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Abstract

Navigating safely and efficiently in stochastic environments remains a crucial
challenge in the field of autonomous driving. In this work, we explore the
problem of safe driving through a crosswalk for autonomous vehicles. We in-
troduce the Crosswalk Driving problem where the vehicle must drive to a des-
tination while obeying reliable safety constraints. We formulate our problem
as a Markov Decision Process (MDP) and propose two environments: Simple
Crosswalk and Jaywalker Crosswalk. We solve our MDP using several model-
free reinforcement learning approaches and provide analysis on our results. Our
code for the simulation environment and the RL algorithms used is available at
https://github.com/yanxi0830/CS238CrosswalkDriving.

1 Introduction

In recent years, we have seen rapid advancements in the field of autonomous driving. Yet, safe
driving in all driving scenarios remains a difficult and open problem. Developing an autonomous
driving (AD) system involves taking many aspects into consideration, ranging from vehicle design to
control, perception, planning, coordination, and human interaction [1]. One of the main challenges
for autonomous vehicles is the frequent interactions between the ego vehicle, pedestrians, and other
vehicles whose behavior inherently involve some degree of randomness.

In our work, we consider the problem of safe driving through a crosswalk for an autonomous vehicle.
Specifically, the objective of the ego vehicle is to learn a sequence of optimal operation decisions
(i.e. acceleration) which allows it to reach the destination with a target speed as soon as possible and
avoid collision with any unforeseen pedestrians along its way. Our work can be broken down into
two parts. First, we formulate our problem as a Markov Decision Process (MDP) to complement
the decision-making process for autonomous vehicles. Second, we consider several model-free
reinforcement learning approaches including Q-Learning, Q(λ), Sarsa, and Sarsa(λ) to solve our
MDP model.

2 Related Work

There is a vast number of works in the literature on decision making for autonomous driving. [2]
presents a comprehensive review into the recent developments and research on collision avoidance
system and adaptive cruise control (ACC) for autonomous vehicles. Most recently, [3], [4] explores
the effectiveness of deep reinforcement learning algorithms on a taxonomy of autonomous driving
tasks and intersection problems. Related to our work, Wei et al [5] introduce a point-based MDP
for single-lane autonomous driving control under uncertainties. They incorporate uncertainties
including vehicle’s behavior and sensor inputs with the objective to better avoid unsafe behaviors.
Bai et al [6] tackle a similar problem of driving near pedestrians and incorporate a POMDP online
planning approach. In this work, we investigate MDP formulation on the autonomous driving
scenario involving a single-lane street with a crosswalk where the ego vehicle aims to safely interact
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with unforeseen pedestrians. In contrast to [6], we approach our problem using several model-free
reinforcement learning algorithms.

3 Problem Formulation

In this section, we introduce the Crosswalk Driving problem. We assume a one-dimensional layout,
where the ego vehicle is driving along a straight one-lane street, with a crosswalk at a preset position
unknown to the agent. The goal for the vehicle is to reach the destination located past the crosswalk
at the end of the street with a certain speed as soon as possible, while obeying the traffic law and
avoiding collision with any pedestrians. We consider two scenarios: Simple Crosswalk and Jaywalker
Crosswalk.

Simple Crosswalk. In the Simple Crosswalk scenario, we assume that there is a pedestrian standing
still at the crosswalk, which is hand-coded to a fixed position when initializing the simulation
environment. In addition to the objective of reaching the destination at the end of the road with the
targeted speed as soon as possible, the vehicle must yield to the pedestrian(i.e. slow down to satisfy
the preset speed limit) when it approaches the crosswalk.

Jaywalker Crosswalk. In the Jaywalker Crosswalk scenario, we extend the Simple Crosswalk case
and incorporate the uncertainty from potential jaywalking pedestrians who may appear in front of the
ego vehicle at any location on its way. The vehicle is equipped with a sensor which gives 3 different
signals based on whether it detects a jaywalking pedestrian near the ego vehicle: Safe, Warning,
Danger. The vehicle is expected to decrease its speed to a preset safe speed whenever the sensor
outputs a Warning signal, and should stop whenever there is a Danger signal.

We formulate our problem as a Markov Decision Process (MDP) with {S,A, T,R, γ}. At each step
t, the agent observes a state st, and performs an action at according to a policy π, leading to a new
state st+1 given by the transition function T (s′|s, a), and a corresponding reward rt given by the
reward function R(s, a). The rest of Section 3 describes our setup for S,A, T ,R and γ in detail.

(a) (b)

Figure 1: Visualization of our problem setting. (a) Simple Crosswalk. (b) Jaywalker Crosswalk. The
sensor generates a Danger signal on detecting a pedestrian.

3.1 State Space

For the Simple Crosswalk scenario, the state space is composed of two distinct features: the vehicle’s
position and velocity. As the vehicle drives along a straight street with a single lane, we use scalar
values xt to encode its position and vt for its velocity at step t. For the Jaywalker Crosswalk scenario,
we introduce a third feature to the state space: the jaywalk signal given by the sensor lt.

All three features are discretized in this project. For the Simple Crosswalk scenario, we also investigate
two state spaces with different scales to compare the learning speed of the various methods described
in Section 4. The state spaces used in this project are summarized in Table 1.

In each scenario, the initial state is at position 0 with velocity 3. The terminal state is reached when
the vehicle has passed the crosswalk and reached the destination at the end of the road.
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Scenario # Positions # Velocity # Sensor Signal State Space Size |S|
Simple Crosswalk (small) 21 5 N/A 105
Simple Crosswalk (large) 101 21 N/A 2121
Jaywalker Crosswalk 21 5 3 315

Table 1: State Spaces in Different Driving Scenarios

3.2 Action Space

The only action we consider in this project is the throttling/braking control. At each step t, the agent
can perform an action at from a discrete action space. Action 0 means that the vehicle will maintain
its current speed. Actions 1 and 2 represent small and large accelerations while actions 3 and 4
represent small and large decelerations. To prevent the agent from reaching negative speed after
deceleration, we clip the minimum speed to 0. We also limit the maximum speed to some fixed value
to avoid dangerously high speed.

3.3 Transition Function

The transition model T (st+1|st, at) for the ego vehicle is deterministic. For action at, we map it to
different values of accelerations ∆vt shown in Table 2.

For each step, we update the vehicle’s velocity and position using the following rules:

vt+1 = vt + ∆vt (1)

xt+1 = xt + vt+1 (2)

Action at 0 1 2 3 4
Acceleration ∆vt 0 1 2 -1 -2

Table 2: Mapping Between Action and Acceleration

3.4 Reward Function

To achieve our safe driving goal, we consider four components when designing our reward function
R(s, a), each with a specific objective.

(1)Rcrosswalk encodes the objective that the vehicle should slow down when approaching the crosswalk
where a pedestrian is standing still. If the vehicle exceeds the speed limit vmax_crosswalk when it
passes the crosswalk, we add a penalty of −40.

(2) Rgoal is the termination reward the vehicle receives when it reaches the destination xgoal. If
the vehicle reaches the goal position with the targeted velocity vgoal, it is given a reward of +40.
Otherwise, it receives a penalty of −40.

(3) Rstep is the step reward that encourages the vehicle to minimize the number of steps required for
reaching the destination. For every state along the vehicle’s trajectory (except the terminal state), the
vehicle receives a penalty of −3.

The reward function for the Simple Crosswalk scenario is given by Eq. 3.

Rsimple(s, a) = Rcrosswalk +Rgoal +Rstep (3)

(4) Rsensor is the additional sensor reward for the Jaywalker Crosswalk scenario to incorporate sensor
signals. It enforces the constraint that vehicle should slow down whenever the sensor generates a
Warning signal and stop on observing a Danger signal. A penalty of −20 is added if the speed of
vehicle exceeds vmax_warning with a Warning signal, and a penalty of −40 is added if the vehicle
is still moving (vt > 0) with a Danger signal. In addition, a penalty of −5 is added if the vehicle
accelerates with a Warning or Danger signal.
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The reward function for Jaywalker Crosswalk scenario is given by Eq. 4.

Rjaywalker(s, a) = Rcrosswalk +Rgoal +Rstep +Rsensor (4)

3.5 The Discount Factor

The discount factor γ for an MDP has value between 0 and 1. Lower value of the discount factor
encourages the agent to prioritize the immediate rewards than the future ones. In this project, we set
γ to 0.95 in all reinforcement learning algorithms.

4 Methods & Implementation Details

This section summarizes the different model-free RL algorithms we used to approach the problem.

4.1 Off-Policy: Q-Learning

Q-learning is a model-free reinforcement learning algorithm which incrementally estimates the action
value function Q(s, a). We initialize the action value function to 0 for all state-action pairs. Then,
given the current state st, action at and next state st+1, Q-learning updates the corresponding action
value function as follows:

Q(st, at)← Q(st, at) + α[rt + γmax
a′

Q(st+1, a
′)−Q(st, at)] (5)

In order to make sure the action value function converges, we allow the agent to explore by applying
the ε-greedy strategy in the training process. Specifically, the strategy chooses a random action with
probability ε. Otherwise, it chooses the greedy action which achieves the maximum action value
function for the current state. Since most states are not explored at the beginning, there is much
higher uncertainty to start with. Therefore, we set a relatively high ε at initialization and decay it over
time. In this way, the agent is encouraged to explore the environment early in the learning process
and take full advantage of what it has learnt as the policy converges.

Finally, the policy π generated by Q-learning can be expressed as follows using the updated action
value function Q:

π(s) = argmax
a

Q(s, a) (6)

Q-learning has four hyper-parameters during its learning process.

• The learning rate α. Its value is between 0 and 1. Higher values of α generates larger
update steps for Q(s, a), which leads to faster learning (i.e. time to converge) but could
potentially lead to sub-optimal policy.

• The training episode eps. The number of rollouts performed in the training process.

• The horizon h. The maximum number of steps for each rollout. This should increase as the
state space grows.

Additionally, the ε-greedy strategy involves two hyperparameters.

• The probability to explore ε. Higher value of ε encourages the agent to explore rather than
exploit.

• The exploration decaying factor β. Value is set between 0 and 1. Each time the agent
takes a random action, ε is decayed by a factor of β such that the probability for the agent to
take a random action decreases over time.

The Q-learning and ε-greedy strategy is described in Algorithm 2 and Algorithm 1 respectively.

4.2 On-Policy: Sarsa

Sarsa is an on-policy reinforcement learning method. It is different from Q-learning in that the
maximum reward for the next state st+1 is not necessarily used for updating the Q-value. Instead,
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it chooses a new action at+1 following the same policy that determined the current action at. The
update to Q(s, a) is computed as follows:

Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)] (7)

This update is done after taking action at from a state st, transiting to a new state st+1 and taking a
new action at+1. As each update requires knowledge of st, at, rt, st+1, at+1, this gives the algorithm
the name Sarsa.

Same as Q-Learning, Sarsa has multiple hyper-parameters during its learning process, namely the
learning rate α, the training episodes eps and the horizon h. In order to guarantee convergence
of the action-value function, we also adopt ε-greedy as did for Q-Learning in Section 4.1. The final
learned policy is extracted by taking the actions with maximum action value according to Eq. 6. The
Sarsa algorithm is described in Algorithm 3.

4.3 Eligibility Trace: Q(λ) and Sarsa(λ)

Eligibility traces facilitate the learning process of Q-learning and Sarsa by propagating the reward
backward to all state-action pairs that lead to the source of the reward. It maintains a visit count
N(s, a) with counts decaying exponentially using a factor of λ. The exponentially decaying visit
counts are used in the propagation such that the states closer to the reward are assigned larger action
values. The versions of Q(λ) and Sarsa(λ) implemented for this problem are described in Algorithms
4 and 5.

For each step over the horizon, we increment N(st, at) by 1 if action at is taken at state st. We then
compute the temporal difference update.

For Q(λ), the temporal difference update is computed as:

δ ← rt + γmax
a′

Q(st+1, a
′)−Q(st, at) (8)

For Sarsa(λ), we have
δ ← rt + γQ(st+1, at+1)−Q(st, at) (9)

We then do a full update to the action value function Q(s, a) for each s ∈ S and a ∈ A according to
the corresponding visit counts.

Q(s, a)← Q(s, a) + αδN(s, a) (10)

Finally, the visit counts are decayed using both the discount factor γ and the decay factor λ.

N(s, a)← γλN(s, a) (11)

Similar to Q-learning and Sarsa, the learnt policy is extracted from the Q matrix using Eq. 6.

Apart from hyper-parameters used in Q-learning and Sarsa, Q(λ) and Sarsa(λ) each have an extra
hyper-parameter.

• The eligibility trace decay parameter λ. The value of λ is set between 0 and 1. Larger λ
enables the reward to be propagated to states further away. Q-learning and Sarsa can be
considered special cases where λ is equal to 0.

Hyperparameter settings used in our experiments can be found in our code repo at https://github.
com/yanxi0830/CS238CrosswalkDriving.

5 Results

We plot the total undiscounted reward per episode over training episodes for the algorithms in Section
4. Figures 2, 3, and 4 show the results for each of the three scenarios described in Section 3.

All four model-free algorithms converge in all three scenarios. We also observe the common trend
that adding eligibility traces allows both Q-learning and Sarsa to converge faster. This is especially
evident in Simple Crosswalk (large), where Q(λ) and Sarsa(λ) converges in significantly fewer
training episodes compared to Q-Learning and Sarsa, respectively. This is expected as the eligibility
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traces help propagate reward backward to the visited states and thus speed up learning. While Rstep

and Rsensor are rather distributed in our environment, the eligibility traces enable the vehicle to
learn much faster about the sparser rewards including Rgoal and Rcrosswalk, which has pronounced
impacts in the scenario with large state space. However, adding eligibility traces slows down the
update procedure in each training episode and also decreases the reward value at convergence in our
experiments. Moreover, we notice that Q-learning seems to converge faster than Sarsa, and so does
Q(λ) compared to Sarsa(λ).

We also investigate how adding the sensor signal feature to enlarge the state space affects the
learning process. While Simple Crosswalk (small) and Jaywalker Crosswalk shares the same
number of discretized position and velocity values, the additional feature of sensor signal makes
all algorithms take more episode to converge on the Jaywalker Crosswalk environment compared
to Simple Crosswalk (small). This alludes to the fact that tabular-based RL methods suffer from
the curse of dimension. In a real-world driving scenario where the observation state space is of
much higher dimension, the learning process of the tabular-based methods we considered could
take exponentially longer to converge. Further, these methods are not applicable off-the shelf with
continuous state spaces. As a future work, we would like to explore the use of deep-learning based
RL methods such as deep Q-networks (DQN) to scale up the learning process.

(a) (b) (c) (d)

Figure 2: Plot of total episode reward over each training episode for Simple Crosswalk (small) (a)
Q-Learning (b) Q(λ) (c) Sarsa (d) Sarsa(λ)

(a) (b) (c) (d)

Figure 3: Plot of total episode reward over each training episode for Simple Crosswalk (large) (a)
Q-Learning (b) Q(λ) (c) Sarsa (d) Sarsa(λ)

(a) (b) (c) (d)

Figure 4: Plot of total episode reward over each training episode for Jaywalker Crosswalk (a)
Q-Learning (b) Q(λ) (c) Sarsa (d) Sarsa(λ)

Lastly, we evaluate our learned policy’s performance on a test simulation against the baseline policy
with randomly sampled actions. We use 2 evaluation metrics: total reward and overspeeding rate.
For total reward, we compute the total undiscounted reward along the trajectory of the vehicle

6



following the policy learned with each algorithm. Table 3 reports the average total undiscounted
reward over 5 different random runs for each algorithm. For overspeeding, we consider the vehicle
to be overspeeding whenever it exceeds the speed limit driving past the crosswalk vmax_crosswalk or
exceeds vmax_warning with a Warning sensor signal or has nonzero velocity with a Danger sensor
signal. Table 4 reports the overspeeding rate over 5 different random runs for each algorithm. Note
that all algorithms significantly outperform the random policy with higher total reward and lower
overspeeding rate.

Scenario Random Q-Learning Q(λ) Sarsa Sarsa(λ)
Simp.Cross. (small) -48.6 26.2 26.2 27.4 21.4
Simp.Cross. (large) -129.8 6.4 6.4 6.4 2.8
Jaywalker.Cross. -130.0 6.4 -2.0 7.2 -3.0

Table 3: Average total undiscounted reward over 5 random runs in the three scenarios for all
algorithms.

Scenario Random Q-Learning Q(λ) Sarsa Sarsa(λ)
Simp.Cross. (small) 0.8 0.0 0.0 0.0 0.0
Simp.Cross. (large) 0.8 0.0 0.0 0.0 0.0
Jaywalker.Cross. 1.0 0.0 0.0 0.2 0.2

Table 4: Overspeeding Rate (%) over 5 random runs in the three scenarios for all algorithms.

6 Conclusion

In this work, we tackle the problem of safe driving through a crosswalk for autonomous vehicles. We
introduce the Simple Crosswalk and Jaywalker Crosswalk simulation environments, and formulate
the problem as an MDP. Besides, we incorporate the vehicle’s velocity, position and sensor signals
into our state space and discretize the action space for throttling/braking control. Moreover, We
encodes safety and mobility objectives into the reward function. Lastly, we solve our MDP model
using various model-free RL algorithms including Q-Learning, Q(λ), Sarsa, and Sarsa(λ) and provide
benchmarking results for each of the algorithms.

There are many extensions to our problem that we want to explore for future work. First, we could
incorporate more complex environments and vehicle dynamics into the simulator. For example, a
two-dimensional case where there are multiple lanes in the street, or a multi-agent setting involving
interacting with other vehicles. We can also explore deep-learning based RL algorithms to solve
scenarios with larger and continuous state and action spaces more efficiently.

7 Contribution

All team members discussed and formulated the MDP model together. Xi implemented the simulation
environment, and ran experiments and analysis for all algorithms. Xiyuan implemented the Q-learning
and Q(λ) algorithms and complemented the analysis. Siyun implemented the Sarsa and Sarsa(λ)
algorithms and helped with the environment setup. All team members contributed to the write-up.
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A Algorithms

Algorithm 1 ε-greedy(s)
1: r = random()
2: if r < ε then
3: ε← βε
4: return random()
5: else
6: return greedy action(s)
7: end if

Algorithm 2 Q-Learning
1: Initialization: ∀s ∈ S, a ∈ A, Q(s, a) = 0
2: for episode = 1, 2, . . . , eps do
3: s = initial state
4: for time step = 1, 2, . . . , h do
5: a = ε-greedy(s)
6: r, s′, done = step(a)
7: Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
8: s← s′

9: if done then
10: break
11: end if
12: end for
13: end for
14: return Q

Algorithm 3 Sarsa
1: Initialize Q(s, a) = 0, ∀s ∈ S, a ∈ A(s)
2: for episode = 1, 2, . . . do
3: a = ε-greedy(s)
4: for timestep = 1, 2, . . . do
5: Take action a, observe r, s′
6: a′ = ε-greedy(s′)
7: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
8: s← s′; a← a′

9: end for
10: end for
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Algorithm 4 Q(λ)
1: Initialization: ∀s ∈ S, a ∈ A, Q(s, a) = 0
2: for episode = 1, 2, . . . , eps do
3: s = initial state
4: for time step = 1, 2, . . . , h do
5: a = ε-greedy(s)
6: r, s′, done = step(a)
7: δ ← r + γmaxa′Q(s′, a′)−Q(s, a)
8: N(s, a)← N(s, a) + 1
9: for s ∈ S, a ∈ A do

10: Q(s, a)← Q(s, a) + αδN(s, a)
11: N(s, a)← γλN(s, a)
12: end for
13: s← s′

14: if done then
15: break
16: end if
17: end for
18: end for
19: return Q

Algorithm 5 Sarsa(λ)
1: Initialize Q(s, a) = 0, ∀s ∈ S, a ∈ A(s)
2: Initialize N(s, a) = 0, ∀s ∈ S, a ∈ A(s)
3: for episode = 1, 2, . . . do
4: a = ε-greedy(s)
5: for timestep = 1, 2, . . . do
6: Take action a, observe r, s′
7: a′ = ε-greedy(s′)
8: δ ← r + γQ(s′, a′)−Q(s, a)
9: N(s, a)← N(s, a) + 1

10: for all s, a do
11: Q(s, a)← Q(s, a) + αδN(s, a)
12: N(s, a)← γλN(s, a)
13: end for
14: end for
15: s← s′; a← a′

16: end for
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