation, and empiri-
cally we have shown that it is correlated with the scale of
the rewards as well as the final cumulative rewards.

• We propose the adaptive network scaling framework,
which can be incorporated with actor-critic approaches
with ReLU networks to efficiently find a suitable reward
scale of better performance. Empirically, we show that
ANS improves the performance with respect to the origi-
nal models by a large margin.

Future works include the extension to analyze the effects of
reward scaling to saturating activations such as sigmoid and
tanh, and design a more general strategy to find suitable re-
ward scale for different activation functions.
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1 Proof of Proposition 2.1
Proposition. Consider fn(ppp) = www>ppp+ b and ‖ppp‖ = fp(B)
is normally distributed 1. For the distribution of the angle
between www and ppp, we follow empirical distribution if neces-
sary. If neuron n is pseudo-dying with respect to B, then the
probability that B ∪ {xxxB+1} is not pseudo-dying ReLU is
upper bounded by

1. |www>pppi| ≥ |b| andwww>pppi < 0

Pr(not pseudo-dying ReLU) ≤ 1

2

[
1 + erf

(
−1√
2B

)]
.

(1)

2. |www>pppi| ≤ |b| and b < 0

Pr(not pseudo-dying ReLU)

≤ 1

2

[
1− erf

(√
2(B − 1)

B

(
1− µ̄

|b|/‖www‖|cos θmin|

))]
.

(2)

For other cases, Pr(not pseudo-dying ReLU) = 0.

Proof. If neuron n is a pseudo-dying ReLU with respect to
B, we have

fn(pppi) = fn(fp(xxxi)) < 0,∀xxxi ∈ B. (3)

We consider two cases that satisfy Equation 3

1. |www>pppi| ≥ |b| andwww>pppi < 0
With Cauchy-Schwarz inequality, we have ‖pppi‖ ≥
|b|/‖www‖. Therefore, the probability of sampling an in-
stance that is not dying ReLU is

Pr(not pseudo-dying ReLU)

= Pr(‖pppi‖ <
|b|
‖www‖

) (4)

=
1

2

[
1 + erf

(
|b|/‖www‖ − µ̄

σ̄
√

2

)]
, (5)
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1A more proper setting is to assume a truncated normal distri-
bution. However, to simplified the derivation we use normal distri-
bution and assume that the distribution is far enough from zero.

where σ̄ and µ̄ are the estimate standard deviation and
the estimate mean respectively. The estimate variance is
bounded by

σ̄2 =
1

(B − 1)

∑
(‖pppi‖ − µ̄)2 (6)

≤ 1

(B − 1)

[
B(B − 1)(

|b|
‖www‖

− µ̄)2
]

(7)

= B(
|b|
‖www‖

− µ̄)2. (8)

Therefore,

Pr(not pseudo-dying ReLU) ≤ 1

2

[
1 + erf

(
−1√
2B

)]
.

(9)

2. |www>pppi| ≤ |b| and b < 0
In this case, it should be noted that if pppi and www are or-
thogonal, then the probability of being not pseudo-dying
ReLU is zero. We further consider the case that |cos θ| ≥
|cos θmin|. Similarly, we have ‖pppi‖ ≤ |b|/‖www‖|cos θmin|.

Pr(not pseudo-dying ReLU)

= Pr(‖pppi‖ > |b|/‖www‖|cos θmin|) (10)

=
1

2

[
1− erf

(
|b|/‖www‖|cos θmin| − µ̄

σ̄
√

2

)]
. (11)

Since the samples ‖pppi‖ are bounded by zero and
|b|/‖www‖|cos θmin|, the variance is bounded by

σ̄2 ≤ B

(B − 1)

(|b|/‖www‖|cos θmin|)2

4
. (12)

Therefore,

Pr(not pseudo-dying ReLU)

≤1

2

[
1− erf

(√
2(B − 1)

B

(
1− µ̄

|b|/‖www‖|cos θmin|

))]
.

(13)

1.1 Adaptive Network Scaling
Please refer to Algorithm 1 for the details of ANS.



Algorithm 1 Adaptive Network Scaling

Given tolerance T , increasing ratio cinc and decreasing ra-
tio cdec
Initialize t = 0, tstop = 0, mt = 0, Rprev = −∞, m̂max =
−∞ and reverse = False.
for each episode do

t← t+ 1
tstop ← tstop + 1
mt ← βmt−1 + (1− β)Rt . Update estimate of the

mean of the return
m̂t ← mt/(1− βt)
if m̂t > m̂max then

m̂max ← m̂t

tstop = 0

end if

if tstop > T then . Check if we should increase or
decrease the scale

if reverse and m̂max ≤ Rprev then
break

else if reverse and m̂max > Rprev then
scale the reward function with cdec
NetworkScaling(gW,b, cdec)

else if not reverse and m̂max ≤ Rprev then
scale the reward function with cdec
NetworkScaling(gW,b, cdec)
reverse←True

else
scale the reward function with cinc
NetworkScaling(gW,b, cinc)

end if
Rprev ← m̂max
reinitialize t, tstop,mt, m̂max

end if
end for

2 ReLU Experiments
We present all the experiment results here. For conciseness,
we put the legend in the last figure.

2.1 A2C
Learning Rate Please refer to Figure 1.

Reward Scale Please refer to Figure 2 to 6 for details.

ELU, Leaky-ReLU and ReLU Please refer to Figure 7.

2.2 DDPG
Learning Rate Please refer to Figure 8.

Reward Scale Please refer to Figure 9 to 11 for details.

ELU, Leaky-ReLU, ReLU Please refer to Figure 12.

(a) ReLU of layer 1 (b) ReLU of layer 2

(c) cumulative reward

Figure 1: A2C learning rate comparison on Hopper-v2.

(a) ReLU of layer 1 (b) ReLU of layer 2

(c) cumulative reward

Figure 2: A2C on Ant-v2 with different reward scales.

(a) ReLU of layer 1 (b) ReLU of layer 2

(c) cumulative reward

Figure 3: A2C on Hopper-v2 with different reward scales.



(a) ReLU of layer 1 (b) ReLU of layer 2

(c) cumulative reward

Figure 4: A2C on Swimmer-v2 with different reward scales.

(a) ReLU of layer 1 (b) ReLU of layer 2

(c) cumulative reward

Figure 5: A2C on Walker2d-v2 with different reward scales.

(a) ReLU of layer 1 (b) ReLU of layer 2

(c) cumulative reward

Figure 6: A2C on HalfCheetah-v2 with different reward
scales.

(a) Scale 0.5. (b) Scale 1.0.

(c) Scale 10. (d) Scale 30.

(e) Scale 50. (f) Scale 70.

Figure 7: A2C activations comparison with different reward
scales.

(a) ReLU of layer 1 (b) ReLU of layer 2

(c) cumulative reward

Figure 8: DDPG learning rate comparison on HalfCheetah-
v2.



(a) ReLU of layer 1 (b) ReLU of layer 2

(c) cumulative reward

Figure 9: DDPG on HalfCheetah-v2 with different reward
scales.

(a) ReLU of layer 1 (b) ReLU of layer 2

(c) cumulative reward

Figure 10: DDPG on Hopper-v2 with different reward
scales.

(a) ReLU of layer 1 (b) ReLU of layer 2

(c) cumulative reward

Figure 11: DDPG on Walker2d-v2 with different reward
scales.

(a) Scale 0.5. (b) Scale 1.0.

(c) Scale 10. (d) Scale 30.

(e) Scale 50. (f) Scale 70.

Figure 12: DDPG activations comparison with different re-
ward scales.


