
Optimizing Blackjack Strategy with Reinforcement Learning

Bradford Lin, Enoch Li, Nash Luxsuwong
CS 238: Decision Making Under Uncertainty

Stanford University

Abstract

Blackjack provides an outlet to test traditional rein-
forcement learning algorithms such as Q-learning. Ex-
isting literature already dictates optimal strategies for
playing blackjack given different environments, such
as finite deck environments and infinite deck environ-
ments. We seek to see if we can train a computer to ar-
rive at the same optimal solution using Q-learning. By
using OpenAI’s infinite deck blackjack environment,
we run Q-learning against the basic strategy of black-
jack as defined in literature. After 1,000,000 training it-
erations, we see that our Q-learning algorithm has es-
sentially converged with the basic strategy, and when
we compare policy maps, we see that the actions at each
given state are nearly identical. Had even more training
iterations been run, we could expect to see even more
similarity. In the future, we hope to expand our work
to run in finite deck environments and compare our Q-
learning algorithm against additional strategies such as
card counting, which do not work in infinite deck envi-
ronments.

Blackjack is the most commonly played casino banking
game in the world. With one of the lowest house edges of
any casino game, Blackjack is very attractive for the player.
It can even have positive expected value with advantage play,
such as card counting. In this paper, we will use reinforce-
ment learning to find the most optimal Blackjack strategy.

Blackjack Rules
The object of the game is to attempt to beat the dealer by get-
ting a count as close to 21 as possible, without going over
21 (which is known as a ”bust”). At the start of the game,
each player is dealt two cards face up, while the dealer is
dealt one card face up and the other face down. Players only
compete against the dealer and not among themselves. Re-
garding card values, the value of cards 2 through 10 is their
numerical value, while face cards (Jack, Queen, and King)
are all worth 10. Aces can be worth 1 or 11, depending on
what would lead to a better hand. A hand with an ace valued
as 11 is called ”soft”, meaning that the hand will not bust by
taking an additional card, since the value of the ace would
become 1 to prevent the hand from exceeding 21. Otherwise,
the hand is called ”hard”. A hand’s value is the sum of the
card values of the player. Players are allowed to draw ad-

ditional cards to improve their hands by choosing to ”hit”,
or can keep their hand by choosing to ”stay”. If the player
has 21 immediately (an ace and a 10-card), it is called a nat-
ural blackjack. The player then wins and receives a bonus
unless the dealer also has a natural blackjack, in which case
the game is a draw.

Once all the players have completed their hands, it is the
dealer’s turn, in which the dealer then reveals the hidden
card. If all players have either busted or received blackjacks,
the dealer’s hand will not be completed (since the player
automatically loses in the case of a bust, regardless of the
dealer’s hand). Otherwise, the dealer must hit until the cards
total up to 17. At 17 or higher the dealer must stay. Then, the
dealer and the player’s hand are compared. If the player’s
hand is higher than the dealer’s or if the dealer busts, the
player wins. If the dealer’s hand is higher, then the dealer
wins. If both hands are tied, it is a draw.

There are over 100 variations of Blackjack, many of
which involve additional player actions such as splitting and
doubling. However, for simplicity, we will use the aforemen-
tioned rules and assume there is just a single player playing
against the dealer.

Literature Review
Reinforcement learning has been explored extensively in
Blackjack because the game can easily be modeled into an
Markov decision process. Due to the probabilistic nature of
the game, an optimal strategy, also known as basic strategy,
has already been solved for in Blackjack (Figure 1).

Basic strategy is defined as the optimal way for a player
to play every hand dealt based off the player’s hand and
the dealer’s upcard. While this is the mathematically correct
way to play and lowers the house edge from 8% to 2.2%
(when excluding the ability to split or double), the house
still maintains its edge due to the fact that players must draw
first and that they lose if they bust, regardless of whether the
dealer busts or not later (Tamburin, 2020).

This finding is confirmed in a paper from the University
of London, where Kakvi (2009) implements a softmax se-
lection agent to play Blackjack. He experiments with dif-
ferent rewards to see how the policy of the agent would
change, finding that ”altering negative rewards has a larger
effect than altering positive rewards” (p. 2). Most impor-
tantly though, when looking at the net wins of the different



Figure 1: Basic Strategy

policies, Kakvi (2009) finds that ”policy alone cannot win”
(p. 2), reflecting the house edge in Blackjack.

Other reinforcement learning approaches have also been
explored as well. In a paper from the University of Mas-
sachusetts Lowell, Reilly (2012) implements Q-learning and
feature extraction to solve for the optimal policy in Black-
jack. He finds that both implementations performed rela-
tively equally and achieved an average success rate of 43-
44%, comparable to the 44% ”average success rate for a
competent Blackjack player” (Reilly, 2012, p. 3). However,
he notes that Q-learning takes 10 times as many trials to peak
compared to feature extraction (10,000 vs. 1000 trials).

Additionally, Granville (2005) from the University of Ok-
lahoma also implements Q-learning in Blackjack. Taking
into account additional aspects of the game, such as split-
ting and doubling down, Granville’s implementation is able
to handle much more than the simplified version of the game
presented earlier. Comparing Q-learning with the basic strat-
egy and a random policy, Granville (2005) finds that Q-
learning’s performance is initially similar to the random pol-
icy’s, then asymptotically ”approaches the performance of
the basic strategy” (p. 3) as the number of training iterations
increases to ten million. This convergence is to be expected
since ”the Q-learning algorithm directly approximates the
optimal action-value function Q∗(s, a)” (Granville, 2005, p.
3). However, as found in other papers, even the optimal pol-
icy still has a negative expected reward and causes players
to lose money, albeit the least amount of any policy.

Overall, the findings from these papers, particularly the
robustness of the house edge, the number of training itera-
tions needed in Q-learning, and Q-learning’s expected con-
vergence to the basic strategy, were instrumental in helping
us design our study and know what to expect.

Methodology
We implement a Q-learning algorithm to determine an opti-
mal policy for blackjack. After training, we write up a simu-
lation function that allows us to test different policies and
strategies against our blackjack environment. Specifically,
we compare our Q-learning policy to a random policy and
a policy determined by the basic strategy (Simplified Black-
jack Basic Strategy, n.d.). In our basic strategy, if the player
has a usable ace, then the player will hit if the player sum
is less than 18 and stay if above. If the player does not have
a usable ace, the player will hit when the player sum is less
than 17 and when the dealer shows an ace or a card that is
greater than or equal to 7. In our analysis, we run a simula-
tion on the basic strategy, random strategy, and Q-learning
strategy and calculate average score over training iterations
from 0 through 100,000. We also create a heat map of our
Q-matrix and create a policy map that shows which action
to be taken at each state given our Q-matrix.

Environment
We use OpenAI’s blackjack environment for the purposes of
our testing and algorithmic implementation. Face cards are
given a point value of 10. Aces can count as 11 or 1, and if
counted as 11, the ace is called usable. OpenAI’s blackjack
game is played using an infinite deck, meaning cards are
drawn with replacement.

In OpenAI’s blackjack environment, the reward for win-
ning is +1, the reward for losing is -1, and the reward for
a draw is 0. A natural blackjack win, when a player’s first
two cards are an ace and a ten-card, gains a reward of +1.5,
similar to standard casino rules.

Algorithm
We implement a Q-learning algorithm to determine an op-
timal blackjack strategy. We define our action set as either
hitting or staying, and our state array to be a 32 by 11 by 2
array, with 32 corresponding to the number of possibilities
for a player’s current sum, 11 corresponding to the num-
ber of possibilities for the dealer’s face up card, and 2 cor-
responding to whether or not the player has a usable ace.
These parameters are defined by the OpenAI blackjack en-
vironment.

In our Q-learning algorithm, we choose a learning rate
(α) of 0.01 and a discount factor (γ) of 0.15. We chose a
small learning rate to allow the model to learn a more opti-
mal solution, even if it meant that training time of the model
was longer. Through testing, we found that our learning rate,
combined with the rest of our parameters, allowed for our
model to converge upon the basic blackjack strategy. We set
a discount factor of 0.15 so that we can put more weighting
on recent states. For each iteration of learning, our algorithm
can take a maximum of 100 steps of exploration.

In our initial training, we implement an epsilon-greedy
approach, where we set our initial epsilon to 1 and have it
decay over time down to a lower-bound of 0.15. We start at 1
because in the beginning, our Q-matrix is essentially empty,
so we instruct the computer to explore. Over time, as the al-
gorithm builds up the Q-matrix, we instruct the computer to



exploit the current best option rather than to keep exploring.
Rather than keep a constant epsilon, we start at 1 (instruct-
ing the computer to explore) and decay our epsilon by 1%
each iteration, until hitting a lower bound of 0.15, where the
computer will exploit most of the time and do minimal ex-
ploring.

We step through our games of Blackjack by calling upon
the OpenAI environment, and we update our Q-matrix at
each iteration using the following equation:

New Q = Q+ α[r + γmaxQ′ −Q]

Here, Q represents the Q-values from the Q-matrix as a
function of state s and action a. Furthermore, r represents
the reward as a function state s and action a. Finally,Q′ rep-
resents the maximum expected future reward as a function
of the next state from taking the given action.

Results and Discussion
Our first analysis was to determine the performance of the
Q-learning policy in relation to a random policy and the ba-
sic strategy policy. We run Q-learning on iterations ranging
from 1 through 100,000 and we see that our policy’s perfor-
mance quickly converges to that of the basic strategy (Figure
2). This is expected, as the basic strategy is the set of opti-
mal rules such that the player can maximize the amount of
money won. In the long run, if we run even more training it-
erations, our Q-learning strategy should replicate that of the
basic strategy (Figure 2).

Figure 2: Average Score vs. Number of Training Iterations

In the beginning, we see that Q-learning significantly
under-performs the basic strategy because the computer is
not yet trained and must do much more exploration. How-
ever, by the time the computer runs 20,000 training itera-
tions, it has already improved significantly and begins to
converge upon the basic strategy. We expect basic strategy
to perform similarly regardless of training iterations because
the strategy has already been determined. Moreover, we see

that both the Q-learning policy and basic strategy policy sig-
nificantly outperform the random policy. These conclusions
are all in line with what we expect.

After graphing the convergence of our Q-learning policy
to that of the basic strategy, we illustrate the actual Q-matrix
and heat map of decisions being made at each state. To do
so, we run Q-learning for 20,000,000 training iterations and
output two heat maps, one for when the player has a usable
ace, and one for when the player does not have a usable ace
(Figure 3).

Figure 3: Q-learning Heat Maps

The reason why we choose to run Q-learning with a
higher iteration count for the heat map is so that we get more
clarity on the computer’s decision-making process. That is
to say, with more training iterations, the computer is more
sure of which action to take at each state. This is depicted
visually by having darker colors in the heat map (Figure 3).

Finally, based on our Q-learning policy heat map, we cre-
ate a policy map that instructs the player what to do in each
given state (Figure 4).

From our policy maps, we can really see the convergence



Figure 4: Q-learning Policy Maps

of our Q-learning strategy to the basic strategy. Our final pol-
icy map instructs the player to hit whenever the player hand
value is less than or equal to 17, assuming the player has
a usable ace. In a few instances, when the dealer shows an
Ace or an 8, 9, or 10-card, the player is also instructed to hit.
These instances slightly stray from the true basic strategy,
but with more training iterations, this convergence would be
even more obvious (Figure 4).

When the player does not have a usable ace, the Q-
learning policy instructs the player to hit whenever the
player’s hand value is less than or equal to 16 and when the
dealer shows a card greater than or equal to seven. There is
one anomaly, however, when the player’s hand value is 16
and the dealer shows a 7, where the player is instructed to
stay (Figure 4). However, aside from this one anomaly, our
Q-learning policy instructs the player to play essentially as
the basic strategy would. There are a few more edge cases,
such as when the dealer shows an ace, that the player is in-
structed to hit, where the basic strategy would instruct the
player to stay, but overall our Q-learning policy’s conver-

gence to the basic strategy is striking, as can be seen from
our side-by-side comparison of the two policies (Figure 5).

Figure 5: Policy Map Comparisons

Future Work
In our current blackjack environment, we use an infinite
deck, so positive expected value strategies such as card
counting do not work. Since blackjack inherently favors the
dealer, we can see that for an infinite deck, the optimal strat-
egy will still yield a negative expected reward, albeit close
to the break-even point at 0.

In the future, it would be interesting to run our algorithm
on a singular deck, or on four to five decks as is standard
in casinos, and compare our Q-learning policy against card
counting and the basic strategy. In these situations, it would
be interesting to see if our Q-learning policy outperforms the
basic strategy and begins to converge upon card counting, or
if some other result is obtained. If we were to experiment
with card counting and non-infinite decks, we would have to
write our own custom blackjack environment, as the OpenAI
environment would not support such experimentation.



Summary
After running Q-learning on OpenAI’s blackjack environ-
ment, our algorithm quickly converges to the optimal strat-
egy given an infinite deck, that of the basic strategy. From
our results, we see that our Q-learning algorithm begins
converging after around 20,000 training iterations, and by
1,000,000 training iterations, Q-learning and the basic strat-
egy begin to score quite similarly, with a slightly negative
expected reward of approximately -0.05. Comparing policy
maps from the Q-learning matrix heat map shows almost
identical actions between Q-learning and the basic strategy,
except for a few discrepancies. With even more training it-
erations, we would expect the policy maps to become even
more similar, and even identical in the long run. In the fu-
ture, we hope to extend our work on a limited deck, where
we can introduce positive expected value strategies, such as
card counting, and see how our Q-learning algorithm fares
in a scenario with drawing cards without replacement.

Author Contributions
Each group member contributed evenly. Bradford helped
write the Q-learning algorithm and contributed to the fi-
nal report. Nash ran the analyses and created the conver-
gence graphs as well as the heat maps and policy maps.
Enoch helped write the blackjack testing simulations and
contributed to the final report.

References
Granville, C. d. (2005). Applying reinforcement learning to
blackjack using Q-learning. University of Oklahoma.

Kakvi, S. A. (2009). Reinforcement learning for blackjack.
University of London

Reilly, B. (2012). An MDP blackjack agent. University of
Massachusetts Lowell.

Super-easy simplified blackjack basic strategy chart.
http://blackjackcalculation.com/blackjack-super-easy-
basic-strat.html

Tamburin, H. (2020). Blackjack basic strategy.
https://www.888casino.com/blog/blackjack-strategy-
guide/basic-blackjack-strategy


